1
|
Zheng M, Lin H, Li S, Huang S, Huang J, Lai W, Tang D, Lin Y. Photoelectrochemical immunosensor for chloramphenicol detection based on cation exchange reaction-mediacted photocurrent enhancement of ZnIn 2S 4/TiO 2/Ti 3C 2 MXene coupled with controlled-release strategy. Mikrochim Acta 2024; 191:763. [PMID: 39592462 DOI: 10.1007/s00604-024-06847-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
A photocurrent enhancing photoelectrochemical (PEC) immunosensor was developed for chloramphenicol (CAP) detection based on cation exchange reaction. The efficient split-type PEC immunosensor combined with controlled-release strategy was established using the ZnIn2S4/TiO2/Ti3C2 MXene (ZIS/T/M) composite as the photoactive material and CuO as the signal response probe. In the presence of target CAP, CuO-labeled CAP antibody (CuO-mAb) was introduced onto the microplate via a competitive-type immunoassay. Under acidic conditions, a large amount of Cu2+ released from CuO-mAb, which triggered a cation exchange reaction with the Zn2+ in ZIS/T/M-modified photoelectrode to generate CuxS, resulting in enhancing the photocurrent. As a result, the quantitative detection of CAP was achieved by detecting the photocurrent change. Under optimized conditions, the linear range of the sensor was 1 pg/mL to 50 ng/mL, and the detection limit was 0.24 pg/mL. The excellent PEC behavior of ZIS/T/M composite could be attributed to the fact that heterojunction formation improved the migration and separation of the photocarrier. Additionally, by virtue of the photocurrent-enhancing strategy via cation exchange reaction and the controlled releasing signal amplification method of ion, the PEC immunosensor has high sensitivity and satisfactory accuracy, offering great potential applications in the determination of CAP.
Collapse
Affiliation(s)
- Mengqin Zheng
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, Key Laboratory of Pollution Monitoring and Control of Fujian Province, College of Chemistry, Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou, 363000, People's Republic of China
| | - Huizi Lin
- Department of Neonatology, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350108, People's Republic of China
| | - Suhua Li
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, Key Laboratory of Pollution Monitoring and Control of Fujian Province, College of Chemistry, Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou, 363000, People's Republic of China
| | - Shuoying Huang
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, Key Laboratory of Pollution Monitoring and Control of Fujian Province, College of Chemistry, Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou, 363000, People's Republic of China
| | - Jiangwei Huang
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, Key Laboratory of Pollution Monitoring and Control of Fujian Province, College of Chemistry, Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou, 363000, People's Republic of China
| | - Wenqiang Lai
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, Key Laboratory of Pollution Monitoring and Control of Fujian Province, College of Chemistry, Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou, 363000, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (MOE & Fujian Province), Department of Chemistry, Institute of Nanomedicine and Nanobiosensing, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Youxiu Lin
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, Key Laboratory of Pollution Monitoring and Control of Fujian Province, College of Chemistry, Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou, 363000, People's Republic of China.
| |
Collapse
|
2
|
Malik R, Joshi N, Tomer VK. Functional graphitic carbon (IV) nitride: A versatile sensing material. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
3
|
Wang H, Xu Y, Xu D, Chen L, Xiao Q, Qiu X. Cu(II)-Grafted Carbon Nitride Quantum Dots with High Crystallinity for Photoelectrochemical Detection Application. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Haixia Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Yan Xu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Dafu Xu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Long Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Qinqin Xiao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Xiaoqing Qiu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| |
Collapse
|
4
|
Chen W, Liu S, Fu Y, Yan H, Qin L, Lai C, Zhang C, Ye H, Chen W, Qin F, Xu F, Huo X, Qin H. Recent advances in photoelectrocatalysis for environmental applications: Sensing, pollutants removal and microbial inactivation. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214341] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Zhou Y, Mazur F, Fan Q, Chandrawati R. Synthetic nanoprobes for biological hydrogen sulfide detection and imaging. VIEW 2022. [DOI: 10.1002/viw.20210008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Yingzhu Zhou
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN) The University of New South Wales (UNSW Sydney) Sydney New South Wales Australia
| | - Federico Mazur
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN) The University of New South Wales (UNSW Sydney) Sydney New South Wales Australia
| | - Qingqing Fan
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN) The University of New South Wales (UNSW Sydney) Sydney New South Wales Australia
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN) The University of New South Wales (UNSW Sydney) Sydney New South Wales Australia
| |
Collapse
|
6
|
CdS/Ti3C2 heterostructure–based photoelectrochemical platform for sensitive and selective detection of trace amount of Cu2+. Anal Bioanal Chem 2022; 414:3571-3580. [DOI: 10.1007/s00216-021-03870-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022]
|
7
|
Applications of two-dimensional layered nanomaterials in photoelectrochemical sensors: A comprehensive review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214156] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Ye C, Xu F, Wu Z, Gao ZF, Wang M. Ultrasensitive photoelectrochemical platform with micro-emulsion-based p-type hollow silver iodide enabled by low solubility product ( Ksp) for H 2S sensing. NANOTECHNOLOGY 2021; 32:415501. [PMID: 34198279 DOI: 10.1088/1361-6528/ac1094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Since visible-light (VL) accounting for massive solar radiation energy, a large amount of attention has been paid to the development of highly efficient visible-light-driven (VLD) semiconductor materials. However, despite recent efforts to construct VL active material, hollow structure-based silver iodide (AgI) with appropriate band gap and a large surface area are limited because of lack of a proper synthesis method. Herein, hollow AgI with p-type semiconductor behavior is constructed on the basis of micro-emulsion strategy, which enables admirable cathode photoelectrochemical (PEC) response. The as-prepared hollow AgI is applied to fabricate the PEC sensing platform and reveals a low limit of detection of 0.04 fM and a wide dynamic range up to 5 orders of magnitude toward H2S. The PEC sensing mechanism is supposed to the 'signal-off' pattern on account of the ultralow solubility product (Ksp) of Ag2S, derived from the precipitation reaction due to the high affinity between sulfide ion and Ag+. Besides, the hollow structure of AgI provides sufficient surface area forin situproducing Ag2S that serves as recombination center of carrier, thus causing the efficient quenching of photocurrent signals. This work broadens the horizon of structuring VLD semiconductor nanomaterials andKsp-based H2S sensing.
Collapse
Affiliation(s)
- Cui Ye
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Fan Xu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zhen Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zhong Feng Gao
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, People's Republic of China
| | - Minqiang Wang
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, United States of America
| |
Collapse
|