1
|
Gupta A, Bhatti P, Laha JK, Manna S. Skeletal Editing by Hypervalent Iodine Mediated Nitrogen Insertion. Chemistry 2024; 30:e202401993. [PMID: 39046292 DOI: 10.1002/chem.202401993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/25/2024]
Abstract
Hypervalent iodine reagents are versatile and readily accessible reagents that have been extensively applied in contemporary synthesis in modern organic chemistry. Among them, iodonitrene (ArI=NR), is a powerful reactive species, widely used for a single-nitrogen-atom insertion reaction, and skeletal editing to construct N-heterocycles. Skeletal editing with reactive iodonitrene components has recently emerged as an exciting approach in modern chemical transformation. These reagents have been extensively used to produce biologically relevant heterocycles and functionalized molecular architectures. Recently, the insertion of a nitrogen-atom into hydrocarbons to generate N-heterocyclic compounds using hypervalent iodine reagents has been a significant focus in the field of molecular editing reactions. In this review, we discuss the rapidly emerging field of nitrene insertion, including skeletal editing and nitrogen insertion, using hypervalent iodine reagents to access nitrogen-containing heterocycles, and the current mechanistic understanding of these processes.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S. Nagar, Punjab, 160062, India
| | - Pratibha Bhatti
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S. Nagar, Punjab, 160062, India
| | - Joydev K Laha
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S. Nagar, Punjab, 160062, India
| | - Srimanta Manna
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S. Nagar, Punjab, 160062, India
| |
Collapse
|
2
|
Botlik BB, Weber M, Ruepp F, Kawanaka K, Finkelstein P, Morandi B. Streamlining the Synthesis of Pyridones through Oxidative Amination of Cyclopentenones. Angew Chem Int Ed Engl 2024; 63:e202408230. [PMID: 38934574 DOI: 10.1002/anie.202408230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Herein we report the development of an oxidative amination process for the streamlined synthesis of pyridones from cyclopentenones. Cyclopentenone building blocks can undergo in situ silyl enol ether formation, followed by the introduction of a nitrogen atom into the carbon skeleton with successive aromatisation to yield pyridones. The reaction sequence is operationally simple, rapid, and carried out in one pot. The reaction proceeds under mild conditions, exhibits broad functional group tolerance, complete regioselectivity, and is well scalable. The developed method provides facile access to the synthesis of 15N-labelled targets, industrially relevant pyridone products and their derivatives in a fast and efficient way.
Collapse
Affiliation(s)
- Bence B Botlik
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir Prelog Weg 3, HCI, 8093, Zürich, Switzerland
| | - Micha Weber
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir Prelog Weg 3, HCI, 8093, Zürich, Switzerland
| | - Florian Ruepp
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir Prelog Weg 3, HCI, 8093, Zürich, Switzerland
| | - Kazuki Kawanaka
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir Prelog Weg 3, HCI, 8093, Zürich, Switzerland
| | - Patrick Finkelstein
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir Prelog Weg 3, HCI, 8093, Zürich, Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir Prelog Weg 3, HCI, 8093, Zürich, Switzerland
| |
Collapse
|
3
|
Guo X, Price NG, Zhu Q. Electrochemical Cyanation of Alcohols Enabled by an Iodide-Mediated Phosphine P(V/III) Redox Couple. Org Lett 2024; 26:7347-7351. [PMID: 39185852 DOI: 10.1021/acs.orglett.4c02550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
We report herein a mild electrochemical method to transform alcohols into their corresponding nitriles by using commercially available reagents. This protocol accepts substrates with various functional groups including those that are susceptible to oxidative decomposition. Mechanistic studies revealed a critical iodide-mediated phosphine electrochemical oxidation pathway leading to the alkoxyphosphonium intermediate, followed by nucleophilic substitution by a cyanide nucleophile. This method demonstrates the use of electrochemistry in replacing azo-type reagents in direct nucleophilic substitution and homologation of alcohol substrates.
Collapse
Affiliation(s)
- Xuewen Guo
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Nathan G Price
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Qilei Zhu
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
4
|
Stoikov II, Antipin IS, Burilov VA, Kurbangalieva AR, Rostovskii NV, Pankova AS, Balova IA, Remizov YO, Pevzner LM, Petrov ML, Vasilyev AV, Averin AD, Beletskaya IP, Nenajdenko VG, Beloglazkina EK, Gromov SP, Karlov SS, Magdesieva TV, Prishchenko AA, Popkov SV, Terent’ev AO, Tsaplin GV, Kustova TP, Kochetova LB, Magdalinova NA, Krasnokutskaya EA, Nyuchev AV, Kuznetsova YL, Fedorov AY, Egorova AY, Grinev VS, Sorokin VV, Ovchinnikov KL, Kofanov ER, Kolobov AV, Rusinov VL, Zyryanov GV, Nosov EV, Bakulev VA, Belskaya NP, Berezkina TV, Obydennov DL, Sosnovskikh VY, Bakhtin SG, Baranova OV, Doroshkevich VS, Raskildina GZ, Sultanova RM, Zlotskii SS, Dyachenko VD, Dyachenko IV, Fisyuk AS, Konshin VV, Dotsenko VV, Ivleva EA, Reznikov AN, Klimochkin YN, Aksenov DA, Aksenov NA, Aksenov AV, Burmistrov VV, Butov GM, Novakov IA, Shikhaliev KS, Stolpovskaya NV, Medvedev SM, Kandalintseva NV, Prosenko OI, Menshchikova EB, Golovanov AA, Khashirova SY. Organic Chemistry in Russian Universities. Achievements of Recent Years. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2024; 60:1361-1584. [DOI: 10.1134/s1070428024080013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 01/06/2025]
|
5
|
Lin A, Ghosh A, Yellen S, Ball ZT, Kürti L. Oxidative Nitrogen Insertion into Silyl Enol Ether C═C Bonds. J Am Chem Soc 2024. [PMID: 39013155 DOI: 10.1021/jacs.4c07111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Here, we demonstrate a fundamentally new reactivity of the silyl enol ether functionality utilizing an in situ-generated iodonitrene-like species. The present transformation inserts a nitrogen atom between the silyl enol ether olefinic carbons with the concomitant cleavage of the C═C bond. Overall, this facile transformation converts a C-nucleophilic silyl enol ether to the corresponding C-electrophilic N-acyl-N,O-acetal. This unprecedented access to α-amido alkylating agents enables modular derivatization with carbon and heteroatom nucleophiles and the unique late-stage editing of carbon frameworks. The reaction efficiency of this transformation is well correlated with enol ether nucleophilicity as described by the Mayr N scale. Applications presented herein include late-stage nitrogen insertion into carbon skeletons of natural products with previously unattainable regioselectivity as well as modified conditions for 15N labeling of amides and lactams.
Collapse
Affiliation(s)
- Alex Lin
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Arghya Ghosh
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Simon Yellen
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Zachary T Ball
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - László Kürti
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
6
|
Bartholomew GL, Kraus SL, Karas LJ, Carpaneto F, Bennett R, Sigman MS, Yeung CS, Sarpong R. 14N to 15N Isotopic Exchange of Nitrogen Heteroaromatics through Skeletal Editing. J Am Chem Soc 2024; 146:2950-2958. [PMID: 38286797 PMCID: PMC11646074 DOI: 10.1021/jacs.3c11515] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The selective modification of nitrogen heteroaromatics enables the development of new chemical tools and accelerates drug discovery. While methods that focus on expanding or contracting the skeletal structures of heteroaromatics are emerging, methods for the direct exchange of single core atoms remain limited. Here, we present a method for 14N → 15N isotopic exchange for several aromatic nitrogen heterocycles. This nitrogen isotope transmutation occurs through activation of the heteroaromatic substrate by triflylation of a nitrogen atom, followed by a ring-opening/ring-closure sequence mediated by 15N-aspartate to effect the isotopic exchange of the nitrogen atom. Key to the success of this transformation is the formation of an isolable 15N-succinyl intermediate, which undergoes elimination to give the isotopically labeled heterocycle. These transformations occur under mild conditions in high chemical and isotopic yields.
Collapse
Affiliation(s)
- G Logan Bartholomew
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Samantha L Kraus
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Lucas J Karas
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Filippo Carpaneto
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Raffeal Bennett
- Discovery Analytical Research, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Charles S Yeung
- Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Krishnan A, Kamaraj S. Direct Access to Quinone-Fused 5-Substituted-1,4-Benzodiazepine Scaffolds from Azidoquinones with/without [1,2]-Azide-Nitrogen Migration: Mechanistic Insights. J Org Chem 2023; 88:16315-16329. [PMID: 37966974 DOI: 10.1021/acs.joc.3c01810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Seven-membered nitrogen heterocycles have a strong influence in drug discovery due to their inherent 3D character, which allows the ability to explore a vast conformational space with a biological target. Notably, the privileged 1,4-benzodiazepine scaffold is dominant in treating the central nervous system due to its binding affinity with the GABAA receptor. Herein, we report a protocol for the transformation of azidoquinones to p-quinone fused 5-substituted-1,4-benzodiazepines (p-QBZDs) from InCl3-catalyzed intermolecular tandem cycloannulation of azidoquinones with amines and aldehydes. Detailed mechanistic studies reveal that the EDA complex between azidoquinones and InCl3 is crucial in determining the reaction pathway. In the absence of EDA complex formation, the reaction proceeds via the intermediacy of 2,3-bridged-2H-azirine followed by regiospecific addition of an amine to C═N/ring opening/cyclization to deliver p-QBZD with 1,2-azide-nitrogen migration. In the case of EDA complex formation, the reaction proceeds through regioselective aza-Michael addition/nitrene insertion with aldehyde and subsequent cyclization to deliver p-QBZD and p-quinone fused imidazole as a secondary product without 1,2-azide-nitrogen migration. This protocol provides straightforward access to redox-active quinone embedded 5-substituted-1,4-benzodiazepines from azidoquinones with diverse substrate scopes that would find potential applications in medicinal chemistry and drug discovery.
Collapse
Affiliation(s)
- Ashokkumar Krishnan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Sriraghavan Kamaraj
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
8
|
Wang Q, Jung H, Kim D, Chang S. Iridium-Catalyzed Migratory Terminal C(sp 3)-H Amidation of Heteroatom-Substituted Internal Alkenes via Olefin Chain Walking. J Am Chem Soc 2023. [PMID: 37906814 DOI: 10.1021/jacs.3c09679] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Hydroamination facilitated by metal hydride catalysis is an appealing synthetic approach to access valuable nitrogen-containing compounds from readily available unsaturated hydrocarbons. While high regioselectivity can be achieved usually for substrates bearing polar chelation groups, the reaction involving simple alkenes frequently provides nonselective outcomes. Herein, we report an iridium-catalyzed highly regioselective terminal C(sp3)-H amidation of internal alkenes utilizing dioxazolones as an amino source via olefin chain walking. Most notably, this mechanistic motif of double bond migration to the terminal position operates not only with dialkyl-substituted simple alkenes including styrenes but also with heteroatom-substituted olefins such as enol ethers, vinyl silanes, and vinyl borons, thus representing the first example of the terminal methyl amidation of the latter type of alkenes through a nondissociative chain walking process.
Collapse
Affiliation(s)
- Qing Wang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Hoimin Jung
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
9
|
van de Vrande KN, Filippov DV, Codée JDC. Formation of Glycosyl Trichloroacetamides from Trichloroacetimidate Donors Occurs through an Intermolecular Aglycon Transfer Reaction. Org Lett 2023; 25:6128-6132. [PMID: 37578204 PMCID: PMC10463224 DOI: 10.1021/acs.orglett.3c02196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Indexed: 08/15/2023]
Abstract
To probe the reaction mechanism, underlying the rearrangement of oft-used trichloroacetimidate glycosyl donors into the corresponding anomeric trichloroacetamides, we have used a combination of 13C- and 15N-labeled glycosyl trichloroacetimidate donors in a series of crossover experiments. These unambiguously show that trichloroacetamides are formed via an intermolecular aglycon transfer mechanism. This insight enables the design of more effective glycosylation protocols, preventing the formation of dead-end side products.
Collapse
Affiliation(s)
| | - Dmitri V. Filippov
- Leiden Institute
of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, Netherlands
| | - Jeroen D. C. Codée
- Leiden Institute
of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, Netherlands
| |
Collapse
|
10
|
Lysak DH, Wolff WW, Soong R, Bermel W, Kupče ER, Jenne A, Biswas RG, Lane D, Gasmi-Seabrook G, Simpson A. Application of 15N-Edited 1H- 13C Correlation NMR Spectroscopy─Toward Fragment-Based Metabolite Identification and Screening via HCN Constructs. Anal Chem 2023; 95:11926-11933. [PMID: 37535003 DOI: 10.1021/acs.analchem.3c01362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Many key building blocks of life contain nitrogen moieties. Despite the prevalence of nitrogen-containing metabolites in nature, 15N nuclei are seldom used in NMR-based metabolite assignment due to their low natural abundance and lack of comprehensive chemical shift databases. However, with advancements in isotope labeling strategies, 13C and 15N enriched metabolites are becoming more common in metabolomic studies. Simple multidimensional nuclear magnetic resonance (NMR) experiments that correlate 1H and 15N via single bond 1JNH or multiple bond 2-3JNH couplings using heteronuclear single quantum coherence (HSQC) or heteronuclear multiple bond coherence are well established and routinely applied for structure elucidation. However, a 1H-15N correlation spectrum of a metabolite mixture can be difficult to deconvolute, due to the lack of a 15N specific database. In order to bridge this gap, we present here a broadband 15N-edited 1H-13C HSQC NMR experiment that targets metabolites containing 15N moieties. Through this approach, nitrogen-containing metabolites, such as amino acids, nucleotide bases, and nucleosides, are identified based on their 13C, 1H, and 15N chemical shift information. This approach was tested and validated using a [15N, 13C] enriched Daphnia magna (water flea) metabolite extract, where the number of clearly resolved 15N-containing peaks increased from only 11 in a standard HSQC to 51 in the 15N-edited HSQC, and the number of obscured peaks decreased from 59 to just 7. The approach complements the current repertoire of NMR techniques for mixture deconvolution and holds considerable potential for targeted metabolite NMR in 15N, 13C enriched systems.
Collapse
Affiliation(s)
- Daniel H Lysak
- University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C1A4, Canada
| | - William W Wolff
- University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C1A4, Canada
| | - Ronald Soong
- University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C1A4, Canada
| | - Wolfgang Bermel
- Bruker BioSpin GmbH, Rudolf-Plank-Str. 23, Ettlingen 76275, Germany
| | | | - Amy Jenne
- University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C1A4, Canada
| | - Rajshree Ghosh Biswas
- University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C1A4, Canada
| | - Daniel Lane
- University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C1A4, Canada
| | | | - Andre Simpson
- University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C1A4, Canada
| |
Collapse
|
11
|
Finkelstein P, Reisenbauer JC, Botlik BB, Green O, Florin A, Morandi B. Nitrogen atom insertion into indenes to access isoquinolines. Chem Sci 2023; 14:2954-2959. [PMID: 36937579 PMCID: PMC10016357 DOI: 10.1039/d2sc06952k] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
We report a convenient protocol for a nitrogen atom insertion into indenes to afford isoquinolines. The reaction uses a combination of commercially available phenyliodine(iii) diacetate (PIDA) and ammonium carbamate as the nitrogen source to furnish a wide range of isoquinolines. Various substitution patterns and commonly used functional groups are well tolerated. The operational simplicity renders this protocol broadly applicable and has been successfully extended towards the direct interconversion of cyclopentadienes into the corresponding pyridines. Furthermore, this strategy enables the facile synthesis of 15N labelled isoquinolines, using 15NH4Cl as a commercial 15N source.
Collapse
Affiliation(s)
- Patrick Finkelstein
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Julia C Reisenbauer
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Bence B Botlik
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Ori Green
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Andri Florin
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| |
Collapse
|
12
|
Song G, Nong DZ, Li Q, Yan Y, Li G, Fan J, Zhang W, Cao R, Wang C, Xiao J, Xue D. Photochemical Synthesis of Anilines via Ni-Catalyzed Coupling of Aryl Halides with Ammonium Salts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Geyang Song
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Ding-Zhan Nong
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Qi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Yonggang Yan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Gang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Juan Fan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| |
Collapse
|
13
|
Urbonavičius A, Fortunato G, Ambrazaitytė E, Plytninkienė E, Bieliauskas A, Milišiūnaitė V, Luisi R, Arbačiauskienė E, Krikštolaitytė S, Šačkus A. Synthesis and Characterization of Novel Heterocyclic Chalcones from 1-Phenyl-1 H-pyrazol-3-ol. Molecules 2022; 27:3752. [PMID: 35744875 PMCID: PMC9227189 DOI: 10.3390/molecules27123752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
An efficient synthetic route to construct diverse pyrazole-based chalcones from 1-phenyl-1H-pyrazol-3-ols bearing a formyl or acetyl group on the C4 position of pyrazole ring, employing a base-catalysed Claisen-Schmidt condensation reaction, is described. Isomeric chalcones were further reacted with N-hydroxy-4-toluenesulfonamide and regioselective formation of 3,5-disubstituted 1,2-oxazoles was established. The novel pyrazole-chalcones and 1,2-oxazoles were characterized by an in-depth analysis of NMR spectral data, which were obtained through a combination of standard and advanced NMR spectroscopy techniques.
Collapse
Affiliation(s)
- Arminas Urbonavičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Pl. 19, 50254 Kaunas, Lithuania; (A.U.); (G.F.); (E.A.); (E.P.); (V.M.); (S.K.)
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, 51423 Kaunas, Lithuania;
| | - Graziana Fortunato
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Pl. 19, 50254 Kaunas, Lithuania; (A.U.); (G.F.); (E.A.); (E.P.); (V.M.); (S.K.)
- Department of Pharmacy—Drug Sciences, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy;
| | - Emilija Ambrazaitytė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Pl. 19, 50254 Kaunas, Lithuania; (A.U.); (G.F.); (E.A.); (E.P.); (V.M.); (S.K.)
| | - Elena Plytninkienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Pl. 19, 50254 Kaunas, Lithuania; (A.U.); (G.F.); (E.A.); (E.P.); (V.M.); (S.K.)
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, 51423 Kaunas, Lithuania;
| | - Aurimas Bieliauskas
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, 51423 Kaunas, Lithuania;
| | - Vaida Milišiūnaitė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Pl. 19, 50254 Kaunas, Lithuania; (A.U.); (G.F.); (E.A.); (E.P.); (V.M.); (S.K.)
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, 51423 Kaunas, Lithuania;
| | - Renzo Luisi
- Department of Pharmacy—Drug Sciences, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy;
| | - Eglė Arbačiauskienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Pl. 19, 50254 Kaunas, Lithuania; (A.U.); (G.F.); (E.A.); (E.P.); (V.M.); (S.K.)
| | - Sonata Krikštolaitytė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Pl. 19, 50254 Kaunas, Lithuania; (A.U.); (G.F.); (E.A.); (E.P.); (V.M.); (S.K.)
| | - Algirdas Šačkus
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Pl. 19, 50254 Kaunas, Lithuania; (A.U.); (G.F.); (E.A.); (E.P.); (V.M.); (S.K.)
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, 51423 Kaunas, Lithuania;
| |
Collapse
|
14
|
Zhou Z, Kweon J, Jung H, Kim D, Seo S, Chang S. Photoinduced Transition-Metal-Free Chan-Evans-Lam-Type Coupling: Dual Photoexcitation Mode with Halide Anion Effect. J Am Chem Soc 2022; 144:9161-9171. [PMID: 35549253 DOI: 10.1021/jacs.2c03343] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, we report a photoinduced transition-metal-free C(aryl)-N bond formation between 2,4,6-tri(aryl)boroxines or arylboronic acids as an aryl source and 1,4,2-dioxazol-5-ones (dioxazolones) as an amide coupling partner. Chloride anion, either generated in situ by photodissociation of chlorinated solvent molecules or added separately as an additive, was found to play a critical cooperative role, thereby giving convenient access to a wide range of synthetically versatile N-arylamides under mild photo conditions. The synthetic virtue of this transition-metal-free Chan-Evans-Lam-type coupling was demonstrated by large-scale reactions, synthesis of 15N-labeled arylamides, and applicability toward biologically relevant compounds. On the basis of mechanistic investigations, two distinctive photoexcitations are proposed to function in the current process, in which the first excitation involving chloro-boron adduct facilitates the transition-metal-free activation of dioxazolones by single electron transfer (SET), and the second one enables the otherwise-inoperative 1,2-aryl migration of the thus-formed N-chloroamido-borate adduct.
Collapse
Affiliation(s)
- Zijun Zhou
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - Jeonguk Kweon
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - Hoimin Jung
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - Sangwon Seo
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
15
|
Liu H, Zeng T, He C, Rawal VH, Zhou H, Dickinson BC. Development of Mild Chemical Catalysis Conditions for m 1A-to-m 6A Rearrangement on RNA. ACS Chem Biol 2022; 17:1334-1342. [PMID: 35593877 DOI: 10.1021/acschembio.2c00178] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The conversion of N1-methyladenosine (m1A) to N6-methyladenosine (m6A) on RNA is an important step for both allowing efficient reverse transcription read-though for sequencing analysis and mapping modifications in the transcriptome. Enzymatic transformation is often used, but the efficiency of the removal can depend on local sequence context. Chemical conversion through the application of the Dimroth rearrangement, in which m1A rearranges into m6A under heat and alkaline conditions, is an alternative, but the required alkaline conditions result in significant RNA degradation by hydrolysis of the phosphodiester backbone. Here, we report novel, mild pH conditions that catalyze m1A-to-m6A arrangement using 4-nitrothiophenol as a catalyst. We demonstrate the efficient rearrangement in mononucleosides, synthetic RNA oligonucleotides, and RNAs isolated from human cell lines, thereby validating a new approach for converting m1A-to-m6A in RNA samples for sequencing analyses.
Collapse
Affiliation(s)
- Huachun Liu
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Tony Zeng
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Howard Hughes Medical Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Viresh H. Rawal
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Huiqing Zhou
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Bryan C. Dickinson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
16
|
Bruzgulienė J, Račkauskienė G, Bieliauskas A, Milišiūnaitė V, Dagilienė M, Matulevičiūtė G, Martynaitis V, Krikštolaitytė S, Sløk FA, Šačkus A. Regioselective synthesis of methyl 5-( N-Boc-cycloaminyl)-1,2-oxazole-4-carboxylates as new amino acid-like building blocks. Beilstein J Org Chem 2022; 18:102-109. [PMID: 35096179 PMCID: PMC8767561 DOI: 10.3762/bjoc.18.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/29/2021] [Indexed: 12/23/2022] Open
Abstract
A convenient and efficient synthesis of novel achiral and chiral heterocyclic amino acid-like building blocks was developed. Regioisomeric methyl 5-(N-Boc-cycloaminyl)-1,2-oxazole-4-carboxylates were prepared by the reaction of β-enamino ketoesters (including azetidine, pyrrolidine or piperidine enamines) with hydroxylamine hydrochloride. Unambiguous structural assignments were based on chiral HPLC analysis, 1H, 13C, and 15N NMR spectroscopy, HRMS, and single-crystal X-ray diffraction data.
Collapse
Affiliation(s)
- Jolita Bruzgulienė
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, Kaunas LT-51423, Lithuania
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, Kaunas LT-50254, Lithuania
| | - Greta Račkauskienė
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, Kaunas LT-51423, Lithuania
| | - Aurimas Bieliauskas
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, Kaunas LT-51423, Lithuania
| | - Vaida Milišiūnaitė
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, Kaunas LT-51423, Lithuania
| | - Miglė Dagilienė
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, Kaunas LT-51423, Lithuania
| | - Gita Matulevičiūtė
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, Kaunas LT-51423, Lithuania
| | - Vytas Martynaitis
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, Kaunas LT-50254, Lithuania
| | - Sonata Krikštolaitytė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, Kaunas LT-50254, Lithuania
| | - Frank A Sløk
- Vipergen ApS, Gammel Kongevej 23A, DK-1610 Copenhagen V, Denmark
| | - Algirdas Šačkus
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, Kaunas LT-51423, Lithuania
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, Kaunas LT-50254, Lithuania
| |
Collapse
|
17
|
Wentrup C, Mirzaei MS, Kvaskoff D, Taherpour AA. When a "Dimroth Rearrangement" Is Not a Dimroth Rearrangement. J Org Chem 2021; 86:8286-8294. [PMID: 34077230 DOI: 10.1021/acs.joc.1c00730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the Dimroth rearrangement of heterocycles, often pyrimidines, an exocyclic and a ring substituent are interchanged. However, the term Dimroth rearrangement is frequently used even when there is no knowledge of the reaction mechanism and alternatives are likely. Here, we have employed density functional theory (DFT) calculations at the M06-2X/6-311+G(d,p) level to determine the most plausible rearrangement pathways of 3-aminothiocarbonylquinazoline 5, tetrahydrofuranylpyrimidine 21, and 5-allyltriazocine 30. For the rearrangement of quinazoline 5 to 9, the [1,3]-sigmatropic shift of the thioamido group with an activation barrier of 26.7 kcal/mol is much preferred over the Dimroth rearrangement (∼46 kcal/mol). An even lower barrier of 21.6 kcal/mol applies to a stepwise [1,3]-shift. The migration of the tetrahydrofuranyl unit in pyrimidines like 21 → 23 can take place by means of a [1,3]-sigmatropic shift with a low barrier (≤17.5 kcal/mol) rather than a Dimroth rearrangement under acidic conditions and most likely also under neutral conditions (∼30 kcal/mol). In the rearrangement of 5-allyl-6-iminotriazocine 30 to 32, the [3,3]-sigmatropic shift (aza-Cope rearrangement) is preferred over the Dimroth mechanism under neutral conditions, but in the presence of acid, the azonia-Cope rearrangement of an allyl group and the true Dimroth rearrangement have comparable activation energies.
Collapse
Affiliation(s)
- Curt Wentrup
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - M Saeed Mirzaei
- Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah 67149-67346, Iran
| | - David Kvaskoff
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Avat Arman Taherpour
- Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah 67149-67346, Iran
| |
Collapse
|
18
|
Nøjgaard N, Fontana W, Hellmuth M, Merkle D. Cayley Graphs of Semigroups Applied to Atom Tracking in Chemistry. J Comput Biol 2021; 28:701-715. [PMID: 34115945 DOI: 10.1089/cmb.2020.0548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
While atom tracking with isotope-labeled compounds is an essential and sophisticated wet-lab tool to, for example, illuminate reaction mechanisms, there exists only a limited amount of formal methods to approach the problem. Specifically, when large (bio-)chemical networks are considered where reactions are stereospecific, rigorous techniques are inevitable. We present an approach using the right Cayley graph of a monoid to track atoms concurrently through sequences of reactions and predict their potential location in product molecules. This can not only be used to systematically build hypothesis or reject reaction mechanisms (we will use the ANRORC mechanism "Addition of the Nucleophile, Ring Opening, and Ring Closure" as an example) but also to infer naturally occurring subsystems of (bio-)chemical systems. Our results include the analysis of the carbon traces within the tricarboxylic acid cycle and infer subsystems based on projections of the right Cayley graph onto a set of relevant atoms.
Collapse
Affiliation(s)
- Nikolai Nøjgaard
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Walter Fontana
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Marc Hellmuth
- School of Computing, University of Leeds, Leeds, United Kingdom
| | - Daniel Merkle
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
19
|
Deev S, Batsyts S, Sheina E, Shestakova TS, Khalimbadzha I, Kiskin MA, Charushin V, Chupakhin O, Paramonov AS, Shenkarev ZO, Namyslo JC, Schmidt A. Betaine–N‐Heterocyclic Carbene Interconversions of Quinazolin‐4‐One Imidazolium Mesomeric Betaines. Sulfur, Selenium, and Borane Adduct Formation. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901622] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Sergey Deev
- Ural Federal University 19 Mira Street 620002 Yekaterinburg Russia
| | - Sviatoslav Batsyts
- Institute of Organic Chemistry Clausthal University of Technology Leibnizstrasse 6 38678 Clausthal‐Zellerfeld Germany
| | - Ekaterina Sheina
- Ural Federal University 19 Mira Street 620002 Yekaterinburg Russia
| | | | | | - Mikhail A. Kiskin
- N. S. Kurnakov Institute of General and Inorganic Chemistry, RAS 31 Leninsky Av. 119991 Moscow Russia
| | - Valery Charushin
- Ural Federal University 19 Mira Street 620002 Yekaterinburg Russia
- E I. Ya. Postovsky Institute of Organic Synthesis Ural Branch of the Russian Academy of Sciences 22 S. Kovalevskoy Street 620219 Yekaterinburg Russia
| | - Oleg Chupakhin
- Ural Federal University 19 Mira Street 620002 Yekaterinburg Russia
- E I. Ya. Postovsky Institute of Organic Synthesis Ural Branch of the Russian Academy of Sciences 22 S. Kovalevskoy Street 620219 Yekaterinburg Russia
| | - Alexander S. Paramonov
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences 16/10 Miklukho‐Maklaya Street 117997 Moscow Russia
| | - Zakhar O. Shenkarev
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences 16/10 Miklukho‐Maklaya Street 117997 Moscow Russia
| | - Jan C. Namyslo
- Institute of Organic Chemistry Clausthal University of Technology Leibnizstrasse 6 38678 Clausthal‐Zellerfeld Germany
| | - Andreas Schmidt
- Institute of Organic Chemistry Clausthal University of Technology Leibnizstrasse 6 38678 Clausthal‐Zellerfeld Germany
| |
Collapse
|