1
|
Kryg P, Mazela B, Perdoch W, Jancelewicz M, Broda M. Nanocellulose-Based Films for Surface Protection of Wooden Artefacts. Int J Mol Sci 2024; 25:13333. [PMID: 39769103 PMCID: PMC11728128 DOI: 10.3390/ijms252413333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
This research investigated the selected properties of nanocellulose films intended to serve as protective patches on fissured surfaces of wooden artefacts. The effects of their plasticisation with glycerol and functionalisation with selected silanes ((3-Glycidyloxypropyl)trimethoxysilane, and Methyltrimethoxysilane) were also determined. The obtained pure cellulose nanopapers (CNPs) had a homogeneous and compact structure but were very brittle, stiff, and wavy. Functionalisation with silanes made their structure more packed and reduced their equilibrium moisture content by 87-96%, depending on the type and concentration of the silane. Silane functionalisation also slightly improved nanopapers' resistance to moulds. Plasticisation with glycerol provided CNPs with higher flexibility and resistance to fracture and made them flatter and smoother, reducing the wettability of their surfaces but increasing their hygroscopicity (EMC values increased 1.7-3.5 times for pure CNPs and 5-33 times for functionalised CNPs) and vulnerability to mould infestation. All prepared nanopapers can be easily glued to the wood surface and colour-matched using a nitro wood stain, oil paint or waterborne acrylic paint. The research showed that cellulose nanopapers modified with silanes and plasticised with glycerol seem to be a promising solution for protecting the cracked surface of wooden artefacts against further degradation due to external conditions.
Collapse
Affiliation(s)
- Paulina Kryg
- Department of Wood Science and Thermal Techniques, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, ul. Wojska Polskiego 38/42, 60-637 Poznan, Poland;
| | - Bartłomiej Mazela
- Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland; (B.M.); (W.P.)
| | - Waldemar Perdoch
- Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland; (B.M.); (W.P.)
| | - Mariusz Jancelewicz
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland;
| | - Magdalena Broda
- Department of Wood Science and Thermal Techniques, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, ul. Wojska Polskiego 38/42, 60-637 Poznan, Poland;
| |
Collapse
|
2
|
Saczek J, Murphy K, Zivkovic V, Putranto A, Pramana SS. Impact of coating particles on liquid marble lifetime: reactor engineering approach to evaporation. SOFT MATTER 2024; 20:5822-5835. [PMID: 39007336 DOI: 10.1039/d4sm00478g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Liquid marbles are soft matter objects characterised by a liquid droplet enclosed within a hydrophobic particle coating, preventing wetting. This distinctive structure serves as active sites for solid-liquid-gas reactions. However, the impact the chosen coating material has on liquid marble stability, particularly regarding the number of coating layers and material wetting, remains uncertain. There is a need for a modelling approach to predict the overall lifetime considering these coating characteristics. This study reveals that for PTFE liquid marbles evaporating at ambient temperature, smaller coating particles (250 nm) extend their lifetime by forming a multilayered coating. Conversely, using larger particle sizes (200 μm) results in the formation of monolayer liquid marbles with shorter lifetimes than their equivalent naked droplets. Additionally, a higher number of particle layers and a larger contact angle generally enhance the liquid marble's lifetime. For multilayered liquid marbles comprised of smaller particles (250 nm), the particle contact angle is found to have a more significant impact than the number of layers on lifetime extension, whereas the opposite holds true for larger particle sizes (20 μm). A modelling approach using the reactor engineering method for liquid marble evaporation demonstrates excellent agreement with experimental results, yielding an R2 of 0.996. The implementation of this specific model, capable of assessing lifetime across various physical modifications, will enhance our understanding of liquid marble properties before their application in biomedical, microreactor, and green technologies.
Collapse
Affiliation(s)
- Joshua Saczek
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Koren Murphy
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Vladimir Zivkovic
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Aditya Putranto
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Stevin S Pramana
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
3
|
Tang Z, Lin X, Yu M, Yang J, Li S, Mondal AK, Wu H. A review of cellulose-based catechol-containing functional materials for advanced applications. Int J Biol Macromol 2024; 266:131243. [PMID: 38554917 DOI: 10.1016/j.ijbiomac.2024.131243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
With the increment in global energy consumption and severe environmental pollution, it is urgently needed to explore green and sustainable materials. Inspired by nature, catechol groups in mussel adhesion proteins have been successively understood and utilized as novel biomimetic materials. In parallel, cellulose presents a wide class of functional materials rating from macro-scale to nano-scale components. The cross-over among both research fields alters the introduction of impressive materials with potential engineering properties, where catechol-containing materials supply a general stage for the functionalization of cellulose or cellulose derivatives. In this review, the role of catechol groups in the modification of cellulose and cellulose derivatives is discussed. A broad variety of advanced applications of cellulose-based catechol-containing materials, including adhesives, hydrogels, aerogels, membranes, textiles, pulp and papermaking, composites, are presented. Furthermore, some critical remaining challenges and opportunities are studied to mount the way toward the rational purpose and applications of cellulose-based catechol-containing materials.
Collapse
Affiliation(s)
- Zuwu Tang
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Xinxing Lin
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Meiqiong Yu
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China; College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China
| | - Jinbei Yang
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Shiqian Li
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Ajoy Kanti Mondal
- Institute of National Analytical Research and Service, Bangladesh Council of Scientific and Industrial Research, Dhanmondi, Dhaka 1205, Bangladesh.
| | - Hui Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China.
| |
Collapse
|
4
|
Tenjimbayashi M, Mouterde T, Roy PK, Uto K. Liquid marbles: review of recent progress in physical properties, formation techniques, and lab-in-a-marble applications in microreactors and biosensors. NANOSCALE 2023; 15:18980-18998. [PMID: 37990550 DOI: 10.1039/d3nr04966c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Liquid marbles (LMs) are nonsticking droplets whose surfaces are covered with low-wettability particles. Owing to their high mobility, shape reconfigurability, and widely accessible liquid/particle possibilities, the research on LMs has flourished since 2001. Their physical properties, fabrication mechanisms, and functionalisation capabilities indicate their potential for various applications. This review summarises the fundamental properties of LMs, the recent advances (mainly works published in 2020-2023) in the concept of LMs, physical properties, formation methods, LM-templated material design, and biochemical applications. Finally, the potential development and variations of LMs are discussed.
Collapse
Affiliation(s)
- Mizuki Tenjimbayashi
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Timothée Mouterde
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Pritam Kumar Roy
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Koichiro Uto
- Research Center for Macromolecules and Biomaterials, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
5
|
Li N, Wanyan H, Lu S, Xiao H, Zhang M, Liu K, Li X, Du B, Huang L, Chen L, Ni Y, Wu H. Robust cellulose-based hydrogel marbles with excellent stability for gas sensing. Carbohydr Polym 2023; 306:120617. [PMID: 36746574 DOI: 10.1016/j.carbpol.2023.120617] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/08/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
Liquid marbles, as particle-armored droplets, have potential applications in microreactors, biomedicine, controlled release and gas detection. To improve the stability and biocompatibility of marble, biocompatible cellulose acetate particles and 3-allyloxy-2-hydroxy-propyl-cellulose (AHP-cellulose) were used to fabricate robust cellulose-based liquid marbles with excellent stability. Liquid marble was gelled into hydrogel marble via blue-light-irradiated polymerization of AHP-cellulose. The mechanical properties of cellulose-based hydrogel marble are superior to those of liquid marble. The rupture height of liquid marble is 10.5 m, which is 420 times greater than that of water marble (0.025 m). Surprisingly, the hydrogel marble with a 3 % AHP-cellulose concentration remained intact even after being dropped from a height of 50 m, which is comparable with the ability of a leather ball to withstand larger impact. When released from a height of 60 mm, hydrogel marble bounced to approximately 25.5 mm, 881 % higher than liquid marble (2.6 mm). Hydrogel marble exhibited long-lasting stability and was capable of monitoring ammonia with a detection limit of 365.2 mg/m3. The biocompatible cellulose-based hydrogel marble with excellent mechanical stability and reusability detection has great potential in chemical and environmental engineering as gas sensors.
Collapse
Affiliation(s)
- Na Li
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China
| | - Hongying Wanyan
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China
| | - Shengchang Lu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; School of Forestry, Henan Agricultural University, Zhengzhou 450002, PR China.
| | - He Xiao
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China
| | - Min Zhang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China.
| | - Kai Liu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China
| | - Xiuliang Li
- Yuzhong (Fujian) New Material Technology Co., Ltd, Quanzhou, Fujian 362141, PR China
| | - Bihui Du
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; Yuzhong (Fujian) New Material Technology Co., Ltd, Quanzhou, Fujian 362141, PR China
| | - Liulian Huang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China
| | - Lihui Chen
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China
| | - Yonghao Ni
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; Limerick Pulp and Paper Centre, Department of Chemical Engineering, University of New Brunswick, Fredericton NBE3B 5A3, Canada
| | - Hui Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China.
| |
Collapse
|
6
|
He J, Liu S, Zhao Y, Wu P, Liu C, Jiang W. Preparation of Phase Change Melt Marbles with High Thermal Stability by Spontaneous Shrinkage and Encapsulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12644-12656. [PMID: 36194874 DOI: 10.1021/acs.langmuir.2c02113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Liquid marbles (LMs) are widely used in the fields of microfluids, gas sensitivity equipment, and microreactors. However, the thermal stability of the encapsulated liquid poses difficulty to the high-temperature stability of LMs. In this study, polar phase-change materials (PCMs) with high melting points were used as the encapsulated liquid of LMs. According to the required temperature, suitable PCMs were selected as the core and encapsulated by hydrophobic SiO2 particles to form melt marbles (MMs). The types of PCMs used to prepare the MMs include erythritol, elemental sulfur, urea, and molten salts. Based on the premixed melting method, a series of MMs with high melting points and thermal stability were successfully developed. The highest acceptable temperature of the MMs exceeded 323 °C, and the evaporation rate of erythritol MMs was less than 1% at 140 °C in 8 h. Thus, the MMs maintained their excellent stability through multiple phase transitions. In the molten state, the MMs exhibited the properties of bounce ability, cuttability, and deformation resistance. The performance of the PCMs in energy storage and release during phase transition demonstrates their potential applications in the field of heat storage.
Collapse
Affiliation(s)
- Jian He
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu610065, People's Republic of China
| | - Shuyuan Liu
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu610065, People's Republic of China
| | - Yunqing Zhao
- College of Electrical Engineering, Sichuan University, Chengdu610065, People's Republic of China
| | - Pan Wu
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu610065, People's Republic of China
| | - Changjun Liu
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu610065, People's Republic of China
| | - Wei Jiang
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu610065, People's Republic of China
| |
Collapse
|
7
|
Hsieh JC, Alawieh H, Li Y, Iwane F, Zhao L, Anderson R, Abdullah S, Kevin Tang KW, Wang W, Pyatnitskiy I, Jia Y, Millán JDR, Wang H. A highly stable electrode with low electrode-skin impedance for wearable brain-computer interface. Biosens Bioelectron 2022; 218:114756. [DOI: 10.1016/j.bios.2022.114756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022]
|
8
|
Bunio LB, Wang J, Kannaiyan R, Gates ID. Evaporation and crystallization of NaCl-water droplets suspended in air by acoustic levitation. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Sangnim T, Sriamornsak P, Singh I, Huanbutta K. Swallowing Gel for Patients with Dysphagia: A Novel Application of Chitosan. Gels 2021; 7:108. [PMID: 34449603 PMCID: PMC8395724 DOI: 10.3390/gels7030108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Dysphagia refers to difficulty swallowing certain foods, liquids, or pills. It is common among the elderly with chronic diseases who need to take drugs for long periods. Therefore, dysphagia might reduce compliance with oral drug administration in the aging population. Many pharmaceutical companies search for new products to serve as swallowing aids. Existing products are expensive and do not suit all geriatric patients. Therefore, this study aimed to develop and investigate pill swallowing aid gels prepared from carboxymethyl cellulose and chitosan. We formulated gels by dissolving different concentrations of carboxymethyl cellulose and low or high molecular weight chitosan in solvents to find appropriate gel rheology properties. We then added several portions of glycerin as the glidant of the formulation. We found that the optimized gel formulation was 6.25% (w/w) chitosan with a molecular weight of 80-120 kDa dissolved in 1.2% acetic acid and 4% (w/w) glycerin. The developed pill swallowing gel's rheology was pseudoplastic with a viscosity of 73.74 ± 3.20 Pa⸱s. The developed chitosan gel had enhanced flow ability; it allowed the pill to cross a 300 mm tube within 6 s, while the reference product took 3 s. Even though the reference product could carry the pill in the tube faster, the chitosan gel better covered the pill, making it more convenient to use. Finally, using a theophylline tablet as a model tablet dosage form, we assessed the gel's effect on drug disintegration and dissolution. The chitosan gel delayed the tablet disintegration time by about 3-7 min and slightly affected the theophylline dissolution rate. Lastly, all gels were physically stable after a month of storage in the stress condition. These results show the feasibility of manufacturing a chitosan gel usable as a pill swallowing gel for patients with dysphagia.
Collapse
Affiliation(s)
- Tanikan Sangnim
- Faculty of Pharmaceutical Sciences, Burapha University, 169 Longhaad Bangsaen Road, Saensuk, Mueang, Chon Buri 20131, Thailand;
| | - Pornsak Sriamornsak
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand;
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Patiala 140401, Punjab, India;
| | - Kampanart Huanbutta
- Faculty of Pharmaceutical Sciences, Burapha University, 169 Longhaad Bangsaen Road, Saensuk, Mueang, Chon Buri 20131, Thailand;
| |
Collapse
|
10
|
Suwardi A, Ooi CC, Daniel D, Tan CKI, Li H, Liang OYZ, Tang YK, Chee JY, Sadovoy A, Jiang SY, Ramachandran S, Ye E, Kang CW, Cheong WCD, Lim KH, Loh XJ. The Efficacy of Plant-Based Ionizers in Removing Aerosol for COVID-19 Mitigation. RESEARCH (WASHINGTON, D.C.) 2021; 2021:2173642. [PMID: 33655212 PMCID: PMC7896556 DOI: 10.34133/2021/2173642] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022]
Abstract
Small-sized droplets/aerosol transmission is one of the factors responsible for the spread of COVID-19, in addition to large droplets and surface contamination (fomites). While large droplets and surface contamination can be relatively easier to deal with (i.e., using mask and proper hygiene measures), aerosol presents a different challenge due to their ability to remain airborne for a long time. This calls for mitigation solutions that can rapidly eliminate the airborne aerosol. Pre-COVID-19, air ionizers have been touted as effective tools to eliminate small particulates. In this work, we sought to evaluate the efficacy of a novel plant-based ionizer in eliminating aerosol. It was found that factors such as the ion concentration, humidity, and ventilation can drastically affect the efficacy of aerosol removal. The aerosol removal rate was quantified in terms of ACH (air changes per hour) and CADR- (clean air delivery rate-) equivalent unit, with ACH as high as 12 and CADR as high as 141 ft3/minute being achieved by a plant-based ionizer in a small isolated room. This work provides an important and timely guidance on the effective deployment of ionizers in minimizing the risk of COVID-19 spread via airborne aerosol, especially in a poorly-ventilated environment.
Collapse
Affiliation(s)
- Ady Suwardi
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Agency for Science, Technology and Research, Singapore 138634
| | - Chin Chun Ooi
- Institute of High Performance Computing, 1 Fusionopolis Way, Agency for Science, Technology and Research, Singapore 138632
| | - Dan Daniel
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Agency for Science, Technology and Research, Singapore 138634
| | - Chee Kiang Ivan Tan
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Agency for Science, Technology and Research, Singapore 138634
| | - Hongying Li
- Institute of High Performance Computing, 1 Fusionopolis Way, Agency for Science, Technology and Research, Singapore 138632
| | - Ou Yang Zhong Liang
- Institute of High Performance Computing, 1 Fusionopolis Way, Agency for Science, Technology and Research, Singapore 138632
| | - Yuanting Karen Tang
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Agency for Science, Technology and Research, Singapore 138634
| | - Jing Yee Chee
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Agency for Science, Technology and Research, Singapore 138634
| | - Anton Sadovoy
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Agency for Science, Technology and Research, Singapore 138634
| | - Shu-Ye Jiang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604
| | - Srinivasan Ramachandran
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604
| | - Enyi Ye
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Agency for Science, Technology and Research, Singapore 138634
| | - Chang Wei Kang
- Institute of High Performance Computing, 1 Fusionopolis Way, Agency for Science, Technology and Research, Singapore 138632
| | - Wun Chet Davy Cheong
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Agency for Science, Technology and Research, Singapore 138634
| | - Keng Hui Lim
- Institute of High Performance Computing, 1 Fusionopolis Way, Agency for Science, Technology and Research, Singapore 138632
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Agency for Science, Technology and Research, Singapore 138634
| |
Collapse
|
11
|
Maruyama Y, Hasegawa K. Evaporation and drying kinetics of water-NaCl droplets via acoustic levitation. RSC Adv 2020; 10:1870-1877. [PMID: 35494584 PMCID: PMC9048286 DOI: 10.1039/c9ra09395h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/02/2020] [Indexed: 01/15/2023] Open
Abstract
The acoustic levitation method (ALM) is expected to be applied as a container-less processing technology in the material science, analytical chemistry, biomedical technology, and food science domains because this method can be used to levitate any sample in mid-air and prevent nucleation and contamination due to the container wall. However, this approach can lead to nonlinear behavior, such as acoustic streaming, which promotes the evaporation of a levitated droplet. This study aims to understand the evaporation and precipitation kinetics of an acoustically levitated multicomponent droplet. An experimental investigation of the evaporation process of a salt solution droplet was performed, and the experimental results were compared with those of the d 2-law. The droplet was noted to evaporate in two stages owing to the precipitation of the salt. Because of the vapor pressure depression, the experimental data did not agree with the classical prediction obtained using the d 2-law. However, the experimental results were in partial agreement with those of the d 2-law when the vapor pressure depression was considered by using the concentration estimate at each time, as obtained from the experimental results. In addition, it was observed that the time when the salt completely precipitated could be estimated by using the extended theory. These findings provide physical and practical insights into the droplet evaporation mid-air for potential lab-in-a-drop applications.
Collapse
Affiliation(s)
- Yutaro Maruyama
- Graduate School of Engineering, Kogakuin University Tokyo 163-8677 Japan
| | - Koji Hasegawa
- Department of Mechanical Engineering, Kogakuin University Tokyo 163-8677 Japan
| |
Collapse
|