1
|
Liang J, Zhang P, Zhang R, Chang J, Chen L, Zhang G, Wang A. Bioconversion of volatile fatty acids from organic wastes to produce high-value products by photosynthetic bacteria: A review. ENVIRONMENTAL RESEARCH 2024; 242:117796. [PMID: 38040178 DOI: 10.1016/j.envres.2023.117796] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
Anaerobic fermentation of organic waste to produce volatile fatty acids (VFAs) production is a relatively mature technology. VFAs can be used as a cheap and readily available carbon source by photosynthetic bacteria (PSB) to produce high value-added products, which are widely used in various applications. To better enhance the VFAs obtained from organic wastes for PSB to produce high value-added products, a comprehensive review is needed, which is currently not available. This review systematically summarizes the current status of microbial proteins, H2, poly-β-hydroxybutyrate (PHB), coenzyme Q10 (CoQ10), and 5-aminolevulinic acid (ALA) production by PSB utilizing VFAs as a carbon resource. Meanwhile, the metabolic pathways involved in the H2, PHB, CoQ10, and 5-ALA production by PSB were deeply explored. In addition, a systematic resource utilization pathway for PSB utilizing VFAs from anaerobic fermentation of organic wastes to produce high value-added products was proposed. Finally, the current challenges and priorities for future research were presented, such as the screening of efficient PSB strains, conducting large-scale experiments, high-value product separation, recovery, and purification, and the mining of metabolic pathways for the VFA utilization to generate high value-added products by PSB.
Collapse
Affiliation(s)
- Jinsong Liang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Panyue Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Ru Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Jianning Chang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Le Chen
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China; Key Laboratory of Environmental Biotechnology, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Aijie Wang
- Key Laboratory of Environmental Biotechnology, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
2
|
Xiao Y, Zheng Y, Zhou Y, Yu C, Ye TE. Metabolic flux analysis of coenzyme Q 10 synthesized by Rhodobacter sphaeroides under the influence of different pH regulators. Microb Cell Fact 2023; 22:206. [PMID: 37817171 PMCID: PMC10563333 DOI: 10.1186/s12934-023-02205-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/19/2023] [Indexed: 10/12/2023] Open
Abstract
Coenzyme Q10 (CoQ10) is crucial for human beings, especially in the fields of biology and medicine. The aim of this experiment was to investigate the conditions for increasing CoQ10 production. At present, microbial fermentation is the main production method of CoQ10, and the production process of microbial CoQ10 metabolism control fermentation is very critical. Metabolic flux is one of the most important determinants of cell physiology in metabolic engineering. Metabolic flux analysis (MFA) is used to estimate the intracellular flux in metabolic networks. In this experiment, Rhodobacter sphaeroides was used as the research object to analyze the effects of aqueous ammonia (NH3·H2O) and calcium carbonate (CaCO3) on the metabolic flux of CoQ10. When CaCO3 was used to adjust the pH, the yield of CoQ10 was 274.43 mg·L-1 (8.71 mg·g-1 DCW), which was higher than that of NH3·H2O adjustment. The results indicated that when CaCO3 was used to adjust pH, more glucose-6-phosphate (G6P) entered the pentose phosphate (HMP) pathway and produced more NADPH, which enhanced the synthesis of CoQ10. At the chorismic acid node, more metabolic fluxes were involved in the synthesis of p-hydroxybenzoic acid (pHBA; the synthetic precursor of CoQ10), enhancing the anabolic flow of CoQ10. In addition, Ca2+ produced by the reaction of CaCO3 with organic acids promotes the synthesis of CoQ10. In summary, the use of CaCO3 adjustment is more favorable for the synthesis of CoQ10 by R. sphaeroides than NH3·H2O adjustment. The migration of metabolic flux caused by the perturbation of culture conditions was analyzed to compare the changes in the distribution of intracellular metabolic fluxes for the synthesis of CoQ10. Thus, the main nodes of the metabolic network were identified as G6P and chorismic acid. This provides a theoretical basis for the modification of genes related to the CoQ10 synthesis pathway.
Collapse
Affiliation(s)
- Yujun Xiao
- National Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yi Zheng
- National Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, China.
| | - Yong Zhou
- National Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Chaofan Yu
- National Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Ting-E Ye
- National Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
3
|
Wang Y, Fan L, Huang J, Liang J, Wang X, Ren Y, Li H, Yue T, Gao Z. Evaluation of chemical composition, antioxidant activity, and gut microbiota associated with pumpkin juice fermented by Rhodobacter sphaeroides. Food Chem 2023; 401:134122. [DOI: 10.1016/j.foodchem.2022.134122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/20/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
|
4
|
Saeed A, Qusti SY, Almarwani RH, Jambi EJ, Alshammari EM, Gusty NF, Balgoon MJ. Effects of aluminum chloride and coenzyme Q10 on the molecular structure of lipids and the morphology of the brain hippocampus cells. RSC Adv 2021; 11:29925-29933. [PMID: 35480272 PMCID: PMC9040883 DOI: 10.1039/d1ra03786b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/08/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Aluminum chloride (AlCl3) is a neurotoxic substance, while coenzyme Q10 (CoQ10) is considered a lipid antioxidant. Herein, their effects on the molecular structure of lipids and the morphology of the hippocampus brain tissue were investigated. Three groups of Wistar albino male rats were used in this study. For four weeks, one group was kept as a control group; the second group was given AlCl3; the third group was given AlCl3/CoQ10. Fourier transform infrared (FTIR) and histopathological examinations were utilized to estimate alterations in the molecular structure of the lipids and the cell morphology, respectively. The FTIR spectra revealed considerable decreases in the CH contents and alterations in the molecular ratios of olefinic[double bond, length as m-dash]CH/νas(CH3), νas(CH2)/νas(CH3), and νas(CH2)/[νas(CH2) + νs(CH2)] in the group given AlCl3. However, no significant changes were detected in those rats given AlCl3/CoQ10. Histopathology images uncovered shrinking and dark centers in the pyramidal cells of brain tissue hippocampal cells. The diameters of the pyramidal cells were estimated to be 4.81 ± 0.55 μm, 4.04 ± 0.71 μm, and 4.63 ± 0.71 μm for the control, AlCl3, and AlCl3/CoQ10 groups, respectively. The study showed that the AlCl3 could cause a shrinking of around 16% in the hippocampus pyramidal cells; besides, CoQ10 is a powerful therapeutic antioxidant to help restore the hippocampal neurons to a regular state.
Collapse
Affiliation(s)
- Abdu Saeed
- Department of Physics, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia +96 6563190832
- Department of Physics, Thamar University Thamar 87246 Yemen
| | - Safaa Y Qusti
- Biochemistry Department, Faculty of Science, King Abdulaziz University Jeddah Saudi Arabia
| | - Rawan Hamdan Almarwani
- Biochemistry Department, Faculty of Science, King Abdulaziz University Jeddah Saudi Arabia
| | - Ebtihaj J Jambi
- Biochemistry Department, Faculty of Science, King Abdulaziz University Jeddah Saudi Arabia
- King Fahd Medical Research Center Jeddah Saudi Arabia
| | - Eida M Alshammari
- Department of Chemistry, College of Sciences, University of Ha'il Ha'il 2440 Saudi Arabia
| | - Naeem F Gusty
- Medical Laboratories Department, Faculty of Applied Medical Sciences, Umm Al-Qura University Mecca Saudi Arabia
| | - Maha J Balgoon
- Biochemistry Department, Faculty of Science, King Abdulaziz University Jeddah Saudi Arabia
| |
Collapse
|
5
|
Wang Y, Huo K, Gao L, Zhao G, Wang B, Liu J. Open simultaneous saccharification and fermentation of l-lactic acid by complete utilization of sweet sorghum stalk: a water-saving process. RSC Adv 2021; 11:5284-5290. [PMID: 35424459 PMCID: PMC8694642 DOI: 10.1039/d0ra09480c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 12/30/2020] [Indexed: 01/27/2023] Open
Abstract
A complete and efficient utilization of sweet sorghum stalk including sweet sorghum juice (SSJ) and sweet sorghum bagasse (SSB) was achieved via the open simultaneous saccharification and fermentation (SSF) of l-lactic acid. To simplify the pretreatment process and reduce water consumption, a combined hydrolysis approach was applied and the NaOH-pretreated liquor (SL) was utilized as a partial neutralizing agent. In order to further enhance the product titer, the acid hydrolysate of SSJ (SSJAH) was fed, and MgO was used as a neutralizing agent. A product titer of 94 g L-1 was obtained with a productivity of 1.55 g L-1 h-1, and the yield reached 98.31%. Totally, 274.79 g l-lactic acid was produced from 1 kg sweet sorghum stalk, and 83.22% water was saved compared with the previous study based on alkali pretreatment of SSB. This study provides an effective process for l-lactic acid biosynthesis from lignocellulosic substrates.
Collapse
Affiliation(s)
- Yong Wang
- Fermentation Technology Innovation Center of Hebei Province, College of Food Science and Biology, Hebei University of Science and Technology No. 26 Yuxiang Road, Yuhua District Shijiazhuang 050018 PR China
| | - Kai Huo
- Fermentation Technology Innovation Center of Hebei Province, College of Food Science and Biology, Hebei University of Science and Technology No. 26 Yuxiang Road, Yuhua District Shijiazhuang 050018 PR China
| | - Lijuan Gao
- Fermentation Technology Innovation Center of Hebei Province, College of Food Science and Biology, Hebei University of Science and Technology No. 26 Yuxiang Road, Yuhua District Shijiazhuang 050018 PR China
| | - Guoqun Zhao
- Fermentation Technology Innovation Center of Hebei Province, College of Food Science and Biology, Hebei University of Science and Technology No. 26 Yuxiang Road, Yuhua District Shijiazhuang 050018 PR China
| | - Bin Wang
- Qinhuangdao Bohai Biological Research Institute of Beijing University of Chemical Technology Qinhuangdao 066000 PR China
| | - Jinlong Liu
- Fermentation Technology Innovation Center of Hebei Province, College of Food Science and Biology, Hebei University of Science and Technology No. 26 Yuxiang Road, Yuhua District Shijiazhuang 050018 PR China
| |
Collapse
|