1
|
Dong Y, Ren W, Sun Y, Duan X, Liu C. Aggregation-Augmented Magnetism of Lanthanide-Doped Nanoparticles and Enabling Magnetic Levitation-Based Exosome Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407013. [PMID: 38936410 DOI: 10.1002/adma.202407013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/25/2024] [Indexed: 06/29/2024]
Abstract
Due to the presence of unpaired electron orbitals in most lanthanide ions, lanthanide-doped nanoparticles (LnNPs) exhibit paramagnetism. However, as to biosensing applications, the magnetism of LnNPs is so weak that can hardly be employed in target separation. Herein, it is discovered that the magnetism of the LnNPs is highly associated with their concentration in a confined space, enabling aggregation-augmented magnetism to make them susceptive to a conventional magnet. Accordingly, a magnetic levitation (Maglev) sensing system is designed, in which the target exosomes can specifically introduce paramagnetic LnNPs to the microbeads' surface, allowing aggregation-augmented magnetism and further leverage the microbeads' levitation height in the Maglev device to indicate the target exosomes' content. It is demonstrated that this Maglev system can precisely distinguish healthy people's blood samples from those of breast cancer patients. This is the first work to report that LnNPs hold great promise in magnetic separation-based biological sample sorting, and the LnNP-permitted Maglev sensing system is proven to be promising for establishing a new generation of biosensing devices.
Collapse
Affiliation(s)
- Yuanyuan Dong
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Wei Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Yuanyuan Sun
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, P. R. China
| | - Xinrui Duan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Chenghui Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| |
Collapse
|
2
|
Ge S, Nemiroski A, Mirica KA, Mace CR, Hennek JW, Kumar AA, Whitesides GM. Magnetic Levitation in Chemistry, Materials Science, and Biochemistry. Angew Chem Int Ed Engl 2020; 59:17810-17855. [PMID: 31165560 DOI: 10.1002/anie.201903391] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Indexed: 12/25/2022]
Abstract
All matter has density. The recorded uses of density to characterize matter date back to as early as ca. 250 BC, when Archimedes was believed to have solved "The Puzzle of The King's Crown" using density.[1] Today, measurements of density are used to separate and characterize a range of materials (including cells and organisms), and their chemical and/or physical changes in time and space. This Review describes a density-based technique-magnetic levitation (which we call "MagLev" for simplicity)-developed and used to solve problems in the fields of chemistry, materials science, and biochemistry. MagLev has two principal characteristics-simplicity, and applicability to a wide range of materials-that make it useful for a number of applications (for example, characterization of materials, quality control of manufactured plastic parts, self-assembly of objects in 3D, separation of different types of biological cells, and bioanalyses). Its simplicity and breadth of applications also enable its use in low-resource settings (for example-in economically developing regions-in evaluating water/food quality, and in diagnosing disease).
Collapse
Affiliation(s)
- Shencheng Ge
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Alex Nemiroski
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Katherine A Mirica
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Charles R Mace
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Jonathan W Hennek
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Ashok A Kumar
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - George M Whitesides
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, 60 Oxford Street, Cambridge, MA, 02138, USA.,Kavli Institute for Bionano Science & Technology, Harvard University, 29 Oxford Street, Cambridge, MA, 02138, USA
| |
Collapse
|
3
|
Ge S, Nemiroski A, Mirica KA, Mace CR, Hennek JW, Kumar AA, Whitesides GM. Magnetische Levitation in Chemie, Materialwissenschaft und Biochemie. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201903391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Shencheng Ge
- Department of Chemistry & Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
| | - Alex Nemiroski
- Department of Chemistry & Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
| | - Katherine A. Mirica
- Department of Chemistry & Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
| | - Charles R. Mace
- Department of Chemistry & Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
| | - Jonathan W. Hennek
- Department of Chemistry & Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
| | - Ashok A. Kumar
- Department of Chemistry & Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
| | - George M. Whitesides
- Department of Chemistry & Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering Harvard University 60 Oxford Street Cambridge MA 02138 USA
- Kavli Institute for Bionano Science & Technology Harvard University 29 Oxford Street Cambridge MA 02138 USA
| |
Collapse
|