1
|
He Q, Liu S, Chen S, Chen L. Emerging heterostructures derived from metal-organic frameworks for electrochemical energy storage: Progresses and perspectives. Adv Colloid Interface Sci 2025; 340:103449. [PMID: 40024064 DOI: 10.1016/j.cis.2025.103449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 03/04/2025]
Abstract
Heterostructures are a novel class of advanced materials have attracted considerable attention because they combine components with different structures and properties, exhibiting unique activity and function due to synergistic interactions at the interface. Over the last decade, there has been increasing research interest in constructing advanced heterostructures nanomaterials possessing efficient charge/ion transportation, optimize ion absorption behavior and rich accessible active sites for electrochemical energy storage (EES). Nonetheless, the conventional methodology for constructing heterostructures typically involves the self-assembly of active materials and conductive components, which poses significant challenges in achieving large-scale, uniformly atomically matched interfaces. Moreover, the development of heterostructures via transformation of the printine material into distinct phases can effectively address this limitation. Based on this, Metal-organic frameworks (MOFs), a class of porous materials with an inherently large surface area, uniform and adjustable cavities, and customizable chemical properties, have been widely used as precursors or templates for the preparation of heterostructure materials. Although there are some previous reviews on MOF-derived heterostructures for EES, they rarely focus on the structural engineering of MOF-derived heterostructures materials and their advanced characterization for EES. In this review, we summarize and discuss recent progress in the design and structural engineering (including morphology engineering, heteroatom doping, and defect engineering) of MOF-derived heterostructures and their applications in EES (e.g., supercapacitors, lithium-ion batteries, sodium-ion batteries, aluminum-ion batteries, aqueous Zn-ion batteries, etc.). The review concludes with a perspective on the remaining challenges and potential opportunities for future research.
Collapse
Affiliation(s)
- Qingqing He
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Shude Liu
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, CA 95060, USA.
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
2
|
Bagheri A, Bellani S, Beydaghi H, Wang Z, Morag A, Zappia MI, Panda J, Vaez S, Mastronardi V, Gamberini A, Thorat SB, Abruzzese M, Pasquale L, Dong R, Yu M, Feng X, Bonaccorso F. Coexistence of Redox-Active Metal and Ligand Sites in Copper-Based Two-Dimensional Conjugated Metal-Organic Frameworks as Active Materials for Battery-Supercapacitor Hybrid Systems. CHEMSUSCHEM 2025; 18:e202401454. [PMID: 39302821 PMCID: PMC11826127 DOI: 10.1002/cssc.202401454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/30/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Two-dimensional (2D) conjugated metal-organic frameworks (c-MOFs) are promising materials for supercapacitor (SC) electrodes due to their high electrochemically accessible surface area coupled with superior electrical conductivity compared to traditional MOFs. In this work, porous and non-porous HHB-Cu (HHB=hexahydroxybenzene), derived through surfactant-assisted synthesis are studied as representative 2D c-MOF models with different characteristics, showing diverse reversible redox reactions with Na+ and Li+ in aqueous (10 M NaNO3) and organic (1.0 M LiPF6 in ethylene carbonate and dimethyl carbonate) electrolytes, respectively. These redox activities were here deployed to design negative electrodes for hybrid SCs (HSCs), combining the battery-like property of HHB-Cu at the negative electrode and the high capacitance and robust cyclic stability of activated carbon (AC) at the positive electrodes. In the organic electrolyte, porous HHB-Cu-based HSC achieves a maximum cell specific capacity (Cs) of 22.1 mAh g-1 at 0.1 A g-1, specific energy (Es) of 15.55 Wh kg-1 at specific power (Ps) of 70.49 W kg-1, and 77 % cyclic stability after 3000 gravimetric charge-discharge (GCD) cycles at 1 A g-1 (specific metrics calculated on the mass of both electrode materials). In the aqueous electrolyte, porous HHB-Cu-based HSC displays a Cs of 13.9 mAh g-1 at 0.1 A g-1, Es of 6.13 Wh kg-1 at 44.05 W kg-1, and 72.3 % Cs retention after 3000 GCD cycles. The non-porous sample, interesting for its superior electrical conductivity despite its limited surface area compared to its porous counterpart, shows lower Es performance but better rate capability compared to the porous one. This study indicates the potential of assembling a battery-SC hybrid system by rationally exploiting the battery-like behavior of 2D c-MOFs and the electrochemical double-layer capacitance of AC.
Collapse
Affiliation(s)
- Ahmad Bagheri
- Graphene LabsIstituto Italiano di Tecnologiavia Morego 3016163GenoaItaly
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
- BeDimensional S.p.A.Lungotorrente Secca 30R16163GenoaItaly
| | | | | | - Zhiyong Wang
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
- Max Planck Institute of Microstructure PhysicsWeinberg 206120HalleGermany
| | - Ahiud Morag
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
- Max Planck Institute of Microstructure PhysicsWeinberg 206120HalleGermany
| | | | | | - Samaneh Vaez
- BeDimensional S.p.A.Lungotorrente Secca 30R16163GenoaItaly
- Department of Applied Science and Technology (DISAT)Politecnico di Torino10129TorinoItaly
| | | | | | | | | | - Lea Pasquale
- Materials Characterization FacilityIstituto Italiano di TecnologiaVia Morego 3016163GenovaItaly
| | - Renhao Dong
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
- Max Planck Institute of Microstructure PhysicsWeinberg 206120HalleGermany
- Current Affiliation: Department of Chemistry & Materials Innovation Institute for Life Sciences and Energy (MILES, HKU-SIRI)The University of Hong KongHong Kong999077China
| | - Minghao Yu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
- Max Planck Institute of Microstructure PhysicsWeinberg 206120HalleGermany
| | - Francesco Bonaccorso
- Graphene LabsIstituto Italiano di Tecnologiavia Morego 3016163GenoaItaly
- BeDimensional S.p.A.Lungotorrente Secca 30R16163GenoaItaly
| |
Collapse
|
3
|
Cao Y, Wu M, Chen Y, Feng X. Synthesis of 2D NiCo-MOF/GO/CNTs flexible films for high-performance supercapacitors. SOFT MATTER 2025; 21:604-612. [PMID: 39745104 DOI: 10.1039/d4sm01139b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Flexible two-dimensional nickel-cobalt metal-organic frameworks/graphene oxide/carbon nanotubes (2D NiCo-MOF/GO/CNTs) hybrid films have been designed and prepared as high-performance supercapacitor electrode materials via vacuum filtration. The 2D NiCo-MOF nanosheets serve as the main source of capacitance for the hybrid films, while CNTs function as both the conductive network, enhancing the electrical conductivity of the MOFs, and the binder, linking the 2D NiCo-MOF nanosheets and GO. When the mass ratio of 2D NiCo-MOF, GO, and CNTs is 2 : 1 : 0.5, the hybrid film exhibits a high specific capacitance of 40.3 F g-1 at 0.4 A g-1. Furthermore, the film electrode demonstrates outstanding cycling stability, with a capacitance retention of 82.8% after 5000 cycles at 1 A g-1. Notably, the CV curves of the asymmetric supercapacitor (ASC) show almost no change after multiple bending, indicating excellent flexibility. Additionally, two devices connected in series can light an LED, demonstrating significant potential for practical applications.
Collapse
Affiliation(s)
- Yu Cao
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), School of Materials Science & Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Mingji Wu
- Aerospace Newsky Technology Co. Ltd., Wuxi, 214062, China
| | - Yu Chen
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), School of Materials Science & Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Xiaomiao Feng
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), School of Materials Science & Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
4
|
Yadav AA, Hunge YM, Majumder S, Mourad AHI, Islam MM, Sakurai T, Kang SW. Multiplicative rGO/Cu-BDC MOF for 4-nitrophenol reduction and supercapacitor applications. J Colloid Interface Sci 2025; 677:161-170. [PMID: 39142157 DOI: 10.1016/j.jcis.2024.08.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/27/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
Two-dimensional nanosheets, with their distinct characteristics, are widely used in various applications such as water splitting, supercapacitors, catalysis etc. In this research, we produced Cu-BDC MOF nanosheets by using Cu2O nanotubes for metal ions and H2BDC as the organic linker. We combined these Cu-BDC MOF nanosheets with reduced graphene oxide (rGO) to form a nanocomposite. The collaboration between Cu-BDC MOF and rGO boosts both the catalytic reduction of 4-nitrophenol and the electrochemical capabilities. The conversion of 4-nitrophenol to 4-aminophenol is achieved using sodium borohydride as both a reducing agent and a catalyst. The study explores the impact of different concentrations of 4-nitrophenol and sodium borohydride on catalytic efficiency. The increase in sodium borohydride concentration enhances catalytic efficiency by providing more BH4- ions and electrons for the reduction process. The catalytic reduction process adheres to the Langmuir-Hinshelwood mechanism with apparent pseudo-first-order kinetics. Specifically, Cu-BDC MOF and rGO/Cu-BDC MOF exhibit specific capacities of 468.4 mA h/g and 656.4 mA h/g at a current density of 2 A/g, respectively, while also enhancing the operating voltage window. Therefore, electrodes based on rGO/Cu-BDC MOF nanosheets present a novel approach for environmental remediation and energy storage applications across various fields.
Collapse
Affiliation(s)
- A A Yadav
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan; Department of Automotive Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Yuvaraj M Hunge
- Space Colony Research Center, Tokyo University of Science, Yamazaki, Noda 278-8510, Chiba, Japan
| | - Sutripto Majumder
- Department of Physics, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Abdel-Hamid I Mourad
- Department of Mechanical and Aerospace Engineering, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
| | - Muhammad M Islam
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Takeaki Sakurai
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Seok-Won Kang
- Department of Automotive Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
5
|
Alshraim A, Gopal TS, Alanazi N, Mr M, Alobaidi AAE, Alsaigh R, Aldosary M, Pandiaraj S, Grace AN, Alodhayb AN. Cu/Cu 2O/C nanoparticles and MXene based composite for non-enzymatic glucose sensors. NANOTECHNOLOGY 2024; 35:365704. [PMID: 38904452 DOI: 10.1088/1361-6528/ad568a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Copper/Cuprous oxide/Carbon nanoparticles decorated MXene composite was prepared and subsequently examined for its potential application as a non-enzymatic glucose sensor. To carry out this, initially the Cu MOF/MXene composite was synthesised by the hydrothermal method and was annealed in an unreacted environment at different time intervals. During this process, petal like Cu MOF on MXene loses the organic ligands to form a Cu/Cu2O/C based nanoparticles on MXene. Further, an electrode was fabricated with the developed material for understanding the sensing performance by cyclic voltammetry and chronoamperometry in 0.1 M NaOH solution. Results reveal that the highest weight percentage of copper oxide in the composite (15 min of annealed material) shows a higher electro catalytic activity for sensing glucose molecules due to more active sites with good electron transfer ability in the composite. The formed composite exhibits a wide linear range of 0.001-26.5 mM, with a sensitivity of 762.53μAmM-1cm-2(0.001-10.1 mM), and 397.18μAmM-1cm-2(11.2-26.9 mM) and the limit of detection was 0.103μM. In addition to this, the prepared electrode shows a good reusability, repeatability, selectivity with other interferences, stability (93.65% after 30 days of storage), and feasibility of measuring glucose in real samples. This finding reveals that the metal oxide derived from MOF based nanoparticle on the MXene surface will promote the use of non-enzymatic glucose sensors.
Collapse
Affiliation(s)
- Asma Alshraim
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tamil Selvi Gopal
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Nadyah Alanazi
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muthumareeswaran Mr
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Amani Ali E Alobaidi
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Reem Alsaigh
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Aldosary
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saravanan Pandiaraj
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Andrews Nirmala Grace
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Abdullah N Alodhayb
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Mohanty A, Kang KN, Saravanakumar B, Ramadoss A, Jang JH. Morphology Control of Mixed Metallic Organic Framework for High-Performance Hybrid Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308771. [PMID: 38152967 DOI: 10.1002/smll.202308771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/01/2023] [Indexed: 12/29/2023]
Abstract
The study presents the binder-free synthesis of mixed metallic organic frameworks (MMOFs) supported on a ternary metal oxide (TMO) core as an innovative three-dimensional (3D) approach to enhance electron transport and mass transfer during the electrochemical charge-discharge process, resulting in high-performance hybrid supercapacitors. The research demonstrates that the choice of organic linkers can be used to tailor the morphology of these MMOFs, thus optimizing their electrochemical efficiency. Specifically, a NiCo-MOF@NiCoO2@Ni electrode, based on terephthalic linkers, exhibits highly ordered porosity and a vast internal surface area, achieving a maximum specific capacity of 2320 mC cm-2, while maintaining excellent rate capability and cycle stability. With these performances, the hybrid supercapacitor (HSC) achieves a maximum specific capacitance of 424.6 mF cm-2 (specific capacity 653.8 mC cm-2) and 30.7 F cm-3 with energy density values of 10.1 mWh cm-3 at 167.4 mW cm-3 (139.8 µWh cm-2 at 2310 µW cm-2), which are higher than those of previously reported MMOFs based electrodes. This research introduces a novel approach for metal organic framework based HSC electrodes, diverging from the traditional emphasis on metal ions, in order to achieve the desired electrochemical performance.
Collapse
Affiliation(s)
- Ankita Mohanty
- School for Advanced Research in Petrochemicals: Laboratory for Advanced Research in Polymeric Materials (LARPM), Central Institute of Petrochemicals Engineering and Technology (CIPET), Bhubaneswar, 751024, India
| | - Kyeong-Nam Kang
- School of Energy and Chemical Engineering, Graduate School of Carbon Neutrality, Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Balasubramaniam Saravanakumar
- School for Advanced Research in Petrochemicals: Laboratory for Advanced Research in Polymeric Materials (LARPM), Central Institute of Petrochemicals Engineering and Technology (CIPET), Bhubaneswar, 751024, India
| | - Ananthakumar Ramadoss
- School for Advanced Research in Petrochemicals: Laboratory for Advanced Research in Polymeric Materials (LARPM), Central Institute of Petrochemicals Engineering and Technology (CIPET), Bhubaneswar, 751024, India
- School for Advanced Research in Petrochemicals: Advanced Research School for Technology & Product Simulation (ARSTPS), Central Institute of Petrochemicals Engineering and Technology (CIPET), Bhubaneswar, 751024, India
| | - Ji-Hyun Jang
- School of Energy and Chemical Engineering, Graduate School of Carbon Neutrality, Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
7
|
Gautam S, Rialach S, Paul S, Goyal N. MOF/graphene oxide based composites in smart supercapacitors: a comprehensive review on the electrochemical evaluation and material development for advanced energy storage devices. RSC Adv 2024; 14:14311-14339. [PMID: 38690108 PMCID: PMC11060142 DOI: 10.1039/d4ra01027b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
The surge in interest surrounding energy storage solutions, driven by the demand for electric vehicles and the global energy crisis, has spotlighted the effectiveness of carbon-based supercapacitors in meeting high-power requirements. Concurrently, metal-organic frameworks (MOFs) have gained attention as a template for their integration with graphene oxide (GO) in composite materials which have emerged as a promising avenue for developing high-power supercapacitors, elevating smart supercapacitor efficiency, cyclic stability, and durability, providing crucial insights for overcoming contemporary energy storage obstacles. The identified combination leverages the strengths of both materials, showcasing significant potential for advancing energy storage technologies in a sustainable and efficient manner. In this research, an in-depth review has been presented, in which properties, rationale and integration of MOF/GO composites have been critically examined. Various fabrication techniques have been thoroughly analyzed, emphasizing the specific attributes of MOFs, such as high surface area and modifiable porosity, in tandem with the conductive and stabilizing features of graphene oxide. Electrochemical characterizations and physicochemical mechanisms underlying MOF/GO composites have been examined, emphasizing their synergistic interaction, leading to superior electrical conductivity, mechanical robustness, and energy storage capacity. The article concludes by identifying future research directions, emphasizing sustainable production, material optimization, and integration strategies to address the persistent challenges in the field of energy storage. In essence, this research article aims to offer a concise and insightful resource for researchers engaged in overcoming the pressing energy storage issues of our time through the exploration of MOF/GO composites in smart supercapacitors.
Collapse
Affiliation(s)
- Sanjeev Gautam
- Advanced Functional Materials Lab, Dr S.S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University Chandigarh-160014 India +91 97797 13212
| | - Shruti Rialach
- Department of Physics and Astronomical Science, Central University of Himachal Pradesh Dharamshala 176215 India
- Energy Research Centre, Panjab University Chandigarh-160014 India
| | - Surinder Paul
- Department of Physics and Astronomical Science, Central University of Himachal Pradesh Dharamshala 176215 India
| | - Navdeep Goyal
- Department of Physics, Panjab University Chandigarh-160014 India
| |
Collapse
|
8
|
Xia L, Cheng X, Jiang L, Min Y, Yao W, Wu Q, Xu Q. High-performance bismuth vanadate photoanodes cocatalyzed with nitrogen, sulphur co-doped ferrocobalt-metal organic frameworks thin layer for photoelectrochemical water splitting. J Colloid Interface Sci 2024; 659:676-686. [PMID: 38211485 DOI: 10.1016/j.jcis.2024.01.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/20/2023] [Accepted: 01/07/2024] [Indexed: 01/13/2024]
Abstract
In this study, we prepare a highly efficient BiVO4 photoanode co-catalyzed with an ultrathin layer of N, S co-doped FeCo-Metal Organic Frameworks (MOFs) for photoelectrochemical water splitting. The introduction of N and S into FeCo-MOFs enhances electron and mass transfer, exposing more catalytic active sites and significantly improving the catalytic performance of N, S co-doped FeCo-based MOFs in water oxidation. The optimized BiVO4/NS-FeCo-MOFs photoanode exhibits impressive results, with a photocurrent density of 5.23 mA cm-2 at 1.23 V vs. Reversible Hydrogen Electrode (RHE) and an incident photon-to-charge conversion efficiency (IPCE) of 74.4 % at 450 nm in a 0.1 M phosphate buffered solution (pH = 7). These values are 4.84 times and 6.2 times higher than those of the original BiVO4 photoanode, respectively. Furthermore, the optimized BiVO4/NS-FeCo-MOFs photoanode demonstrates exceptional long-term stability, maintaining 96 % of the initial current after five hours.
Collapse
Affiliation(s)
- Ligang Xia
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, No.2588 Changyang Road, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| | - Xinsheng Cheng
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, No.2588 Changyang Road, Shanghai 200090, China
| | - Liwen Jiang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, No.2588 Changyang Road, Shanghai 200090, China
| | - Yulin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, No.2588 Changyang Road, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Weifeng Yao
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, No.2588 Changyang Road, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Qiang Wu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, No.2588 Changyang Road, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Qunjie Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, No.2588 Changyang Road, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| |
Collapse
|
9
|
Xie Y, Wu X, Shi Y, Peng Y, Zhou H, Wu X, Ma J, Jin J, Pi Y, Pang H. Recent Progress in 2D Metal-Organic Framework-Related Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305548. [PMID: 37643389 DOI: 10.1002/smll.202305548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/10/2023] [Indexed: 08/31/2023]
Abstract
2D metal-organic frameworks-based (2D MOF-related) materials benefit from variable topological structures, plentiful open active sites, and high specific surface areas, demonstrating promising applications in gas storage, adsorption and separation, energy conversion, and other domains. In recent years, researchers have innovatively designed multiple strategies to avoid the adverse effects of conventional methods on the synthesis of high-quality 2D MOFs. This review focuses on the latest advances in creative synthesis techniques for 2D MOF-related materials from both the top-down and bottom-up perspectives. Subsequently, the strategies are categorized and summarized for synthesizing 2D MOF-related composites and their derivatives. Finally, the current challenges are highlighted faced by 2D MOF-related materials and some targeted recommendations are put forward to inspire researchers to investigate more effective synthesis methods.
Collapse
Affiliation(s)
- Yun Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Xinyue Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yuxin Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yi Peng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Huijie Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Xiaohui Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Jiao Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Jiangchen Jin
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yecan Pi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| |
Collapse
|
10
|
Bhosale R, Bhosale S, Narale D, Jambhale C, Kolekar S. Construction of Well-Defined Two-Dimensional Architectures of Trimetallic Metal-Organic Frameworks for High-Performance Symmetric Supercapacitors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12075-12089. [PMID: 37578309 DOI: 10.1021/acs.langmuir.3c01337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The high surface-to-volume ratio and extraordinarily large-surface area of two-dimensional (2D) metal-organic framework (MOF) architectures have drawn particular interest for use in supercapacitors. To achieve an excellent electrode material for supercapacitors, well-defined 2D nanostructures of novel trimetallic MOFs were developed for supercapacitor applications. Multivariate MOFs (terephthalate and trimesate MOF) with distinctive nanobrick and nanoplate-like structures were successfully synthesized using a straightforward one-step reflux condensation method by combining Ni, Co, and Zn metal species in equimolar ratios with two different ligands. Furthermore, the effects of the tricarboxylic and dicarboxylic ligands on cyclic voltammetry, charge-discharge cycling, and electrochemical impedance spectroscopy were studied. The derived terephthalate and trimesate MOFs are supported with stainless-steel mesh and provide a suitable electrolyte environment for rapid faradaic reactions with an elevated specific capacity, excellent rate capability, and exceptional cycling stability. It shows a specific capacitance of 582.8 F g-1, a good energy density of 40.47 W h kg-1, and a power density of 687.5 W kg-1 at 5 mA cm-2 with an excellent cyclic stability of 92.44% for 3000 charge-discharge cycles. A symmetric BDC-MOF//BDC-MOF supercapacitor device shows a specific capacitance of 95.22 F g-1 with low capacitance decay, high energy, and power densities which is used for electronic applications. These brand-new trimetallic MOFs display outstanding electrochemical performance and provide a novel strategy for systematically developing high-efficiency energy storage systems.
Collapse
Affiliation(s)
- Rakhee Bhosale
- Analytical Chemistry and Material Science Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416 004, India
| | - Sneha Bhosale
- Analytical Chemistry and Material Science Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416 004, India
| | - Dattatray Narale
- Analytical Chemistry and Material Science Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416 004, India
| | - Chitra Jambhale
- Analytical Chemistry and Material Science Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416 004, India
| | - Sanjay Kolekar
- Analytical Chemistry and Material Science Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416 004, India
| |
Collapse
|
11
|
Kumar N, Ghosh S, Thakur D, Lee CP, Sahoo PK. Recent advancements in zero- to three-dimensional carbon networks with a two-dimensional electrode material for high-performance supercapacitors. NANOSCALE ADVANCES 2023; 5:3146-3176. [PMID: 37325524 PMCID: PMC10263109 DOI: 10.1039/d3na00094j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/30/2023] [Indexed: 06/17/2023]
Abstract
Supercapacitors have gained significant attention owing to their exceptional performance in terms of energy density and power density, making them suitable for various applications, such as mobile devices, electric vehicles, and renewable energy storage systems. This review focuses on recent advancements in the utilization of 0-dimensional to 3-dimensional carbon network materials as electrode materials for high-performance supercapacitor devices. This study aims to provide a comprehensive evaluation of the potential of carbon-based materials in enhancing the electrochemical performance of supercapacitors. The combination of these materials with other cutting-edge materials, such as Transition Metal Dichalcogenides (TMDs), MXenes, Layered Double Hydroxides (LDHs), graphitic carbon nitride (g-C3N4), Metal-Organic Frameworks (MOFs), Black Phosphorus (BP), and perovskite nanoarchitectures, has been extensively studied to achieve a wide operating potential window. The combination of these materials synchronizes their different charge-storage mechanisms to attain practical and realistic applications. The findings of this review indicate that hybrid composite electrodes with 3D structures exhibit the best potential in terms of overall electrochemical performance. However, this field faces several challenges and promising research directions. This study aimed to highlight these challenges and provide insights into the potential of carbon-based materials in supercapacitor applications.
Collapse
Affiliation(s)
- Niraj Kumar
- Sustainable Energy Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DIAT) Pune Maharashtra 411025 India
| | - Sudip Ghosh
- Department of Chemistry, Siksha 'O' Anusandhan, Deemed to be University Bhubaneswar Odisha India
| | - Dinbandhu Thakur
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay Mumbai-400076 India
| | - Chuan-Pei Lee
- Department of Applied Physics and Chemistry, University of Taipei Taipei 10048 Taiwan
| | - Prasanta Kumar Sahoo
- Department of Mechanical Engineering, Siksha 'O' Anusandhan Deemed to Be University Bhubaneswar 751030 India
| |
Collapse
|
12
|
Wang T, Chen S, Chen KJ. Metal-Organic Framework Composites and Their Derivatives as Efficient Electrodes for Energy Storage Applications: Recent Progress and Future Perspectives. CHEM REC 2023:e202300006. [PMID: 36942948 DOI: 10.1002/tcr.202300006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/26/2023] [Indexed: 03/23/2023]
Abstract
Metal-organic frameworks (MOFs) have been important electrochemical energy storage (EES) materials because of their rich species, large specific surface area, high porosity and rich active sites. Nevertheless, the poor conductivity, low mechanical and electrochemical stability of pristine MOFs have hindered their further applications. Although single component MOF derivatives have higher conductivity, self-aggregation often occurs during preparation. Composite design can overcome the shortcomings of MOFs and derivatives and create synergistic effects, resulting in improved electrochemical properties for EES. In this review, recent applications of MOF composites and derivatives as electrodes in different types of batteries and supercapacitors are critically discussed. The advantages, challenges, and future perspectives of MOF composites and derivatives have been given. This review may guide the development of high-performance MOF composites and derivatives in the field of EES.
Collapse
Affiliation(s)
- Teng Wang
- Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Ningbo, 315103, PR China
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi' an, Shaanxi, 710072, PR China
| | - Shaoqian Chen
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi' an, Shaanxi, 710072, PR China
| | - Kai-Jie Chen
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi' an, Shaanxi, 710072, PR China
| |
Collapse
|
13
|
Rafi J, Rajan A, Neppolian B. Enhanced electrocatalytic performance of Aluminium Metal-organic framework towards the detection of broad-spectrum chloramphenicol antibiotic. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
14
|
Jayaramulu K, Mukherjee S, Morales DM, Dubal DP, Nanjundan AK, Schneemann A, Masa J, Kment S, Schuhmann W, Otyepka M, Zbořil R, Fischer RA. Graphene-Based Metal-Organic Framework Hybrids for Applications in Catalysis, Environmental, and Energy Technologies. Chem Rev 2022; 122:17241-17338. [PMID: 36318747 PMCID: PMC9801388 DOI: 10.1021/acs.chemrev.2c00270] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Indexed: 11/06/2022]
Abstract
Current energy and environmental challenges demand the development and design of multifunctional porous materials with tunable properties for catalysis, water purification, and energy conversion and storage. Because of their amenability to de novo reticular chemistry, metal-organic frameworks (MOFs) have become key materials in this area. However, their usefulness is often limited by low chemical stability, conductivity and inappropriate pore sizes. Conductive two-dimensional (2D) materials with robust structural skeletons and/or functionalized surfaces can form stabilizing interactions with MOF components, enabling the fabrication of MOF nanocomposites with tunable pore characteristics. Graphene and its functional derivatives are the largest class of 2D materials and possess remarkable compositional versatility, structural diversity, and controllable surface chemistry. Here, we critically review current knowledge concerning the growth, structure, and properties of graphene derivatives, MOFs, and their graphene@MOF composites as well as the associated structure-property-performance relationships. Synthetic strategies for preparing graphene@MOF composites and tuning their properties are also comprehensively reviewed together with their applications in gas storage/separation, water purification, catalysis (organo-, electro-, and photocatalysis), and electrochemical energy storage and conversion. Current challenges in the development of graphene@MOF hybrids and their practical applications are addressed, revealing areas for future investigation. We hope that this review will inspire further exploration of new graphene@MOF hybrids for energy, electronic, biomedical, and photocatalysis applications as well as studies on previously unreported properties of known hybrids to reveal potential "diamonds in the rough".
Collapse
Affiliation(s)
- Kolleboyina Jayaramulu
- Department
of Chemistry, Indian Institute of Technology
Jammu, Jammu
and Kashmir 181221, India
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Soumya Mukherjee
- Inorganic
and Metal−Organic Chemistry, Department of Chemistry and Catalysis
Research Centre, Technical University of
Munich, Garching 85748, Germany
| | - Dulce M. Morales
- Analytical
Chemistry, Center for Electrochemical Sciences (CES), Faculty of Chemistry
and Biochemistry, Ruhr-Universität
Bochum, Universitätsstrasse 150, Bochum D-44780, Germany
- Nachwuchsgruppe
Gestaltung des Sauerstoffentwicklungsmechanismus, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, Berlin 14109, Germany
| | - Deepak P. Dubal
- School
of Chemistry and Physics, Queensland University
of Technology (QUT), 2 George Street, Brisbane, Queensland 4001, Australia
| | - Ashok Kumar Nanjundan
- School
of Chemistry and Physics, Queensland University
of Technology (QUT), 2 George Street, Brisbane, Queensland 4001, Australia
| | - Andreas Schneemann
- Lehrstuhl
für Anorganische Chemie I, Technische
Universität Dresden, Bergstrasse 66, Dresden 01067, Germany
| | - Justus Masa
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, Mülheim an der Ruhr D-45470, Germany
| | - Stepan Kment
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- Nanotechnology
Centre, CEET, VŠB-Technical University
of Ostrava, 17 Listopadu
2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Wolfgang Schuhmann
- Analytical
Chemistry, Center for Electrochemical Sciences (CES), Faculty of Chemistry
and Biochemistry, Ruhr-Universität
Bochum, Universitätsstrasse 150, Bochum D-44780, Germany
| | - Michal Otyepka
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- IT4Innovations, VŠB-Technical University of Ostrava, 17 Listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- Nanotechnology
Centre, CEET, VŠB-Technical University
of Ostrava, 17 Listopadu
2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Roland A. Fischer
- Inorganic
and Metal−Organic Chemistry, Department of Chemistry and Catalysis
Research Centre, Technical University of
Munich, Garching 85748, Germany
| |
Collapse
|
15
|
Impact of Ligand in Bimetallic Co, Ni-Metal-Organic Framework towards Oxygen Evolution Reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Goud BS, Shin G, Vattikuti SP, Mameda N, Kim H, Koyyada G, Kim JH. Enzyme-integrated biomimetic cobalt metal-organic framework nanozyme for one-step cascade glucose biosensing via tandem catalysis. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
17
|
Review on Recent Modifications in Nickel Metal-Organic Framework Derived Electrode (Ni-MOF) Materials for Supercapacitors. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02503-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
18
|
Iqbal B, Laybourn A, O'Shea JN, Argent SP, Zaheer M. Electrocatalytic hydrogen evolution over micro and mesoporous cobalt metal-organic frameworks. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Wang T, Lei J, Wang Y, Pang L, Pan F, Chen KJ, Wang H. Approaches to Enhancing Electrical Conductivity of Pristine Metal-Organic Frameworks for Supercapacitor Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203307. [PMID: 35843875 DOI: 10.1002/smll.202203307] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Metal-organic frameworks (MOFs), known as porous coordination polymers, have attracted intense interest as electrode materials for supercapacitors (SCs) owing to their advantageous features including high surface area, tunable porous structure, structural diversity, etc. However, the insulating nature of most MOFs has impeded their further electrochemical applications. A common solution for this issue is to transform pristine MOFs into more stable and conductive metal compounds/porous carbon materials through pyrolysis, which however losses the inherent merits of MOFs. To find a consummate solution, recently a surge of research devoted to improving the electrical conductivity of pristine MOFs for SCs has been carried out. In this review, the most related research work on pristine MOF-based materials is reviewed and three effective strategies (chemical structure design of conductive MOFs (c-MOFs), composite design, and binder-free structure design) which can significantly increase their conductivity and consequently the electrochemical performance in SCs are proposed. The conductivity enhancement mechanism in each approach is well analyzed. The representative research works on using pristine MOFs for SCs are also critically discussed. It is hoped that the new insights can provide guidance for developing high-performance electrode materials based on pristine MOFs with high conductivity for SCs in the future.
Collapse
Affiliation(s)
- Teng Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Jiaqi Lei
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - You Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Le Pang
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Fuping Pan
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Kai-Jie Chen
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Hongxia Wang
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| |
Collapse
|
20
|
Zhang Q, Hong Y, Wang Y, Guo Y, Wang K, Wu H, Zhang C. Recent advances in pillar‐layered metal‐organic frameworks with interpenetrated and non‐interpenetrated topologies as supercapacitor electrodes. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qichun Zhang
- City University of Hong Kong Department of Physics and Materials Science 83 Tat Chee Ave, Kowloon Tong 999077 Hong Kong HONG KONG
| | - Ye Hong
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China CHINA
| | - Yuting Wang
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China CHINA
| | - Yuxuan Guo
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China CHINA
| | - Kuaibing Wang
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China CHINA
| | - Hua Wu
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China. College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, P. R CHINA
| | - Cheng Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, China CHINA
| |
Collapse
|
21
|
Zhao J, Zhang J, Yin H, Zhao Y, Xu G, Yuan J, Mo X, Tang J, Wang F. Ultra-Fine Ruthenium Oxide Quantum Dots/Reduced Graphene Oxide Composite as Electrodes for High-Performance Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1210. [PMID: 35407327 PMCID: PMC9000793 DOI: 10.3390/nano12071210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 11/17/2022]
Abstract
This study synthesized ultra-fine nanometer-scaled ruthenium oxide (RuO2) quantum dots (QDs) on reduced graphene oxide (rGO) surface by a facile and rapid microwave-assisted hydrothermal approach. Benefiting from the synergistic effect of RuO2 and rGO, RuO2/rGO nanocomposite electrodes showed ultra-high capacitive performance. The impact of different RuO2 loadings in RuO2/rGO nanocomposite on their electrochemical performance was investigated by various characterizations. The composite RG-2 with 38 wt.% RuO2 loadings exhibited a specific capacitance of 1120 F g-1 at 1 A g-1. In addition, it has an excellent capacity retention rate of 84 % from 1A g-1 to 10 A g-1, and excellent cycling stability of 89% retention after 10,000 cycles, indicating fast ion-involved redox reactions on the nanocomposite surfaces. These results illustrate that RuO2/rGO composites prepared by this facile process can be an ideal candidate electrode for high-performance supercapacitors.
Collapse
Affiliation(s)
- Jie Zhao
- College of Physics, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; (J.Z.); (H.Y.); (G.X.); (J.Y.); (X.M.)
| | - Jianmin Zhang
- National Engineering Research Center for Intelligent Electrical Vehicle Power System, College of Mechanical and Electrical Engineering, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Hang Yin
- College of Physics, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; (J.Z.); (H.Y.); (G.X.); (J.Y.); (X.M.)
| | - Yuling Zhao
- State Key Laboratory of Bio Fibers and Eco Textiles, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China;
| | - Guangxu Xu
- College of Physics, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; (J.Z.); (H.Y.); (G.X.); (J.Y.); (X.M.)
| | - Jinshi Yuan
- College of Physics, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; (J.Z.); (H.Y.); (G.X.); (J.Y.); (X.M.)
| | - Xiaoyao Mo
- College of Physics, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; (J.Z.); (H.Y.); (G.X.); (J.Y.); (X.M.)
| | - Jie Tang
- National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 3050047, Japan
| | - Fengyun Wang
- College of Physics, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; (J.Z.); (H.Y.); (G.X.); (J.Y.); (X.M.)
- State Key Laboratory of Bio Fibers and Eco Textiles, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China;
| |
Collapse
|
22
|
Shinde SK, Kim DY, Kumar M, Murugadoss G, Ramesh S, Tamboli AM, Yadav HM. MOFs-Graphene Composites Synthesis and Application for Electrochemical Supercapacitor: A Review. Polymers (Basel) 2022; 14:511. [PMID: 35160499 PMCID: PMC8839617 DOI: 10.3390/polym14030511] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
Today's world requires high-performance energy storage devices such as hybrid supercapacitors (HSc), which play an important role in the modern electronic market because supercapacitors (Sc) show better electrical properties for electronics devices. In the last few years, the scientific community has focused on the coupling of Sc and battery-type materials to improve energy and power density. Recently, various hybrid electrode materials have been reported in the literature; out of these, coordination polymers such as metal-organic frameworks (MOFs) are highly porous, stable, and widely explored for various applications. The poor conductivity of classical MOFs restricts their applications. The composite of MOFs with highly porous graphene (G), graphene oxide (GO), or reduced graphene oxide (rGO) nanomaterials is a promising strategy in the field of electrochemical applications. In this review, we have discussed the strategy, device structure, and function of the MOFs/G, MOFs/GO, and MOFs/rGO nanocomposites on Sc. The structural, morphological, and electrochemical performance of coordination polymers composites towards Sc application has been discussed. The reported results indicate the considerable improvement in the structural, surface morphological, and electrochemical performance of the Sc due to their positive synergistic effect. Finally, we focused on the recent development in preparation methods optimization, and the opportunities for MOFs/G based nanomaterials as electrode materials for energy storage applications have been discussed in detail.
Collapse
Affiliation(s)
- Surendra K. Shinde
- Department of Biological and Environmental Science, College of Life Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Siksa-dong, Goyang-si 10326, Gyeonggi-do, Korea; (S.K.S.); (D.-Y.K.)
| | - Dae-Young Kim
- Department of Biological and Environmental Science, College of Life Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Siksa-dong, Goyang-si 10326, Gyeonggi-do, Korea; (S.K.S.); (D.-Y.K.)
| | - Manu Kumar
- Department of Life Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea;
| | - Govindhasamy Murugadoss
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India;
| | - Sivalingam Ramesh
- Department of Mechanical, Robotics and Energy Engineering, Dongguk University, Seoul 04620, Korea;
| | - Asiya M. Tamboli
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea
| | - Hemraj M. Yadav
- Department of Biological and Environmental Science, College of Life Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Siksa-dong, Goyang-si 10326, Gyeonggi-do, Korea; (S.K.S.); (D.-Y.K.)
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur 416004, Maharashtra, India
| |
Collapse
|
23
|
Jiang Y, He Z, Cui X, Liu Z, Wan J, Liu Y, Ma F. Hierarchical porous carbon derived from coal tar pitch by one step carbonization and activation combined with a CaO template for supercapacitors. NEW J CHEM 2022. [DOI: 10.1039/d2nj00433j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hierarchical porous carbon is synthesized through a one-step carbonization and activation method from coal tar pitch using CaO as the hard template.
Collapse
Affiliation(s)
- Yuchen Jiang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of China, Key Laboratory of Chemical Engineering Processes&Technology for High-efficiency Conversion (College of Heilongjiang Province), School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, China
| | - Zhifeng He
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of China, Key Laboratory of Chemical Engineering Processes&Technology for High-efficiency Conversion (College of Heilongjiang Province), School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, China
| | - Xin Cui
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of China, Key Laboratory of Chemical Engineering Processes&Technology for High-efficiency Conversion (College of Heilongjiang Province), School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, China
| | - Zeyi Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of China, Key Laboratory of Chemical Engineering Processes&Technology for High-efficiency Conversion (College of Heilongjiang Province), School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, China
| | - Jiafeng Wan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of China, Key Laboratory of Chemical Engineering Processes&Technology for High-efficiency Conversion (College of Heilongjiang Province), School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, China
| | - Yifu Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of China, Key Laboratory of Chemical Engineering Processes&Technology for High-efficiency Conversion (College of Heilongjiang Province), School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, China
| | - Fangwei Ma
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of China, Key Laboratory of Chemical Engineering Processes&Technology for High-efficiency Conversion (College of Heilongjiang Province), School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, China
| |
Collapse
|
24
|
Acharya J, Pant B, Prasad Ojha G, Park M. Embellishing hierarchical 3D core-shell nanosheet arrays of ZnFe 2O 4@NiMoO 4 onto rGO-Ni foam as a binder-free electrode for asymmetric supercapacitors with excellent electrochemical performance. J Colloid Interface Sci 2021; 610:863-878. [PMID: 34863553 DOI: 10.1016/j.jcis.2021.11.129] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 11/19/2022]
Abstract
Tailoring hierarchical hybrid core-shell electrodes with impartial microstructural features and excellent electroactive constituents is crucial for the design of high-performance supercapacitors (SCs). Herein, for the first time, we fabricate uniformly aligned porous ZnFe2O4 (ZFO) nanosheet arrays onto reduced graphene oxide-garnished conductive Ni foam (rGO-NF) substrates and subsequently embellish the first layer of ZFO nanosheets with morphology-controlled secondary NiMoO4 nanosheets to achieve a hierarchical 3D core-shell structure of ZnFe2O4@NiMoO4 nanosheet arrays (NSAs) onto rGO-NF for SC applications. Improving the synergistic effect of the core-shell nanoarchitecture with a conductive rGO-NF substrate, the hierarchical 3D ZFO@NMO NSAs tend to have superb electronic conductivity, tailoribility, effective nanoporous channels, and appropriate roadways for rapid ion/electron transfer, which are required for rapid reversible redox reactions, thus reflecting the excellent electrochemical features, including the excellent specific capacitance, good rate performance, and prolonged cyclic performance of the three electrode assemblies for SCs. An asymmetric supercapacitor (ASC) device composed of ZFO@NMO NSAs@rGO-NF as the cathode and MOF-derived hollow porous carbon (MDHPC) as the anode exhibits a high energy density of 58.6 Wh kg-1 at a power density of 799 W kg-1 with prolonged cyclic durability (89.6 % after 7000 cycles), thus indicating its potential applicability towards advanced hybrid SCs.
Collapse
Affiliation(s)
- Jiwan Acharya
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju 55338, Republic of Korea; Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju 55338, Republic of Korea
| | - Bishweshwar Pant
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju 55338, Republic of Korea; Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju 55338, Republic of Korea
| | - Gunendra Prasad Ojha
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju 55338, Republic of Korea; Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju 55338, Republic of Korea
| | - Mira Park
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju 55338, Republic of Korea; Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju 55338, Republic of Korea.
| |
Collapse
|
25
|
Lin Y, Li Y, Cao Y, Wang X. Two-dimensional MOFs: Design & Synthesis and Applications. Chem Asian J 2021; 16:3281-3298. [PMID: 34453404 DOI: 10.1002/asia.202100884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/25/2021] [Indexed: 12/24/2022]
Abstract
For the past few years, two-dimensional materials have attracted widespread attention owing to their special properties and potential applications. It is well-known that graphene, transition metal disulfide compounds (TMDC), carbon nitride, transition metal carbonitrides (Mxenes), silene and hexagonal boron nitride are typical two-dimensional materials. Compared with these traditional two-dimensional materials, two-dimensional MOF is favored by numerous researchers because of its unique structure. Based on the unique metal ion and organic ligand coordination of MOF and two-dimensional layered structure, the applications of two-dimensional MOF were getting serious, including catalysis, supercapacitor, gas adsorption/separation, sensors and so on. This review presents a relatively comprehensive summary of the design & synthesis and applications of two-dimensional MOF over the past few years. Furthermore, the opportunities and challenges have been discussed to supply a promising prospect to this field.
Collapse
Affiliation(s)
- Yuting Lin
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, P. R. China
| | - Yuehua Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, P. R. China
| | - Yu Cao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, P. R. China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, P. R. China
| |
Collapse
|
26
|
Graphene oxide template based synthesis of NiCo2O4 nanosheets for high performance non-enzymatic glucose sensor. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126600] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Li S, Lin J, Xiong W, Guo X, Wu D, Zhang Q, Zhu QL, Zhang L. Design principles and direct applications of cobalt-based metal-organic frameworks for electrochemical energy storage. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213872] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
28
|
Dhavale SB, Patil VL, Beknalkar SA, Teli AM, Patil AH, Patil AP, Shin JC, Patil PS. Study of solvent variation on controlled synthesis of different nanostructured NiCo 2O 4 thin films for supercapacitive application. J Colloid Interface Sci 2021; 588:589-601. [PMID: 33482585 DOI: 10.1016/j.jcis.2020.12.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Abstract
The present investigation deals with controlled synthesis of nanostructured NiCo2O4 thin films directly on stainless steel substrates by facile and economical chemical bath deposition technique, without adding a surfactant or a binder. The consequences of different compositions of solvents on morphological and electrochemical properties have been studied systematically. We used different solvent composition as Double Distilled Water (DDW), DDW:Ethanol (1:1) and DDW: N, N dimethylformamide (1:1). The films have been named as NCO-W for DDW, NCO-WE for DDW: Ethanol (1:1) solvent and NCO-WD for DDW: N, N dimethylformamide (1:1) solvent. The morphologies of NiCo2O4 thin films modify substantially with change in a solvent. NCO-W exhibited the spikes of Crossandra infundibuliformis like nanostructures. The NCO-WE favored the formation of uniformly distributed leaf-like nanostructure whereas NCO-WD showed randomly oriented nanoplates all over the surface area. The Electrochemical performance of these NiCo2O4 thin films were studied using cyclic voltammetry, chronopotentiometry, and electrochemical impedance spectroscopy techniques. The NCO-W, NCO-WE and NCO-WD electrodes showed specific capacitance values of 271, 553 and 140 F/g respectively at the current density of 0.5 mA/cm2 and excellent capacitance retention of 90%, 91% and 80% after 2000 cycles for NCO-W, NCO-WE and NCO-WD samples respectively. This result reveals that NiCo2O4 is a prominent electrode material for supercapacitor application.
Collapse
Affiliation(s)
- Sarika B Dhavale
- Thin Film Materials Laboratory, Department of Physics, Shivaji University Kolhapur, Maharashtra 416004, India
| | - Vithoba L Patil
- Thin Film Materials Laboratory, Department of Physics, Shivaji University Kolhapur, Maharashtra 416004, India
| | - Sonali A Beknalkar
- Thin Film Materials Laboratory, Department of Physics, Shivaji University Kolhapur, Maharashtra 416004, India
| | - Aviraj M Teli
- Department of Physics, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Aravind H Patil
- Thin Film Materials Laboratory, Department of Physics, Shivaji University Kolhapur, Maharashtra 416004, India
| | - Akhilesh P Patil
- School of Nanoscience and Technology, Shivaji University Kolhapur, Maharashtra 416004, India
| | - Jae Cheol Shin
- Department of Physics, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea.
| | - Pramod S Patil
- Thin Film Materials Laboratory, Department of Physics, Shivaji University Kolhapur, Maharashtra 416004, India.
| |
Collapse
|
29
|
Kasbe PS, Luo X, Xu W. Interface engineering and integration of two-dimensional polymeric and inorganic materials for advanced hybrid structures. NEW J CHEM 2021. [DOI: 10.1039/d1nj04022g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent progress and future directions in the creation of hybrid structures based on 2D polymers and inorganic 2D materials are discussed.
Collapse
Affiliation(s)
- Pratik S. Kasbe
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Xiongyu Luo
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Weinan Xu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
| |
Collapse
|
30
|
Schneemann A, Dong R, Schwotzer F, Zhong H, Senkovska I, Feng X, Kaskel S. 2D framework materials for energy applications. Chem Sci 2020; 12:1600-1619. [PMID: 34163921 PMCID: PMC8179301 DOI: 10.1039/d0sc05889k] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/09/2020] [Indexed: 12/31/2022] Open
Abstract
In recent years a massive increase in publications on conventional 2D materials (graphene, h-BN, MoS2) is documented, accompanied by the transfer of the 2D concept to porous (crystalline) materials, such as ordered 2D layered polymers, covalent-organic frameworks, and metal-organic frameworks. Over the years, the 3D frameworks have gained a lot of attention for use in applications, ranging from electronic devices to catalysis, and from information to separation technologies, mostly due to the modular construction concept and exceptionally high porosity. A key challenge lies in the implementation of these materials into devices arising from the deliberate manipulation of properties upon delamination of their layered counterparts, including an increase in surface area, higher diffusivity, better access to surface sites and a change in the band structure. Within this minireview, we would like to highlight recent achievements in the synthesis of 2D framework materials and their advantages for certain applications, and give some future perspectives.
Collapse
Affiliation(s)
- Andreas Schneemann
- Department of Inorganic Chemistry, Technische Universität Dresden Bergstr. 66 01069 Dresden Germany
| | - Renhao Dong
- Center for Advancing Electronics Dresden (CFAED), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden 01062 Dresden Germany
| | - Friedrich Schwotzer
- Department of Inorganic Chemistry, Technische Universität Dresden Bergstr. 66 01069 Dresden Germany
| | - Haixia Zhong
- Center for Advancing Electronics Dresden (CFAED), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden 01062 Dresden Germany
| | - Irena Senkovska
- Department of Inorganic Chemistry, Technische Universität Dresden Bergstr. 66 01069 Dresden Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (CFAED), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden 01062 Dresden Germany
| | - Stefan Kaskel
- Department of Inorganic Chemistry, Technische Universität Dresden Bergstr. 66 01069 Dresden Germany
| |
Collapse
|
31
|
Nagaraju G, Sekhar SC, Ramulu B, Hussain SK, Narsimulu D, Yu JS. Ternary MOF-Based Redox Active Sites Enabled 3D-on-2D Nanoarchitectured Battery-Type Electrodes for High-Energy-Density Supercapatteries. NANO-MICRO LETTERS 2020; 13:17. [PMID: 34138181 PMCID: PMC8187485 DOI: 10.1007/s40820-020-00528-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/21/2020] [Indexed: 05/03/2023]
Abstract
Designing rationally combined metal-organic frameworks (MOFs) with multifunctional nanogeometries is of significant research interest to enable the electrochemical properties in advanced energy storage devices. Herein, we explored a new class of binder-free dual-layered Ni-Co-Mn-based MOFs (NCM-based MOFs) with three-dimensional (3D)-on-2D nanoarchitectures through a polarity-induced solution-phase method for high-performance supercapatteries. The hierarchical NCM-based MOFs having grown on nickel foam exhibit a battery-type charge storage mechanism with superior areal capacity (1311.4 μAh cm-2 at 5 mA cm-2), good rate capability (61.8%; 811.67 μAh cm-2 at 50 mA cm-2), and an excellent cycling durability. The superior charge storage properties are ascribed to the synergistic features, higher accessible active sites of dual-layered nanogeometries, and exalted redox chemistry of multi metallic guest species, respectively. The bilayered NCM-based MOFs are further employed as a battery-type electrode for the fabrication of supercapattery paradigm with biomass-derived nitrogen/oxygen doped porous carbon as a negative electrode, which demonstrates excellent capacity of 1.6 mAh cm-2 along with high energy and power densities of 1.21 mWh cm-2 and 32.49 mW cm-2, respectively. Following, the MOF-based supercapattery was further assembled with a renewable solar power harvester to use as a self-charging station for various portable electronic applications.
Collapse
Affiliation(s)
- Goli Nagaraju
- Institute for Wearable Convergence Electronics, Department of Electronic Engineering, Kyung Hee University, 1732 Deogyeong-daero, Gihung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
- Department of Chemical Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Gihung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - S Chandra Sekhar
- Institute for Wearable Convergence Electronics, Department of Electronic Engineering, Kyung Hee University, 1732 Deogyeong-daero, Gihung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Bhimanaboina Ramulu
- Institute for Wearable Convergence Electronics, Department of Electronic Engineering, Kyung Hee University, 1732 Deogyeong-daero, Gihung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Sk Khaja Hussain
- Institute for Wearable Convergence Electronics, Department of Electronic Engineering, Kyung Hee University, 1732 Deogyeong-daero, Gihung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
- Department of Chemical Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Gihung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - D Narsimulu
- Institute for Wearable Convergence Electronics, Department of Electronic Engineering, Kyung Hee University, 1732 Deogyeong-daero, Gihung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Jae Su Yu
- Institute for Wearable Convergence Electronics, Department of Electronic Engineering, Kyung Hee University, 1732 Deogyeong-daero, Gihung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.
| |
Collapse
|
32
|
Milakin KA, Gavrilov N, Pašti IA, Morávková Z, Acharya U, Unterweger C, Breitenbach S, Zhigunov A, Bober P. Polyaniline-metal organic framework (Fe-BTC) composite for electrochemical applications. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122945] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Ojha M, Wu B, Deepa M. NiCo Metal-Organic Framework and Porous Carbon Interlayer-Based Supercapacitors Integrated with a Solar Cell for a Stand-Alone Power Supply System. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42749-42762. [PMID: 32840351 DOI: 10.1021/acsami.0c10883] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nickel cobalt-metal-organic framework (NiCo-MOF), with a semihollow spherical morphology composed of rhombic dodecahedron nanostructures, was synthesized using a scalable and facile wet chemical route. Such a structure endowed the material with open pores, which enabled rapid ion ingress and egress, and the high effective surface area of the MOF allowed the uptake and release of a large number of electrolyte ions during charge-discharge. By combining this NiCo-MOF cathode with a highly porous carbon (PC) anode (derived from the naturally grown and abundantly available bio-waste, namely, palm kernel shells), the resulting PC//NiCo-MOF supercapacitor using an aqueous potassium hydroxide (KOH) electrolyte delivered a capacitance of 134 F g-1, energy and power densities of 24 Wh kg-1 and 0.8 kW kg-1 at 1 A g-1, respectively, over an operational voltage window of 1.6 V. By employing thin interlayers of PC coated over a Whatman filter paper (PC@FP), the modified supercapacitor configuration of PC/PC@FP//PC@FP/NiCo-MOF delivered greatly enhanced performance. This cell delivered a capacitance of 520 F g-1 and an energy density of 92 Wh kg-1, improved by nearly 4-fold, compared to the analogous supercapacitor without the interlayers (at the same power and current densities and voltage window), thus evidencing the role of the cost-effective, electrically conducting porous carbon interlayers in amplifying the supercapacitor's energy storage capabilities. Further, illumination of white light-emitting diodes (LEDs) using a three-series configuration and the photocharging of this supercapacitor with a solution-processed solar cell are also demonstrated. The latter confirms its ability to function as a stand-alone power supply system for electronic/computing devices, which can even operate under medium lighting conditions.
Collapse
Affiliation(s)
- Manoranjan Ojha
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
| | - Billy Wu
- Dyson School of Design Engineering, Imperial College, London SW7 2AZ, U.K
| | - Melepurath Deepa
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
| |
Collapse
|
34
|
Liu Y, Xin N, Yang Q, Shi W. 3D CNTs/graphene network conductive substrate supported MOFs-derived CoZnNiS nanosheet arrays for ultra-high volumetric/gravimetric energy density hybrid supercapacitor. J Colloid Interface Sci 2020; 583:288-298. [PMID: 33007585 DOI: 10.1016/j.jcis.2020.08.128] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 01/17/2023]
Abstract
With the increasing demand for miniaturization and portable energy storage system, it is an urgent necessary that developing high volumetric energy density supercapacitors with small volumes. Herein, an integrated self-supporting CoZnNiS@CNTs/rGO composite film electrode with the thickness of about 6 μm was designed. In the unique structure, porous CNTs/rGO film is served as conductive substrate to support the CoZn-MOFs derived vertically oriented two-dimensional CoZnNiS nanoarrays. The self-supporting film endows the electrode a high volumetric mass density of 1.28 g cm-3 and superior electron-ion transport channel, which displays a maximum specific capacitance of 1349.2 F g-1 as well as high volumetric capacity of 1727.0 F cm-3 at 1 A g-1. Besides, a porous film of pure carbon materials (carbon spheres integrated graphene) was designed and used as the negative electrode in supercapacitor. When assembled a hybrid supercapacitor based on the above two self-supporting electrodes, the device delivers up an ultra-high volumetric/gravimetric energy density of 65.2 W h L-1 (60.4 W h kg-1) at a power density of 1308 W L-1 (1200 W kg-1). Moreover, the asymmetric supercapacitor also displays an ultra-long lifetime with 90.6% retention after 10,000 cycles. These outstanding performances make the CoZnNiS@CNTs/rGO electrode could be a promising candidate for next-generation high volumetric/gravimetric energy density supercapacitors, especially in the limited space.
Collapse
Affiliation(s)
- Yu Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Na Xin
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qingjun Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|