1
|
Xu J, Tai B, Jiao S, Wuken S, Chen H, Chen P, Zhang Z, Gao X, Chai X. The Ethanol Extract of Syringa oblata Heartwood, a Mongolian Folk Medicine Containing Major Lignans, Exerts Analgesic and Sedative Effects on Mice. Chem Biodivers 2023; 20:e202200984. [PMID: 36437232 DOI: 10.1002/cbdv.202200984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022]
Abstract
The heartwood of Syringa oblata Lindl. (SO) is one of Mongolian folk medicines to treat insomnia and pain, while its pharmacological evaluation and underlying mechanism remain unclear. In this study, the sedative effect of ethanol extract of SO (ESO) was evaluated with the locomotor activity test and the threshold dose of pentobarbital sodium-induced sleep test in mice, and the hot plate test, acetic acid-induced writhing test, and formalin test in mice were used to evaluate its analgesic effect. The underlying mechanism of ESO analgesia was explored by RT-PCR and western blot analysis, which is associated with the regulation of the NF-κB signaling pathway. Besides, the main constituents of ESO were characterized by LC/MS data analysis and comparison with isolated pure compounds. The current findings brought evidence for clinical application and further pharmacological and phytochemical studies on SO.
Collapse
Affiliation(s)
- Jixuan Xu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| | - Badalahu Tai
- School of Mongolian Materia Medica, Inner Mongolia University for Nationalities, Tongliao, 028000, P. R. China
| | - Shungang Jiao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| | - Shana Wuken
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| | - Hongying Chen
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| | - Panlong Chen
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| | - Zefeng Zhang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| | - Xiaoli Gao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| | - Xingyun Chai
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| |
Collapse
|
2
|
Quality evaluation of Syringae Folium using the five-wavelength fusion fingerprint technique combined with chemometric analysis and quantitative analysis of active constituents. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1213:123520. [DOI: 10.1016/j.jchromb.2022.123520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/08/2022]
|
3
|
Wang XZ, Song XJ, Liu C, Xing C, Wu T, Zhang Y, Su J, Hao JY, Chen XY, Zhang ZY, Li YH, Liu YY. Active components and molecular mechanism of Syringa oblata Lindl. in the treatment of endometritis based on pharmacology network prediction. Front Vet Sci 2022; 9:885952. [PMID: 35937303 PMCID: PMC9355479 DOI: 10.3389/fvets.2022.885952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Antibiotic treatment of endometritis was limited by the inevitable antibiotic residues and risk of bacterial resistance. Therefore, the development of safe and effective strategies for endometritis treatment is urgently needed. Syringa oblata Lindl. (SOL) showed great pharmacological potential against endometritis. However, the active components and underlying mechanism of SOL for endometritis treatment remain indeterminate. In our study, the active components and possible molecular mechanism of SOL against endometritis were predicted through computer data mining and biological networks construction. It was predicted that the main active components of SOL were luteolin, kaempferol, oleanolic acid, and rutin, and their anti-endometritis effect was mainly attributed to the TLRs/NF-κB signaling pathway. Furthermore, a green and efficient deep eutectic solvent combined with ultrasound-assisted extraction (DES-UAE) was performed and optimized to obtain high contents of total flavonoid, rutin, and luteolin. The four predicted active components in the SOL extracts were qualitatively and quantitatively analyzed by LC/MS and HPLC. Finally, the pharmacological effects of SOL and active components have been verified by Staphylococcus aureus-endometritis models in mice. H&E staining and bacterial load in uterus tissues assays initially validated the pharmacodynamic effects of SOL, and quantitative real-time PCR (RT-qPCR) and ELISA results confirmed that SOL and four active components could ameliorate the uterus injury caused by Staphylococcus aureus, the mechanism of action is related to the TLRs/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xiao-Zhen Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xue-Jiao Song
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chang Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chen Xing
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tong Wu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yue Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jing Su
- Heilongjiang Animal Disease Prevention and Control Center, Harbin, China
| | - Jing-You Hao
- Harbin Lvda Sheng Animal Medicine Manufacture Co., Ltd., Harbin, China
| | - Xue-Ying Chen
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhi-Yun Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yan-Hua Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- *Correspondence: Yan-Yan Liu
| | - Yan-Yan Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Yan-Hua Li
| |
Collapse
|
4
|
Qu Q, Cui W, Xing X, Zou R, Huang X, Wang X, Wu T, Bello-Onaghise G, Yuan S, Li Y. Rutin, A Natural Inhibitor of IGPD Protein, Partially Inhibits Biofilm Formation in Staphylococcus xylosus ATCC700404 in vitro and in vivo. Front Pharmacol 2021; 12:728354. [PMID: 34456739 PMCID: PMC8385535 DOI: 10.3389/fphar.2021.728354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/31/2021] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus xylosus (S. xylosus) has become an emerging opportunistic pathogen due to its strong biofilm formation ability. Simultaneously, the biofilm of bacteria plays an important role in antibiotic resistance and chronic infection. Here, we confirmed that rutin can effectively inhibit biofilm formation in S. xylosus, of which the inhibition mechanism involves its ability to interact with imidazole glycerol phosphate dehydratase (IGPD), a key enzyme in the process of biofilm formation. We designed experiments to target IGPD and inhibited its activities against S. xylosus. Our results indicated that the activity of IGPD and the amount of histidine decreased significantly under the condition of 0.8 mg/ml rutin. Moreover, the expression of IGPD mRNA (hisB) and IGPD protein was significantly down-regulated. Meanwhile, the results from molecular dynamic simulation and Bio-layer interferometry (BLI) technique showed that rutin could bind to IGPD strongly. Additionally, in vivo studies demonstrated that rutin treatment reduced inflammation and protect mice from acute mastitis caused by S. xylosus. In summary, our findings provide new insights into the treatment of biofilm mediated persistent infections and chronic bacterial infections. It could be helpful to design next generation antibiotics to against resistant bacteria.
Collapse
Affiliation(s)
- Qianwei Qu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wenqiang Cui
- Shenzhen Institutes of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaoxu Xing
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Rongfeng Zou
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xingyu Huang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaozhen Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tong Wu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - God’spower Bello-Onaghise
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Department of Animal Science, Faculty of Agriculture, University of Benin, Benin, Nigeria
| | - Shuguang Yuan
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanhua Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
5
|
Tang Y, Bai J, Yang Y, Bai X, Bello-Onaghise G, Xu Y, Li Y. Effect of Syringopicroside Extracted from Syringa oblata Lindl on the Biofilm Formation of Streptococcus suis. Molecules 2021; 26:1295. [PMID: 33673668 PMCID: PMC7957517 DOI: 10.3390/molecules26051295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 11/29/2022] Open
Abstract
Syringopicroside is a natural drug with antibacterial activity, which is the main ingredient of Syringa oblata Lindl (S. oblata). In order to further develop the application of S. oblata and evaluate the ability of syringopicroside against Streptococcus suis (S. suis), this investigation first applied an ultrasonic-assisted method to extract syringopicroside, and then response surface methodology (RSM) was performed to get the optimum condition. Based on RSM analysis, a second-order polynomial equation about the syringopicroside yield and four variables, including ultrasonic power, time, temperature, and liquid-to-solid ratio, was purposed. Through RSM prediction and model verification experiments, the optimum conditions were determined, as follows: ultrasonic time was 63 min, temperature was 60 °C, a liquid-to-solid ratio was set to 63 mL/g, and ultrasonic power was 835 W. Under this condition, a high syringopicroside yield was obtained (3.07 ± 0.13 mg/g), which was not significantly different with a predicated value. After separation and purification by HPD 500 microporous resin, then mass spectrum was applied to identify the main ingredient in aqueous extract. A minimal inhibitory concentration (MIC) assay revealed the value against S. suis of syringopicroside was 2.56 µg/µL and syringopicroside with sub-inhibitory concentrations that could effectively inhibit biofilm formation of S. suis. Besides, scanning electron microscopy analysis indicated syringopicroside could destroy the multi-layered aggregation structure of S. suis. Finally, molecular docking analysis confirmed that syringopicroside was combined with Orfy protein of S. suis through hydrogen bonds, hydrophobic interaction, and π-π stacking.
Collapse
Affiliation(s)
- Yang Tang
- Department of Applied Chemistry, College of Art and Science, Northeast Agricultural University, Harbin 150030, China; (Y.T.); (J.B.); (Y.Y.); (X.B.)
| | - Jingwen Bai
- Department of Applied Chemistry, College of Art and Science, Northeast Agricultural University, Harbin 150030, China; (Y.T.); (J.B.); (Y.Y.); (X.B.)
| | - Yu Yang
- Department of Applied Chemistry, College of Art and Science, Northeast Agricultural University, Harbin 150030, China; (Y.T.); (J.B.); (Y.Y.); (X.B.)
| | - Xuedong Bai
- Department of Applied Chemistry, College of Art and Science, Northeast Agricultural University, Harbin 150030, China; (Y.T.); (J.B.); (Y.Y.); (X.B.)
| | - God’spower Bello-Onaghise
- Department of Veterinary Pharmacy, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China;
| | - Yaqin Xu
- Department of Applied Chemistry, College of Art and Science, Northeast Agricultural University, Harbin 150030, China; (Y.T.); (J.B.); (Y.Y.); (X.B.)
| | - Yanhua Li
- Department of Veterinary Pharmacy, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China;
| |
Collapse
|