1
|
Tartaglia M, Scarano P, Prigioniero A, Zuzolo D, Postiglione A, Falzarano A, Amoresano A, Illiano A, Pinto G, Schicchi R, Geraci A, Sciarrillo R, Guarino C. Multi-omic characterisation as a tool to improve knowledge, valorisation and conservation of wild fruit genetic resources: the case of Arbutus unedo L. FRONTIERS IN PLANT SCIENCE 2023; 14:1195673. [PMID: 37745992 PMCID: PMC10514896 DOI: 10.3389/fpls.2023.1195673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/11/2023] [Indexed: 09/26/2023]
Abstract
The valorisation and conservation of plant genetic resources (PGRs) and wild fruit PGRs are critical to ensure the maintenance of genetic and cultural heritage and to promote new perspectives on resource use. New strategies to characterize PGRs are needed, and the omics approach can provide information that is still largely unknown. The Strawberry tree (Arbutus unedo L.) is an underutilized, drought and fire-resistant species distributed in the Mediterranean area and its berries have large ethnobotanical use. Although their phenolic profile and antioxidant capacity are known, they are not well characterised, particularly from a proteomic perspective. The aim of this work is the characterisation of two ecotypes of A. unedo (Campania and Sicily) from a molecular viewpoint to valorise and encourage the preservation of this wild fruit. Samples were collected from two different geographical areas to assess whether different geographical conditions could influence the characteristics of leaves and fruits at the three stages of ripening (green, veraison, red). Proteomic analysis identified 904 proteins, of which 122 showed significance along the ripening. Some of these differentially abundant proteins, such as chalcone synthase, show a marked increase during ripening. The protein functional classes with the highest representation are involved in protein and amino acid metabolism, glycolysis and in secondary metabolism. From a proteomic perspective, there are no differences between the fruits from the two regions compared by the ripening stage. However, the pedoclimatic metabolic imprinting allowed the observation of good diversity in the metabolomic profiles between the two ecotypes, especially for anthocyanins, 4 times more abundant in the Sicilian veraisoned fruit than in the Campania one, and catechins, with double the abundance in the Campania ecotype compared to the Sicilian ecotype in the green phase, but more abundant (3x) in the Sicilian veraisoned fruit. Phenolic compounds show a 20% greater abundance in the Campania green arbutus fruit than in the Sicilian one, values that then equalise as ripening progresses. Multi-omic characterisation enhanced the knowledge on a wild fruit plant species which shows specific adaptations and responses to the environment to be considered when addressing the issue of local agrobiodiversity.
Collapse
Affiliation(s)
- Maria Tartaglia
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Pierpaolo Scarano
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | | | - Daniela Zuzolo
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Alessia Postiglione
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | | | - Angela Amoresano
- Department of Chemical Science, University of Naples Federico II, Naples, Italy
- INBB - Consorzio Interuniversitario Istituto Nazionale di Biostrutture e Biosistemi, Rome, Italy
| | - Anna Illiano
- Department of Chemical Science, University of Naples Federico II, Naples, Italy
- INBB - Consorzio Interuniversitario Istituto Nazionale di Biostrutture e Biosistemi, Rome, Italy
| | - Gabriella Pinto
- Department of Chemical Science, University of Naples Federico II, Naples, Italy
- INBB - Consorzio Interuniversitario Istituto Nazionale di Biostrutture e Biosistemi, Rome, Italy
| | - Rosario Schicchi
- Department of Agricultural, Food and Forest Sciences (SAAF), Università degli Studi di Palermo, Palermo, Italy
| | - Anna Geraci
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Rosaria Sciarrillo
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Carmine Guarino
- Department of Science and Technology, University of Sannio, Benevento, Italy
| |
Collapse
|
2
|
Chen Q, Lin X, Tang W, Deng Q, Wang Y, Lin Y, He W, Zhang Y, Li M, Luo Y, Zhang Y, Wang X, Tang H. Transcriptomic Complexity in Strawberry Fruit Development and Maturation Revealed by Nanopore Sequencing. FRONTIERS IN PLANT SCIENCE 2022; 13:872054. [PMID: 35909727 PMCID: PMC9326444 DOI: 10.3389/fpls.2022.872054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/20/2022] [Indexed: 05/13/2023]
Abstract
The use of alternative transcription start or termination sites (aTSS or aTTS) as well as alternative splicing (AS) produce diverse transcript isoforms, playing indispensable roles in the plant development and environmental adaptations. Despite the advances in the finding of the genome-wide alternatively spliced genes in strawberry, it remains unexplored how AS responds to the developmental cues and what relevance do these outcomes have to the gene function. In this study, we have systematically investigated the transcriptome complexity using long-read Oxford Nanopore Technologies along the four successive developmental stages. The full-length cDNA sequencing results unraveled thousands of previously unexplored transcript isoforms raised from aTSS, aTTS, and AS. The relative contributions of these three processes to the complexity of strawberry fruit transcripts were compared. The aTSS and aTTS were more abundant than the AS. Differentially expressed transcripts unraveled the key transitional role of the white fruit stage. Isoform switches of transcripts from 757 genes were observed. They were associated with protein-coding potential change and domain gain or loss as the main consequences. Those genes with switched isoforms take part in the key processes of maturation in the late stages. A case study using yeast two hybrid analysis supported the functional divergence of the two isoforms of the B-box protein 22. Our results provided a new comprehensive overview of the dynamic transcriptomic landscape during strawberry fruit development and maturation.
Collapse
Affiliation(s)
- Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Ximeng Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Wenlu Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Qian Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Yuanxiu Lin
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Wen He
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Yunting Zhang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiaorong Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Haoru Tang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Haoru Tang
| |
Collapse
|
3
|
Tartaglia M, Sciarrillo R, Zuzolo D, Amoresano A, Illiano A, Pinto G, Jorrín-Novo JV, Guarino C. Why Consumers Prefer Green Friariello Pepper: Changes in the Protein and Metabolite Profiles Along the Ripening. FRONTIERS IN PLANT SCIENCE 2021; 12:668562. [PMID: 33995464 PMCID: PMC8121147 DOI: 10.3389/fpls.2021.668562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Fruit ripening is a physiologically complex process altering texture, color, flavor, nutritional value, and aroma. However, some fruits are consumed at an early stage of ripening due to the very peculiar characteristics varying during ripening. An example is a particular ecotype of pepper, the Friariello pepper, among the most important representatives of Campania (Southern Italy) agro-alimentary culture. In this study, for the first time, the physiological variations during Friariello ripening (green, veraison, and fully ripe) were evaluated by hyphenated mass spectrometric techniques in a proteomic and metabolomic approach. We found that Lutein and Thaumatin are particularly abundant in the green Friariello. Friariello at an early stage of ripening, is rich in volatile compounds like butanol, 1 3 5-cycloheptatriene, dimethylheptane, α-pinene, furan-2-penthyl, ethylhexanol, 3-carene, detected by gas chromatography-mass spectrometry (GC-MS) analysis, which give it the peculiar fresh and pleasant taste. The detected features of Friariello may justify its preferential consumption in the early ripening stage and outline new knowledge aimed at preserving specific agro-cultural heritage.
Collapse
Affiliation(s)
- Maria Tartaglia
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Rosaria Sciarrillo
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Daniela Zuzolo
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Anna Illiano
- CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Jesús V. Jorrín-Novo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, UCO-CeiA3, Córdoba, Spain
| | - Carmine Guarino
- Department of Science and Technology, University of Sannio, Benevento, Italy
| |
Collapse
|
4
|
Kok SY, Namasivayam P, Ee GCL, Ong-Abdullah M. Comparative proteomic analysis of oil palm (Elaeis guineensis Jacq.) during early fruit development. J Proteomics 2020; 232:104052. [PMID: 33262095 DOI: 10.1016/j.jprot.2020.104052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/11/2020] [Accepted: 11/15/2020] [Indexed: 01/04/2023]
Abstract
To gain insights on protein changes in fruit setting and growth in oil palm, a comparative proteomic approach was undertaken to study proteome changes during its early development. The variations in the proteome at five early developmental stages were investigated via a gel-based proteomic technique. A total of 129 variant proteins were determined using mass spectrometric analysis, resulting in 80 identifications. The majority of the identified protein species were classified as energy and metabolism, stress response/defence and cell structure during early oil palm development representing potential candidates for the control of final fruit size and composition. Seven prominent protein species were then characterised using real-time polymerase chain reaction to validate the mRNA expression against the protein abundant profiles. Transcript and protein profiles were parallel across the developmental stages, but divergent expression was observed in one protein spot, indicative of possible post-transcriptional events. Our results revealed protein changes in early oil palm fruit development provide valuable information in the understanding of fruit growth and metabolism during early stages that may contribute towards improving agronomic traits. BIOLOGICAL SIGNIFICANCE: Two-dimensional gel electrophoresis coupled with mass spectrometry approach was used in this study to identify differentially expressed proteins during early oil palm fruit development. A total of 80 protein spots with significant change in abundance were successfully identified and selected genes were analysed using real time PCR to validate their expression. The dynamic changes in oil palm fruit proteome during early development were mostly active in primary and energy metabolism, stress responses, cell structure and protein metabolism. This study reveals the physiological processes during early oil palm fruit development and provides a reference proteome for further improvements in fruit quality traits.
Collapse
Affiliation(s)
- Sau-Yee Kok
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board (MPOB), No. 6 Persiaran Institusi, Bandar Baru Bangi, Kajang, Selangor, Malaysia; Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Parameswari Namasivayam
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Gwendoline Cheng-Lian Ee
- Department of Chemistry, Faculty of Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Meilina Ong-Abdullah
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board (MPOB), No. 6 Persiaran Institusi, Bandar Baru Bangi, Kajang, Selangor, Malaysia.
| |
Collapse
|
5
|
Zhang Z, Xia B, Li Y, Lin Y, Xie J, Wu P, Lin L, Liao D. Comparative proteomic analysis of Prunella vulgaris L. spica ripening. J Proteomics 2020; 232:104028. [PMID: 33129985 DOI: 10.1016/j.jprot.2020.104028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/01/2020] [Accepted: 10/26/2020] [Indexed: 11/25/2022]
Abstract
Prunella vulgaris L., better known as 'self-heal', has been extensively used in the traditional system of medicines. To reveal the regulatory mechanism of its development, TMT-based quantitative proteome analysis was performed in the Prunella vulgaris L. spica before and during ripening (Group A and Group B, respectively). This analysis resulted in the identification of 7655 proteins, of which 1910 showed differential abundance between the two groups. Pronounced changes in the proteomic profile included the following: 1) Stress-responsive proteins involved in protecting cells and promoting fruit ripening and seed development were highly abundant during ripening. 2) The degradation of chlorophyll, inhibition of chlorophyll biosynthesis and increased abundance of transketolase occurred simultaneously in the spica of Prunella vulgaris L., resulting in the spica changing color from green to brownish red. 3) The abundance of protein species related to phenylpropanoid biosynthesis mainly increased during ripening, while flavonoid and terpenoid backbone biosynthesis mostly occurred before ripening. SIGNIFICANCE: This study establishes a link between protein profiles and mature phenotypes, which will help to improve our understanding of the molecular mechanisms involved in the maturation of Prunella vulgaris L. at the proteome level and reveal the scientific connotation for the best time to harvest Prunella vulgaris L. This work provides a scientific basis for the production of high-quality medicinal Prunella vulgaris L., as well as a typical demonstration of molecular research used for the harvest period of traditional Chinese medicine. BIOLOGICAL SIGNIFICANCE: This work provided a comprehensive overview on the functional protein profile changes of Prunella vulgaris L. spica at different growing stages, as well as the scientific rationale of Prunella vulgaris L. harvested in summer after brownish red, thus laid an intriguing stepping stone for elucidating the molecular mechanisms of quality development.
Collapse
Affiliation(s)
- Zhimin Zhang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection, Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Bohou Xia
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection, Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yamei Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection, Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yan Lin
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection, Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jingchen Xie
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection, Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ping Wu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection, Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Limei Lin
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection, Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Duanfang Liao
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection, Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
6
|
Ma H, Lai B, Jin Y, Tian C, Liu J, Wang K. Proteomics and metabolomics analysis reveal potential mechanism of extended-spectrum β-lactamase production in Escherichia coli. RSC Adv 2020; 10:26862-26873. [PMID: 35515772 PMCID: PMC9055503 DOI: 10.1039/d0ra04250a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/09/2020] [Indexed: 11/25/2022] Open
Abstract
In this study, ten clinical susceptible strains and ten clinical ESBL-EC (extended-spectrum β-lactamase-producing Escherichia coli) were screened and obtained by microbial identification using ITEK® 2 Compact. TMT (Tandem Mass Tag) proteomics analysis discovered 1553 DEPs (differentially expressed proteins) between ESBL-EC and non-ESBL-EC. In addition, an untargeted metabolomics assay by using UHPLC-MS (ultra-high-performance liquid chromatography-mass spectrometry) was applied to compare the differential profiles of metabolites between β-lactam antibiotic-sensitive E. coli and multidrug-resistant ESBL-producing E. coli strains. The PCA (principal component analysis) score plots and OPLS-DA (orthogonal projections to latent structures discriminant analysis) plots clearly discriminated ESBL-EC and non-ESBL-EC, and volcano analysis presented 606 and 459 altered metabolites between ESBL-EC vs. non-ESBL-EC in positive and negative ion modes, respectively. Interestingly, the bioinformatics analysis demonstrated that the purine metabolism pathway was enriched in ESBL-EC. These results suggest that the existence of extended-spectrum β-lactamase affects the metabolite and protein profiles of E. coli. The correlation analysis of metabolomics and proteomics data established a correlation between DEPs and differential metabolites in the purine metabolism pathway. Moreover, three metabolite candidates in the purine metabolism pathway were validated by the UPLC-MRM-MS (ultra-performance liquid chromatography multiple reaction monitoring mass spectrometry) method. Our data suggest that these DEPs and differential metabolites may play important roles in the antibiotic resistance of ESBL-EC. Our study can provide scientific data for the mechanism study of antibiotic resistance of ESBL-EC at the metabolite and protein levels and targeting modulators to these pathways may be effective for treatment of ESBL-EC strains. Proteomic and metabolomics revealed the underlying mechanism of extended-spectrum β-lactamase production in Escherichia coli.![]()
Collapse
Affiliation(s)
- He Ma
- Department of Respiratory Medicine
- The Second Hospital of Jilin University
- Changchun
- China
- Department of Anesthesiology
| | - Bingjie Lai
- Department of Intensive Care Unit
- The Second Hospital of Jilin University
- Changchun
- China
| | - Yufen Jin
- Clinical Laboratory
- The Second Hospital of Jilin University
- Changchun
- China
| | - Chang Tian
- Department of Respiratory Medicine
- The Second Hospital of Jilin University
- Changchun
- China
| | - Jiaying Liu
- Department of Respiratory Medicine
- The Second Hospital of Jilin University
- Changchun
- China
| | - Ke Wang
- Department of Respiratory Medicine
- The Second Hospital of Jilin University
- Changchun
- China
| |
Collapse
|