1
|
Frigoli M, Lowdon JW, Donetti N, Crapnell RD, Banks CE, Cleij TJ, Diliën H, Eersels K, van Grinsven B. Electrochemical Detection of Pseudomonas aeruginosa Quorum Sensing Molecule ( S)- N-Butyryl Homoserine Lactone Using Molecularly Imprinted Polymers. ACS OMEGA 2024; 9:36411-36420. [PMID: 39220512 PMCID: PMC11359617 DOI: 10.1021/acsomega.4c03970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/09/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Pseudomonas aeruginosa is a multidrug-resistant Gram-negative bacterium that poses a significant threat to public health, necessitating rapid and on-site detection methods for rapid recognition. The goal of the project is therefore to indirectly detect the presence of P. aeruginosa in environmental water samples targeting one of its quorum-sensing molecules, namely, (S)-N-butyryl homoserine lactone (BHL). To this aim, molecularly imprinted polymers (MIPs) were synthesized via bulk free-radical polymerization using BHL as a template molecule. The obtained MIP particles were immobilized onto screen-printed electrodes (MIP-SPEs), and the BHL rebinding was analyzed via electrochemical impedance spectroscopy (EIS). To study the specificity of the synthesized MIPs, isotherm curves were built after on-point rebinding analysis performed via LC-MS measurements for both MIPs and NIPs (nonimprinted polymers, used as a negative control), obtaining an imprinting factor (IF) of 2.8 (at C f = 0.4 mM). The MIP-SPEs were integrated into an electrochemical biosensor with a linear range of 1 × 101-1 × 103 nM and a limit of detection (LoD) of 31.78 ± 4.08 nM. Selectivity measurements were also performed after choosing specific interferent molecules, such as structural analogs and potential interferents, followed by on-point analysis performed in spiked tap water to prove the sensor's potential to detect the presence of the quorum-sensing molecule in environmentally related real-life samples.
Collapse
Affiliation(s)
- Margaux Frigoli
- Sensor
Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| | - Joseph W. Lowdon
- Sensor
Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| | - Nicolas Donetti
- Sensor
Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| | - Robert D. Crapnell
- John
Dalton Building, Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, U.K.
| | - Craig E. Banks
- John
Dalton Building, Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, U.K.
| | - Thomas J. Cleij
- Sensor
Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| | - Hanne Diliën
- Sensor
Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| | - Kasper Eersels
- Sensor
Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| | - Bart van Grinsven
- Sensor
Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| |
Collapse
|
2
|
Luo Y, Kasturi PR, Barwa TN, Dempsey E, Breslin CB. Amplifying Flutamide Sensing through the Synergetic Combination of Actinidia-Derived Carbon Particles and WS 2 Platelets. ACS OMEGA 2024; 9:29598-29608. [PMID: 39005762 PMCID: PMC11238225 DOI: 10.1021/acsomega.4c02795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/08/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024]
Abstract
The development of electrochemical sensors for flutamide detection is a crucial step in biomedical research and environmental monitoring. In this study, a composite of Actinidia-derived carbon particles (CPs) and tungsten disulfide (WS2) was formed and used as an electrocatalyst for the electrochemical detection of flutamide. The CPs had an average diameter of 500 nm and contained surface hydroxyl and carbonyl groups. These groups may help anchor the CPs onto the WS2 platelets, resulting in the formation of a CPs-WS2 nanocomposite with a high surface area and a conducting network, enabling electron transfer. Using the CPs-WS2 composite supported at a glassy carbon electrode, a linear concentration range extending from 1 nM to 104 μM, a limit of detection of 0.74 nM, and a sensitivity of 26.9 ± 0.7 μA μM-1 cm-2 were obtained in the detection of flutamide in a phosphate buffer. The sensor showed good recovery, ranging from 88.47 to 95.02%, in river water samples, and exhibited very good selectivity in the presence of inorganic ions, including Al3+, Co2+, Cu2+, Fe3+, Zn2+, NO3 -, SO4 2-, CO3 2-, and Cl-.
Collapse
Affiliation(s)
- Yiran Luo
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare W23 F2H6, Ireland
| | - P Rupa Kasturi
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare W23 F2H6, Ireland
| | - Tara N Barwa
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare W23 F2H6, Ireland
| | - Eithne Dempsey
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare W23 F2H6, Ireland
- Kathleen Lonsdale Institute, Maynooth University, Maynooth, Co. Kildare W23 F2H6, Ireland
| | - Carmel B Breslin
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare W23 F2H6, Ireland
- Kathleen Lonsdale Institute, Maynooth University, Maynooth, Co. Kildare W23 F2H6, Ireland
| |
Collapse
|
3
|
Wuamprakhon P, Ferrari AGM, Crapnell RD, Pimlott JL, Rowley-Neale SJ, Davies TJ, Sawangphruk M, Banks CE. Exploring the Role of the Connection Length of Screen-Printed Electrodes towards the Hydrogen and Oxygen Evolution Reactions. SENSORS (BASEL, SWITZERLAND) 2023; 23:1360. [PMID: 36772400 PMCID: PMC9920153 DOI: 10.3390/s23031360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Zero-emission hydrogen and oxygen production are critical for the UK to reach net-zero greenhouse gasses by 2050. Electrochemical techniques such as water splitting (electrolysis) coupled with renewables energy can provide a unique approach to achieving zero emissions. Many studies exploring electrocatalysts need to "electrically wire" to their material to measure their performance, which usually involves immobilization upon a solid electrode. We demonstrate that significant differences in the calculated onset potential for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) can be observed when using screen-printed electrodes (SPEs) of differing connection lengths which are immobilized with a range of electrocatalysts. This can lead to false improvements in the reported performance of different electrocatalysts and poor comparisons between the literature. Through the use of electrochemical impedance spectroscopy, uncompensated ohmic resistance can be overcome providing more accurate Tafel analysis.
Collapse
Affiliation(s)
- Phatsawit Wuamprakhon
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
- Centre of Excellence for Energy Storage Technology (CEST), Department of Chemical and Biomolecular Engineering, Vidyasirimedhi Institute of Science and Technology, School of Energy Science and Engineering, Rayong 21210, Thailand
| | | | - Robert D. Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| | - Jessica L. Pimlott
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| | - Samuel J. Rowley-Neale
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| | - Trevor J. Davies
- INEOS Electrochemical Solutions, Bankes Lane Office, Bankes Lane, Runcorn, Cheshire WA7 4JE, UK
| | - Montree Sawangphruk
- Centre of Excellence for Energy Storage Technology (CEST), Department of Chemical and Biomolecular Engineering, Vidyasirimedhi Institute of Science and Technology, School of Energy Science and Engineering, Rayong 21210, Thailand
| | - Craig E. Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| |
Collapse
|
4
|
Khan AF, Ferrari AGM, Hughes JP, Smith GC, Banks CE, Rowley-Neale SJ. 2D-Hexagonal Boron Nitride Screen-Printed Bulk-Modified Electrochemical Platforms Explored towards Oxygen Reduction Reactions. SENSORS (BASEL, SWITZERLAND) 2022; 22:3330. [PMID: 35591020 PMCID: PMC9105127 DOI: 10.3390/s22093330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/10/2022]
Abstract
A low-cost, scalable and reproducible approach for the mass production of screen-printed electrode (SPE) platforms that have varying percentage mass incorporations of 2D hexagonal boron nitride (2D-hBN) (2D-hBN/SPEs) is demonstrated herein. These novel 2D-hBN/SPEs are explored as a potential metal-free electrocatalysts towards oxygen reduction reactions (ORRs) within acidic media where their performance is evaluated. A 5% mass incorporation of 2D-hBN into the SPEs resulted in the most beneficial ORR catalysis, reducing the ORR onset potential by ca. 200 mV in comparison to bare/unmodified SPEs. Furthermore, an increase in the achievable current of 83% is also exhibited upon the utilisation of a 2D-hBN/SPE in comparison to its unmodified equivalent. The screen-printed fabrication approach replaces the less-reproducible and time-consuming drop-casting technique of 2D-hBN and provides an alternative approach for the large-scale manufacture of novel electrode platforms that can be utilised in a variety of applications.
Collapse
Affiliation(s)
- Aamar F. Khan
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK; (A.F.K.); (A.G.-M.F.); (J.P.H.); (C.E.B.)
- Manchester Fuel Cell Innovation Centre, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| | - Alejandro Garcia-Miranda Ferrari
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK; (A.F.K.); (A.G.-M.F.); (J.P.H.); (C.E.B.)
- Manchester Fuel Cell Innovation Centre, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| | - Jack P. Hughes
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK; (A.F.K.); (A.G.-M.F.); (J.P.H.); (C.E.B.)
- Manchester Fuel Cell Innovation Centre, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| | - Graham C. Smith
- Department of Natural Sciences, Faculty of Science and Engineering, University of Chester, Thornton Science Park, Pool Lane, Ince, Chester CH2 4NU, UK;
| | - Craig E. Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK; (A.F.K.); (A.G.-M.F.); (J.P.H.); (C.E.B.)
- Manchester Fuel Cell Innovation Centre, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| | - Samuel J. Rowley-Neale
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK; (A.F.K.); (A.G.-M.F.); (J.P.H.); (C.E.B.)
- Manchester Fuel Cell Innovation Centre, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| |
Collapse
|
5
|
Crane B, Hughes JP, Rowley Neale SJ, Rashid M, Linton PE, Banks CE, Shaw KJ. Rapid antibiotic susceptibility testing using resazurin bulk modified screen-printed electrochemical sensing platforms. Analyst 2021; 146:5574-5583. [PMID: 34369493 DOI: 10.1039/d1an00850a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Urinary tract infections (UTIs) are one of the most common types of bacterial infection. UTIs can be associated with multidrug resistant bacteria and current methods of determining an effective antibiotic for UTIs can take up to 48 hours, which increases the chances of a negative prognosis for the patient. In this paper we report for the first time, the fabrication of resazurin bulk modified screen-printed macroelectrodes (R-SPEs) demonstrating them to be effective platforms for the electrochemical detection of antibiotic susceptibility in complicated UTIs. Using differential pulse voltammetry (DPV), resazurin was able to be detected down to 15.6 μM. R-SPEs were utilised to conduct antibiotic susceptibility testing (AST) of E. coli (ATCC® 25922) to the antibiotic gentamicin sulphate using DPV to detect the relative concentrations of resazurin between antibiotic treated bacteria, and bacteria without antibiotic treatment. Using R-SPEs, antibiotic susceptibility was determined after a total elapsed time of 90 minutes including the inoculation of the artificial urine, preincubation and testing time. The use of electrochemistry as a phenotypic means of identifying an effective antibiotic to treat a complicated UTI offers a rapid and accurate alternative to culture based methods for AST with R-SPEs offering an inexpensive and simpler alternative to other AST methods utilising electrochemical based approaches.
Collapse
Affiliation(s)
- Benjamin Crane
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
| | - Jack P Hughes
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
| | - Samuel J Rowley Neale
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
| | - Mamun Rashid
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
| | - Patricia E Linton
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
| | - Kirsty J Shaw
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
| |
Collapse
|
6
|
N S, Hughes JP, Adarakatti PS, C M, Rowley-Neale SJ, S A, Banks CE. Facile synthesis of Ni/NiO nanocomposites: the effect of Ni content in NiO upon the oxygen evolution reaction within alkaline media. RSC Adv 2021; 11:14654-14664. [PMID: 35424017 PMCID: PMC8697857 DOI: 10.1039/d0ra10597j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/07/2021] [Indexed: 12/18/2022] Open
Abstract
We present the facile synthesis of Ni/NiO nanocomposites, via a solution combustion methodology, where the composition of metallic Ni within NiO is controlled by varying the annealing time, from 4 minutes up to 8 hours. The various Ni/NiO nanocomposites are studied via electrically wiring them upon screen-printed graphite macroelectrodes by physical deposition. Subsequently their electrochemical activity, towards the oxygen evolution reaction (OER), is assessed within (ultra-pure) alkaline media (1.0 M KOH). An optimal annealing time of 2 hours is found, which gives rise to an electrochemical oxidation potential (recorded at 10 mA cm-2) of 231 mV (vs. Ag/AgCl 1.46 vs. RHE). These values show the Ni/NiO nanocomposites to be significantly more electrocatalytic than a bare/unmodified SPE (460 mV vs. Ag/AgCl). A remarkable percentage increase (134%) in achievable current density is realised by the former over that of the latter. Tafel analysis and turn over frequency is reported with a likely underlying mechanism for the Ni/NiO nanocomposites towards the OER proposed. In the former case, Tafel analysis is overviewed for general multi-step overall electrochemical reaction processes, which can be used to assist other researchers in determining mechanistic information, such as electron transfer and rate determining steps, when exploring the OER. The optimal Ni/NiO nanocomposite exhibits promising stability at the potential of +231 mV, retaining near 100% of its achievable current density after 28 hours. Due to the facile and rapid fabrication methodology of the Ni/NiO nanocomposites, such an approach is ideally suited towards the mass production of highly active and stable electrocatalysts for application within the anodic catalyst layers of commercial alkaline electrolysers.
Collapse
Affiliation(s)
- Srinivasa N
- Department of Chemistry, School of Engineering, Dayananda Sagar University Bengaluru India
| | - Jack P Hughes
- Faculty of Science and Engineering, Manchester Metropolitan University Chester Street M1 5GD UK +44 (0)1612471196
- Manchester Fuel Cell Innovation Centre, Manchester Metropolitan University Chester Street Manchester M1 5GD UK
| | - Prashanth S Adarakatti
- Manchester Fuel Cell Innovation Centre, Manchester Metropolitan University Chester Street Manchester M1 5GD UK
- Department of Chemistry, SVM Arts, Science and Commerce College Ilkal 587125 India
| | - Manjunatha C
- Department of Chemistry, RV College of Engineering Bengaluru 590059 India
| | - Samuel J Rowley-Neale
- Faculty of Science and Engineering, Manchester Metropolitan University Chester Street M1 5GD UK +44 (0)1612471196
- Manchester Fuel Cell Innovation Centre, Manchester Metropolitan University Chester Street Manchester M1 5GD UK
| | - Ashoka S
- Department of Chemistry, School of Engineering, Dayananda Sagar University Bengaluru India
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University Chester Street M1 5GD UK +44 (0)1612471196
- Manchester Fuel Cell Innovation Centre, Manchester Metropolitan University Chester Street Manchester M1 5GD UK
| |
Collapse
|
7
|
Hughes JP, Rowley-Neale S, Banks C. Enhancing the efficiency of the hydrogen evolution reaction utilising Fe 3P bulk modified screen-printed electrodes via the application of a magnetic field. RSC Adv 2021; 11:8073-8079. [PMID: 35423332 PMCID: PMC8695104 DOI: 10.1039/d0ra10150h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/08/2021] [Indexed: 11/24/2022] Open
Abstract
We report the fabrication and optimisation of Fe3P bulk modified screen-printed electrochemical platforms (SPEs) for the hydrogen evolution reaction (HER) within acidic media. We optimise the achievable current density towards the HER of the Fe3P SPEs by utilising ball-milled Fe3P variants and increasing the mass percentage of Fe3P incorporated into the SPEs. Additionally, the synergy of the application of a variable weak (constant) external magnetic field (330 mT to 40 mT) beneficially augments the current density output by 56%. This paper not only highlights the benefits of physical catalyst optimisation but also demonstrates a methodology to further enhance the cathodic efficiency of the HER with the facile application of a weak (constant) magnetic field.
Collapse
Affiliation(s)
- Jack P Hughes
- Faculty of Science and Engineering, Manchester Metropolitan University Chester Street Manchester M1 5GD UK +44 (0)1612476831 +44 (0)1612471196
- Manchester Fuel Cell Innovation Centre, Manchester Metropolitan University Chester Street Manchester M1 5GD UK
| | - Samuel Rowley-Neale
- Faculty of Science and Engineering, Manchester Metropolitan University Chester Street Manchester M1 5GD UK +44 (0)1612476831 +44 (0)1612471196
- Manchester Fuel Cell Innovation Centre, Manchester Metropolitan University Chester Street Manchester M1 5GD UK
| | - Craig Banks
- Faculty of Science and Engineering, Manchester Metropolitan University Chester Street Manchester M1 5GD UK +44 (0)1612476831 +44 (0)1612471196
- Manchester Fuel Cell Innovation Centre, Manchester Metropolitan University Chester Street Manchester M1 5GD UK
| |
Collapse
|
8
|
Ni Z, Wen H, Zhang S, Guo R, Su N, Liu X, Liu C. Recent Advances in Layered Tungsten Disulfide as Electrocatalyst for Water Splitting. ChemCatChem 2020. [DOI: 10.1002/cctc.202000177] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Zhiyuan Ni
- School of Materials Science and Engineering Northeastern University Shenyang 110819 P. R. China
| | - Hui Wen
- School of Materials Science and Engineering Northeastern University Shenyang 110819 P. R. China
| | - Shengqi Zhang
- School of Materials Science and Engineering Northeastern University Shenyang 110819 P. R. China
| | - Rui Guo
- School of Materials Science and Engineering Northeastern University Shenyang 110819 P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) College of Chemistry Nankai University Tianjin 300071 P. R. China
- School of Resources and Materials Northeastern University at Qinhuangdao Qinhuangdao 066004 P. R. China
| | - Na Su
- School of Resources and Materials Northeastern University at Qinhuangdao Qinhuangdao 066004 P. R. China
| | - Xuanwen Liu
- School of Materials Science and Engineering Northeastern University Shenyang 110819 P. R. China
- School of Resources and Materials Northeastern University at Qinhuangdao Qinhuangdao 066004 P. R. China
| | - Chunming Liu
- School of Materials Science and Engineering Northeastern University Shenyang 110819 P. R. China
| |
Collapse
|
9
|
Zhang G, Hao Z, Yin J, Wang C, Zhang J, Zhao Z, Wei D, Zhou H, Li Z. FeS 2 crystal lattice promotes the nanostructure and enhances the electrocatalytic performance of WS 2 nanosheets for the oxygen evolution reaction. Dalton Trans 2020; 49:9804-9810. [PMID: 32633295 DOI: 10.1039/d0dt01660h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The control of surface elements and nanostructures is one of the effective ways to design and synthesize high performance catalysts. Herein, we, for the first time, prepare FeS2 crystal lattices on WS2 nanosheets (FeS2 CL@WS2 NS) by solvothermal methods for the oxygen evolution reaction (OER). The FeS2 CLs effectively prevent the oxidation and aggregation of WS2 nanosheets and increase the electrochemically active surface area. The abundant surface defect in the FeS2 CL@WS2 NS electrocatalyst reduces the stress between the crystal lattices of FeS2 and that of WS2. The overpotential (260 mV) of the FeS2 CL@WS2 NS electrocatalyst for the OER at a current density of 10 mA cm-2 is superior to those of WS2 NS/Ni foam (310 mV) and IrO2/Ni foam (300 mV) in 1.0 M KOH solution. An electrochemical-kinetic study shows that the Tafel slope of 54 mV per decade for the FeS2 CL@WS2 NS electrocatalyst is lower than those of WS2 NS (102 mV per decade) and IrO2/Ni foam (77 mV per decade). In addition, the charge transport resistor (2.3 Ω) of the FeS2 CL@WS2 NS electrocatalyst for the OER is smaller than that of WS2 NS. These faster kinetic properties, in turn, explain the high catalytic activity of the FeS2 CL@WS2 NS electrocatalyst for the OER. The XPS and HRTEM results of the post stability sample confirm that Fe2+ and W4+ are oxidized after durability measurement. Thus, we think that the FeS2 CL@WS2 NS electrocatalyst is a promising candidate for efficient, low-cost, and stable non-noble-metal-based OER electrocatalysts.
Collapse
Affiliation(s)
- Guoteng Zhang
- College of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, China.
| | - Zaitao Hao
- College of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, China.
| | - Jie Yin
- College of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, China.
| | - Chen Wang
- College of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, China.
| | - Jinghao Zhang
- College of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, China.
| | - Zhiyu Zhao
- College of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, China.
| | - Denghu Wei
- College of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, China.
| | - Huawei Zhou
- College of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, China.
| | - Zhongcheng Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, China.
| |
Collapse
|