1
|
Bagheri R, Alikhani S, Miri-Moghaddam E. Fabrication of conductive Ag/AgCl/Ag nanorods ink on Laser-induced graphene electrodes on flexible substrates for non-enzymatic glucose detection. Sci Rep 2023; 13:20898. [PMID: 38017145 PMCID: PMC10684547 DOI: 10.1038/s41598-023-48322-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023] Open
Abstract
An unusual strategy was designed to fabricate conductive patterns for flexible surfaces, which were utilized for non-enzymatic amperometric glucose sensors. The Ag/AgCl/Ag quasi-reference ink formulation utilized two reducing agents, NaBH[Formula: see text] and ethylene glycol. The parameters of the ink, such as sintering time and temperature, NaBH[Formula: see text] concentration, and layer number of coatings on flexible laser-induced graphene (LIG) electrodes were investigated. The conductive Ag/AgCl/Ag ink was characterized using electrochemical and surface analysis techniques. The electrocatalytic activity of Ag/AgCl/Ag NRs can be attributed to their high surface area, which offer numerous active sites for catalytic reactions. The selectivity and sensitivity of the electrodes for glucose detection were investigated. The XRD analysis showed (200) oriented AgCl on covered Ag NRs, and with the addition of NaBH[Formula: see text], the intensity of the peaks of the Ag NRs increased. The wide linear range of non-enzymatic sensors was attained from 0.003 to 0.18 mM and 0.37 to 5.0 mM, with a low limit of detection of 10 [Formula: see text]M and 20 [Formula: see text]M, respectively.The linear range of enzymatic sensor in real sample was determined from 0.040 to 0.097 mM with a detection limit of 50 [Formula: see text]M. Furthermore, results of the interference studies demonstrated excellent selectivity of the Ag/AgCl/Ag NRs/LIG electrode. The Ag/AgCl/Ag NRs on the flexible LIG electrode exhibited excellent sensitivity,long-time stablity,and reproducibility. The efficient electroactivity were deemed suitable for various electrochemical applications and biosensors.
Collapse
Affiliation(s)
- Rana Bagheri
- Department of Molecular Medicine, Faculty of Medicine, Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, 9717853577, Iran
- Nanofanavaran partopooyesh Company, Science and Technology Park of South Khorasan, Birjand, 9718643683, Iran
| | - Saeid Alikhani
- Nanofanavaran partopooyesh Company, Science and Technology Park of South Khorasan, Birjand, 9718643683, Iran
| | - Ebrahim Miri-Moghaddam
- Department of Molecular Medicine, Faculty of Medicine, Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, 9717853577, Iran.
| |
Collapse
|
2
|
Zhuang Q, Yao K, Wu M, Lei Z, Chen F, Li J, Mei Q, Zhou Y, Huang Q, Zhao X, Li Y, Yu X, Zheng Z. Wafer-patterned, permeable, and stretchable liquid metal microelectrodes for implantable bioelectronics with chronic biocompatibility. SCIENCE ADVANCES 2023; 9:eadg8602. [PMID: 37256954 PMCID: PMC10413659 DOI: 10.1126/sciadv.adg8602] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/25/2023] [Indexed: 06/02/2023]
Abstract
Implantable bioelectronics provide unprecedented opportunities for real-time and continuous monitoring of physiological signals of living bodies. Most bioelectronics adopt thin-film substrates such as polyimide and polydimethylsiloxane that exhibit high levels of flexibility and stretchability. However, the low permeability and relatively high modulus of these thin films hamper the long-term biocompatibility. In contrast, devices fabricated on porous substrates show the advantages of high permeability but suffer from low patterning density. Here, we report a wafer-scale patternable strategy for the high-resolution fabrication of supersoft, stretchable, and permeable liquid metal microelectrodes (μLMEs). We demonstrate 2-μm patterning capability, or an ultrahigh density of ~75,500 electrodes/cm2, of μLME arrays on a wafer-size (diameter, 100 mm) elastic fiber mat by photolithography. We implant the μLME array as a neural interface for high spatiotemporal mapping and intervention of electrocorticography signals of living rats. The implanted μLMEs have chronic biocompatibility over a period of eight months.
Collapse
Affiliation(s)
- Qiuna Zhuang
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Mengge Wu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Zhuogui Lei
- Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China
| | - Fan Chen
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Jiyu Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong Science Park, Hong Kong SAR, China
| | - Quanjing Mei
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yingying Zhou
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Qiyao Huang
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Ying Li
- Department of Neuroscience, City University of Hong Kong, Hong Kong SAR, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong Science Park, Hong Kong SAR, China
| | - Zijian Zheng
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Research Institute for Intelligent Wearable Systems (RI-IWEAR), The Hong Kong Polytechnic University, Hong Kong SAR, China
- Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
3
|
Zhang H, Li X, Zhu Q, Wang Z. The recent development of nanomaterials enhanced paper-based electrochemical analytical devices. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
4
|
Zhang Y, Zhang T, Huang Z, Yang J. A New Class of Electronic Devices Based on Flexible Porous Substrates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105084. [PMID: 35038244 PMCID: PMC8895116 DOI: 10.1002/advs.202105084] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Indexed: 05/03/2023]
Abstract
With the advent of the Internet of Things era, the connection between electronic devices and humans is getting closer and closer. New-concept electronic devices including e-skins, nanogenerators, brain-machine interfaces, and implantable medical devices, can work on or inside human bodies, calling for wearing comfort, super flexibility, biodegradability, and stability under complex deformations. However, conventional electronics based on metal and plastic substrates cannot effectively meet these new application requirements. Therefore, a series of advanced electronic devices based on flexible porous substrates (e.g., paper, fabric, electrospun nanofibers, wood, and elastic polymer sponge) is being developed to address these challenges by virtue of their superior biocompatibility, breathability, deformability, and robustness. The porous structure of these substrates can not only improve device performance but also enable new functions, but due to their wide variety, choosing the right porous substrate is crucial for preparing high-performance electronics for specific applications. Herein, the properties of different flexible porous substrates are summarized and their basic principles of design, manufacture, and use are highlighted. Subsequently, various functionalization methods of these porous substrates are briefly introduced and compared. Then, the latest advances in flexible porous substrate-based electronics are demonstrated. Finally, the remaining challenges and future directions are discussed.
Collapse
Affiliation(s)
- Yiyuan Zhang
- Department of Mechanical and Materials EngineeringUniversity of Western OntarioLondonONN6A 5B9Canada
| | - Tengyuan Zhang
- Department of Mechanical and Materials EngineeringUniversity of Western OntarioLondonONN6A 5B9Canada
| | - Zhandong Huang
- Department of Mechanical and Materials EngineeringUniversity of Western OntarioLondonONN6A 5B9Canada
| | - Jun Yang
- Department of Mechanical and Materials EngineeringUniversity of Western OntarioLondonONN6A 5B9Canada
- Shenzhen Institute for Advanced StudyUniversity of Electronic Science and Technology of ChinaShenzhen518000P. R. China
| |
Collapse
|
5
|
Tseng WT, Tseng HY, Chou YY, Wang YC, Tseng TN, Ho LI, Pan SW, Ho ML. Quantitative urinary tract infection diagnosis of leukocyte esterase with a microfluidic paper-based device. Dalton Trans 2021; 50:9417-9425. [PMID: 34132300 DOI: 10.1039/d1dt01541a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Leukocyte esterase (LE) is a useful marker that can be used in establishing a diagnosis of urinary tract infections (UTIs). The development of a UTI diagnostic method with quantitative determinations of biomarkers across all age groups is becoming more important. In this report, microfluidic resistance sensors based on silver ink (Ag ink) and silver ink mixed with ZnO nanoparticles (Ag-ZnO ink) were synthesized and coated on cellulose paper, namely LE-Ag-μPADs and LE-Ag-ZnO-μPADs, respectively, for the sensitive detection of LE. The microfluidic design increases the precision of data and further allows for quantitative determination and early detection of LE in human urine. The quantification of LE relies on the change in the resistance readout coating with Ag ink as well as Ag-ZnO ink in the detection zone. A mixture of 3-(N-tosyl-l-alaninyloxy)-5-phenylpyrrole (PE) and 1-diazo-2-naphthol-4-sulfonic acid (DAS) was deposited in the sample zone to selectively recognize LE, and the resulting nonconductive products, i.e., azo compounds, further reacted with the Ag ink and Ag-ZnO ink to increase resistance. The quantitative detectable LE concentrations between 2 to 32 (×5.2 U mL-1), i.e. ≈12 to 108 μg L-1, cover the commercial dipstick range of trace, +1 and +2. The minimum detectable concentration of LE in urine was 1 (×5.2 U mL-1). The lower concentrations of LE detectable by LE-Ag-μPADs (1-8 × 5.2 U mL-1) are below the value achieved with the ELISA LE kit. Urine samples from inpatients with indwelling urinary catheters were used, and the LE levels measured by the present device were highly correlated with those determined by a commercial urine analyser.
Collapse
Affiliation(s)
- Wei-Ting Tseng
- Department of Chemistry, Soochow University, Taipei 111, Taiwan.
| | - Hsin-Yi Tseng
- Department of Chemistry, Soochow University, Taipei 111, Taiwan.
| | - Yin-Yu Chou
- Department of Chemistry, Soochow University, Taipei 111, Taiwan.
| | - Yin-Chen Wang
- Department of Chemistry, Soochow University, Taipei 111, Taiwan.
| | - Tz-Ning Tseng
- Department of Chemistry, Soochow University, Taipei 111, Taiwan.
| | - Li-Ing Ho
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan. and School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Sheng-Wei Pan
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan. and School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Mei-Lin Ho
- Department of Chemistry, Soochow University, Taipei 111, Taiwan.
| |
Collapse
|
6
|
Devi R, Tapadia K, Kant T, Ghosale A, Shrivas K, Karbhal I, Maharana T. A low-cost paper-based flexible energy storage device using a conducting polymer nanocomposite. NEW J CHEM 2020. [DOI: 10.1039/d0nj02158j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a simple approach is demonstrated for the fabrication of a paper-based flexible symmetrical supercapacitor as an energy saving device with composite functional materials of nickel nanoparticles (Ni NPs) and polypyrrole (PPy).
Collapse
Affiliation(s)
- Rama Devi
- Department of Chemistry
- National Institute of Technology
- Raipur
- India
| | - Kavita Tapadia
- Department of Chemistry
- National Institute of Technology
- Raipur
- India
| | - Tushar Kant
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur
- India
| | - Archana Ghosale
- Department of Chemistry
- Govt. Lochan Prasad Pandey College
- Raigarh
- India
| | - Kamlesh Shrivas
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur
- India
| | - Indrapal Karbhal
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur
- India
| | | |
Collapse
|