1
|
Li F, Zhou L, Wang S, Wu Y, Li T, Sun S, Wang J. Electroactive biofilms alter the EPS structure and metabolic pathways to sense potential and tetracycline. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137414. [PMID: 39884037 DOI: 10.1016/j.jhazmat.2025.137414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/03/2025] [Accepted: 01/25/2025] [Indexed: 02/01/2025]
Abstract
The extracellular polymeric substances (EPS) secretion decides the efficiency of microbial electron transfer and the resistance to toxic challenges. Electrode potential is a critical factor affecting both the rate and direction of electron transfer. However, the mechanism through which potential regulates EPS structure and toxic substance removal remains unclear. This research suggested that more positive potential stimulated increased extracellular protein and polysaccharides (PS) secretion. Nonetheless, excessive PS secretion restricted the current output, with the limiting current at -0.1 V being 1.39 times that of 0.3 V. A positive potential resulted in a more compact protein structure, but tetracycline (TC) addition has disrupted the polypeptide structure of EAB, while the α-helix and α-helix/β-sheet at -0.1 V was superior to other potentials. Under -0.1 V, the EABs maintained more abundant Geobacter (86 %) and cellular activity when sensing to the toxic of TC. The degradation rates observed at this potential was 1.5 times that of high potential, largely due to the upregulation of amino acid metabolic pathways. This study demonstrates the potential of using electrode potential to regulate the balance of EPS for electron transfer and self-protection, providing theoretical support for manipulating extracellular polymer secretion through electrode potential to enhance bioremediation of pollutants.
Collapse
Affiliation(s)
- Fenglin Li
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Lean Zhou
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China.
| | - Shu Wang
- PowerChina Northwest Engineering Corporation Limited, Xi'an 710065, China
| | - Yongliang Wu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Tian Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Shiquan Sun
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Jinting Wang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China.
| |
Collapse
|
2
|
Almeida A, Turner DL, Silva MA, Salgueiro CA. New insights in uranium bioremediation by cytochromes of the bacterium Geotalea uraniireducens. J Biol Chem 2025; 301:108090. [PMID: 39675718 PMCID: PMC11787507 DOI: 10.1016/j.jbc.2024.108090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024] Open
Abstract
The bacterium Geotalea uraniireducens, commonly found in uranium-contaminated environments, plays a key role in bioremediation strategies by converting the soluble hexavalent form of uranium (U(VI)) into less soluble forms (e.g., U(IV)). While most of the reduction and concomitant precipitation of uranium occur outside the cells, there have been reports of important reduction processes taking place in the periplasm. In any case, the triheme periplasmic cytochromes are key players, either by ensuring an effective interface between the cell's interior and exterior or by directly participating in the reduction of the metal. Therefore, understanding the functional mechanism of the highly abundant triheme cytochromes in G. uraniireducens' is crucial for elucidating the respiratory pathways in this bacterium. In this work, a detailed functional characterization of the triheme cytochromes PpcA and PpcB from G. uraniireducens was conducted using NMR and visible spectroscopy techniques. Despite sharing high amino acid sequence identity and structural homology with their counterparts from Geobacter sulfurreducens, the results showed that the heme reduction potential values are less negative, the order of oxidation of the hemes is distinct, and the redox and redox-Bohr network of interactions revealed unprecedented functional mechanisms in the cytochromes of G. uraniireducens. In these cytochromes, the reduction potential values of the three heme groups are much more similar, resulting in a narrower range of values, that facilitates directional electron flow from the inner membrane, thereby optimizing the uranium reduction.
Collapse
Affiliation(s)
- Alexandre Almeida
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - David L Turner
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Marta A Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
| | - Carlos A Salgueiro
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
| |
Collapse
|
3
|
Portela PC, Silva MA, Almeida A, Damas GF, Salgueiro CA. Tweaking the redox properties of PpcA from Geobacter metallireducens with protein engineering. Biochem J 2024; 481:2017-2036. [PMID: 39621450 DOI: 10.1042/bcj20240423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/24/2024]
Abstract
Geobacter's unique ability to perform extracellular electron transfer (EET) to electrodes in microbial fuel cells (MFCs) has sparked the implementation of sustainable production of electrical energy. However, the electrochemical performance of Geobacter's biofilms in MFCs remains challenging to implement industrially. Multiple approaches are being investigated to enhance MFC technologies. Protein engineering of multihaem cytochromes, key components of Geobacter's EET pathways, can, conceivably, be pursued to improve the EET chain. The periplasmic cytochrome PpcA bridges ET from the inner to the outer membrane and its deletion impairs this crucial step. The functional characterisation of PpcA homologues from Geobacter sulfurreducens (Gs) and Geobacter metallireducens (Gm) revealed a significantly different redox behaviour even though they only differ by thirteen amino acids. In a previous study, we found that the single replacement of a tryptophan residue by methionine (W45M) in PpcAGm shifted the reduction potential value 33% towards that of PpcAGs. In this work, we expanded our investigation to include other non-conserved residues by conducting five mutation rounds. We identified the most relevant residues controlling the redox properties of PpcAGm. With just four mutations (K19, G25, N26, W45) the reduction potential value of PpcAGm was shifted 71% toward that of PpcAGs. Additionally, in the quadruple mutant, it was possible to replicate the haem oxidation order and the functional mechanisms of PpcAGs, which differ from those in PpcAGm. Overall, the mutants exhibit diverse redox and functional mechanisms that could be explored as a library for the future design of minimal, synthetic, ET chains in Geobacter.
Collapse
Affiliation(s)
- Pilar C Portela
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Marta A Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Alexandre Almeida
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Gonçalo F Damas
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Carlos A Salgueiro
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
4
|
Amanze C, Wu X, Anaman R, Alhassan SI, Fosua BA, Chia RW, Yang K, Yunhui T, Xiao S, Cheng J, Zeng W. Elucidating the impacts of cobalt (II) ions on extracellular electron transfer and pollutant degradation by anodic biofilms in bioelectrochemical systems during industrial wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134007. [PMID: 38490150 DOI: 10.1016/j.jhazmat.2024.134007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/03/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Electrogenic biofilms in bioelectrochemical systems (BES) are critical in wastewater treatment. Industrial effluents often contain cobalt (Co2+); however, its impact on biofilms is unknown. This study investigated how increasing Co2+ concentrations (0-30 mg/L) affect BES biofilm community dynamics, extracellular polymeric substances, microbial metabolism, electron transfer gene expression, and electrochemical performance. The research revealed that as Co2+ concentrations increased, power generation progressively declined, from 345.43 ± 4.07 mW/m2 at 0 mg/L to 160.51 ± 0.86 mW/m2 at 30 mg/L Co2+. However, 5 mg/L Co2+ had less effect. The Co2+ removal efficiency in the reactors fed with 5 and 10 mg/L concentrations exceeded 99% and 94%, respectively. However, at 20 and 30 mg/L, the removal efficiency decreased substantially, likely because of reduced biofilm viability. FTIR indicated the participation of biofilm functional groups in Co2+ uptake. XPS revealed Co2+ presence in biofilms as CoO and Co(OH)2, indicating precipitation also aided removal. Cyclic voltammetry and electrochemical impedance spectroscopy tests revealed that 5 mg/L Co2+ had little impact on the electrocatalytic activity, while higher concentrations impaired it. Furthermore, at a concentration of 5 mg/L Co2+, there was an increase in the proportion of the genus Anaeromusa-Anaeroarcus, while the genus Geobacter declined at all tested Co2+ concentrations. Additionally, higher concentrations of Co2+ suppressed the expression of extracellular electron transfer genes but increased the expression of Co2+-resistance genes. Overall, this study establishes how Co2+ impacts electrogenic biofilm composition, function, and treatment efficacy, laying the groundwork for the optimized application of BES in remediating Co2+-contaminated wastewater.
Collapse
Affiliation(s)
- Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Xiaoyan Wu
- School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Richmond Anaman
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Sikpaam Issaka Alhassan
- Herbert Wertheim College of Engineering, Department of Materials Science & Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Bridget Ataa Fosua
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Rogers Wainkwa Chia
- Department of Geology, Kangwon National University, Chuncheon, the Republic of Korea
| | - Kai Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Tang Yunhui
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Shanshan Xiao
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Jinju Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China.
| |
Collapse
|
5
|
Li Y, Cao M, Gupta VK, Wang Y. Metabolic engineering strategies to enable microbial electrosynthesis utilization of CO 2: recent progress and challenges. Crit Rev Biotechnol 2024; 44:352-372. [PMID: 36775662 DOI: 10.1080/07388551.2023.2167065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/17/2022] [Accepted: 12/08/2022] [Indexed: 02/14/2023]
Abstract
Microbial electrosynthesis (MES) is a promising technology that mainly utilizes microbial cells to convert CO2 into value-added chemicals using electrons provided by the cathode. However, the low electron transfer rate is a solid bottleneck hindering the further application of MES. Thus, as an effective strategy, genetic tools play a key role in MES for enhancing the electron transfer rate and diversity of production. We describe a set of genetic strategies based on fundamental characteristics and current successes and discuss their functional mechanisms in driving microbial electrocatalytic reactions to fully comprehend the roles and uses of genetic tools in MES. This paper also analyzes the process of nanomaterial application in extracellular electron transfer (EET). It provides a technique that combines nanomaterials and genetic tools to increase MES efficiency, because nanoparticles have a role in the production of functional genes in EET although genetic tools can subvert MES, it still has issues with difficult transformation and low expression levels. Genetic tools remain one of the most promising future strategies for advancing the MES process despite these challenges.
Collapse
Affiliation(s)
- Yixin Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, China
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Edinburgh, UK
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, China
| |
Collapse
|
6
|
Su H, Yan X, Zhao Q, Liao C, Tian L, Wang Z, Wan Y, Li N, Wang X. Layered Design of a Highly Repeatable Electroactive Biofilm for a Standardized Biochemical Oxygen Demand Sensor. ACS Sens 2023; 8:2383-2390. [PMID: 37249569 DOI: 10.1021/acssensors.3c00583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Microbial electrochemical sensors are promising to monitor bioavailable organics in real environments, but their application is restricted by the unpredictable performance of the electroactive biofilm (EAB), which is randomly acclimated from environmental microflora. With a long-term stable EAB as a template, we successfully designed EAB (DEAB) by the sequential growth of Geobacter anodireducens and automatched microbes, achieving a reproducible high current than those naturally acclimated from wastewater (NEAB). Pre-inoculation of planktonic aerobes as oxygen bioscavengers was necessary to ensure the colonization of Geobacter in the inner layer, and the abundant Geobacter (50%) in DEAB guaranteed 4 times higher current density with a 15-fold smaller variation among 20 replicates than those of NEAB. The sensor constructed with DEAB exhibited a shorter measuring time and a precise biochemical oxygen demand (BOD) measurement with acetate, real domestic wastewater, and supernatant of anaerobic digestion. Here, we for the first time proposed an applicable strategy to standardize EABs for BOD sensors, which is also crucial to ensure a stable performance of all bioelectrochemical technologies.
Collapse
Affiliation(s)
- Huijuan Su
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xuejun Yan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Qian Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Chengmei Liao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Lili Tian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Ziyuan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Yuxuan Wan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 35 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| |
Collapse
|
7
|
Tian L, Yan X, Wang D, Du Q, Wan Y, Zhou L, Li T, Liao C, Li N, Wang X. Two key Geobacter species of wastewater-enriched electroactive biofilm respond differently to electric field. WATER RESEARCH 2022; 213:118185. [PMID: 35183018 DOI: 10.1016/j.watres.2022.118185] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Electroactive biofilms have attracted increasing attention due to their unique ability to exchange electrons with electrodes. Geobacter spp. are widely found to be dominant in biofilms in acetate-rich environments when an appropriate voltage is applied, but it is still largely unknown how these bacteria are selectively enriched. Herein, two key Geobacter spp. that have been demonstrated predominant in wastewater-enriched electroactive biofilm after long-term operation, G. sulfurreducens and G. anodireducens, responded to electric field (EF) differently, leading to a higher abundance of EF-sensitive G. anodireducens in the strong EF region after cocultivation with G. sulfurreducens. Transcriptome analysis indicated that two-component systems containing sensor histidine kinases and response regulators were the key for EF sensing in G. anodireducens rather than in G. sulfurreducens, which are closely connected to chemotaxis, c-di-GMP, fatty acid metabolism, pilus, oxidative phosphorylation and transcription, resulting in an increase in extracellular polymeric substance secretion and rapid cell proliferation. Our data reveal the mechanism by which EF select specific Geobacter spp. over time, providing new insights into Geobacter biofilm formation regulated by electricity.
Collapse
Affiliation(s)
- Lili Tian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control / College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xuejun Yan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control / College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Dongbin Wang
- School of Public Health, Guangdong Medical University, Xincheng Road, Dongguan 523000, China
| | - Qing Du
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Yuxuan Wan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control / College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Lean Zhou
- School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Tian Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control / College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Chengmei Liao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control / College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 35 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control / College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
8
|
Ferreira MR, Fernandes TM, Turner DL, Salgueiro CA. Molecular geometries of the heme axial ligands from the triheme cytochrome PpcF from Geobacter metallireducens reveal a conserved heme core architecture. Arch Biochem Biophys 2022; 723:109220. [DOI: 10.1016/j.abb.2022.109220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/29/2022] [Accepted: 04/10/2022] [Indexed: 11/02/2022]
|
9
|
Morgado L, Salgueiro CA. Elucidation of complex respiratory chains: a straightforward strategy to monitor electron transfer between cytochromes. Metallomics 2022; 14:6539350. [DOI: 10.1093/mtomcs/mfac012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/17/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Cytochromes are electron transfer proteins essential in various biological systems, playing crucial roles in the respiratory chains of bacteria. These proteins are particularly abundant in electrogenic microorganisms and are responsible for the efficient delivery of electrons to the cells’ exterior. The capability of sending electron outside the cells open new avenues to be explored for emerging biotechnological applications in bioremediation, microbial electrosynthesis and bioenergy fields. To develop these applications, it is critical to identify the different redox partners and elucidate the stepwise electron transfer along the respiratory paths. However, investigating direct electron transfer events between proteins with identical features in nearly all spectroscopic techniques is extremely challenging. NMR spectroscopy offers the possibility to overcome this difficulty by analysing the alterations of the spectral signatures of each protein caused by electron exchange events. The uncrowded NMR spectral regions containing the heme resonances of the cytochromes display unique and distinct signatures in the reduced and oxidized states, which can be explored to monitor electron transfer within the redox complex. In this study, we present a strategy for a fast and straightforward monitorization of electron transfer between c-type cytochromes, using as model a triheme periplasmic cytochrome (PpcA) and a membrane associated monoheme cytochrome (OmcF) from the electrogenic bacterium Geobacter sulfurreducens. The comparison between the 1D 1H NMR spectra obtained for samples containing the two cytochromes and for samples containing the individual proteins clearly demonstrated a unidirectional electron transfer within the redox complex. This strategy provides a simple and straightforward means to elucidate complex biologic respiratory electron transfer chains.
Collapse
Affiliation(s)
- Leonor Morgado
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Carlos A Salgueiro
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| |
Collapse
|
10
|
From iron to bacterial electroconductive filaments: Exploring cytochrome diversity using Geobacter bacteria. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
11
|
Li R, Li T, Wan Y, Zhang X, Liu X, Li R, Pu H, Gao T, Wang X, Zhou Q. Efficient decolorization of azo dye wastewater with polyaniline/graphene modified anode in microbial electrochemical systems. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126740. [PMID: 34333409 DOI: 10.1016/j.jhazmat.2021.126740] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/07/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Azo dye pollution has become a worldwide issue, and the current treatment methods can hardly meet the expected emission standards. Microbial electrochemical systems (MESs) show promising applications for decolorization, but their performance critically depends on the microorganisms. Electrode modification is an interesting method of improving decolorization performance. However, the mechanisms of how the modification can affect microbial communities and the decolorization process remain unclear. Here, a modified anode with polyaniline (PANI) and graphene was fabricated via electro-deposition. Consequently, the highest decolorization efficiency was obtained. The Congo red (CR) decolorization rate of the MESs with the PANI/graphene-modified electrode (PG) reached 90% at 54 h. By contrast, the CR decolorization rates of the MESs with the PANI-modified electrode (P) and those of the MESs with the unmodified electrode (C) only reached 68% and 79%, respectively. Results of the microbial community analysis showed abundant Methanobrevibacter arboriphilus in PG (11%), which was 5.5 times that in C (2%) at 18 h. This phenomenon may be related to the rapid decolorization. The upregulated metabolism pathways, including arginine and proline metabolism, purine metabolism, arginine biosynthesis, and riboflavin metabolism, provided more electron shuttles and redox mediators that facilitated the extracellular electron transfer. Therefore, the PG-modified electrode facilitated the decolorization by altering certain metabolic pathways. This study can help to improve the guideline on the potential application of MESs for wastewater treatment.
Collapse
Affiliation(s)
- Ruixiang Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Tian Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| | - Yuxuan Wan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xiaolin Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xueyi Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Runtong Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Hangming Pu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Tong Gao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
12
|
Mukherjee P, Pichiah S, Packirisamy G, Jang M. Biocatalyst physiology and interplay: a protagonist of MFC operation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43217-43233. [PMID: 34165738 DOI: 10.1007/s11356-021-15015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Microbial fuel cells (MFC) have been foreseen as a sustainable renewable energy resource to meet future energy demand. In the past, several studies have been executed in both benchtop and pilot scale to produce electrical energy from wastewater. The key role players in this technology that leads to the operation are microbes, mainly bacteria. The dominant among them is termed as "exoelectrogens" that have the capability to produce and transport electron by utilizing waste source. The current review focuses on such electrogenic bacteria's involvement for enhanced power generation of MFC. The pathway of electron transfer in their cell along and its conduction to the extracellular environment of the MFC system are critically discussed. The interaction of the microbes in various MFC operational conditions, including the role of substrate and solid electron acceptors, i.e., anode, external resistance, temperature, and pH, was also discussed in depth along with biotechnological advancement and future research perspective.
Collapse
Affiliation(s)
- Priya Mukherjee
- Environmental Nanotechnology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, 826004, India
| | - Saravanan Pichiah
- Environmental Nanotechnology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, 826004, India.
| | - Gopinath Packirisamy
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 447-1, Wolgye-dong Nowon-Gu, Seoul, South Korea
| |
Collapse
|
13
|
Guo Y, Aoyagi T, Hori T. Comparative insights into genome signatures of ferric iron oxide- and anode-stimulated Desulfuromonas spp. strains. BMC Genomics 2021; 22:475. [PMID: 34171987 PMCID: PMC8235581 DOI: 10.1186/s12864-021-07809-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Halotolerant Fe (III) oxide reducers affiliated in the family Desulfuromonadaceae are ubiquitous and drive the carbon, nitrogen, sulfur and metal cycles in marine subsurface sediment. Due to their possible application in bioremediation and bioelectrochemical engineering, some of phylogenetically close Desulfuromonas spp. strains have been isolated through enrichment with crystalline Fe (III) oxide and anode. The strains isolated using electron acceptors with distinct redox potentials may have different abilities, for instance, of extracellular electron transport, surface recognition and colonization. The objective of this study was to identify the different genomic signatures between the crystalline Fe (III) oxide-stimulated strain AOP6 and the anode-stimulated strains WTL and DDH964 by comparative genome analysis. RESULTS The AOP6 genome possessed the flagellar biosynthesis gene cluster, as well as diverse and abundant genes involved in chemotaxis sensory systems and c-type cytochromes capable of reduction of electron acceptors with low redox potentials. The WTL and DDH964 genomes lacked the flagellar biosynthesis cluster and exhibited a massive expansion of transposable gene elements that might mediate genome rearrangement, while they were deficient in some of the chemotaxis and cytochrome genes and included the genes for oxygen resistance. CONCLUSIONS Our results revealed the genomic signatures distinctive for the ferric iron oxide- and anode-stimulated Desulfuromonas spp. strains. These findings highlighted the different metabolic abilities, such as extracellular electron transfer and environmental stress resistance, of these phylogenetically close bacterial strains, casting light on genome evolution of the subsurface Fe (III) oxide reducers.
Collapse
Affiliation(s)
- Yong Guo
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Tomo Aoyagi
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan.
| |
Collapse
|
14
|
Li T, Zhou Q. The key role of Geobacter in regulating emissions and biogeochemical cycling of soil-derived greenhouse gases. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115135. [PMID: 32650301 DOI: 10.1016/j.envpol.2020.115135] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/11/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
In the past two decades, more and more attentions have been paid to soil-derived greenhouse gases (GHGs) including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) because there are signs that they have rising negative impacts on the sustainability of the earth surface system. Farmlands, particularly paddy soils, have been regarded as the most important emitter of GHGs (nearly 17%) due to a large influx of fertilization and the abundance in animals, plants and microorganisms. Geobacter, as an electroactive microorganism widely occurred in soil, has been well studied on electron transport mechanisms and the direct interspecies electron transfer. These studies on Geobacter illustrate that it has the ability to be involved in the pathways of soil GHG emissions through redox reactions under anaerobic conditions. In this review, production mechanisms of soil-derived GHGs and the amount of these GHGs produced had been first summarized. The cycling process of CH4 and N2O was described from the view of microorganisms and discussed the co-culture relationships between Geobacter and other microorganisms. Furthermore, the role of Geobacter in the production of soil-derived GHGs is defined by biogeochemical cycling. The complete view on the effect of Geobacter on the emission of soil-derived GHGs has been shed light on, and appeals further investigation.
Collapse
Affiliation(s)
- Tian Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|