1
|
Liu X, Shao Y, Xu J, Zhang Y, Zhao Q, Chen H, Yang Y, Ma J. Grain boundary/doping/architecture engineering in hierarchical N-doped CuO microflowers derived from Cu-based metal-organic framework architectures for highly efficient nonenzymatic glucose detection. Talanta 2025; 289:127775. [PMID: 39985927 DOI: 10.1016/j.talanta.2025.127775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/15/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Glucose detection is essential in clinical medicine, and the reasonable design of metal oxide electrocatalysts plays a crucial role in developing efficient nonenzymatic glucose (NEG) sensors. Herein, grain boundary/doping/architecture engineering is used to tailor the structures of CuO nanomaterials and tune their surface/electron-transfer properties toward enhanced electrocatalytic oxidation of glucose. Hierarchical N-doped CuO microflowers (N-CuO-MF) are synthesized using a facile hydrothermal method, followed by calcination. N-CuO-MF consist of ultrathin nanoflakes (ca. 20 nm), endowing them with a large specific surface area. Moreover, the nanoflakes are composed of ultrasmall nanoparticles, resulting in abundant grain boundaries. Notably, N-CuO-MF are derived from a precursor of Cu-based metal-organic framework (Cu-MOF) architectures, which is fabricated through a bottom-up route using glycerol as the capping agent/solvent and 1-hexadecyl-3-methylimidazolium bromide ([C16mim]Br) as the template/N source. Glycerol competitively coordinates with Cu2+, leading to the formation of 2D subunits. Moreover, [C16mim]+ cations attach to the subunit surfaces via electrostatic interaction, thus achieving Cu-MOF with a 3D hierarchical structure. As expected, the synergistic effect of rich grain boundaries, N doping, ultrathin nanoflakes, and hierarchical architecture enhances the adsorption of glucose on the electrode surfaces, accelerates electron transfer, and exposes more active sites for glucose oxidation. Accordingly, N-CuO-MF exhibit wide linear ranges, high sensitivity, fast response time, low detection limit, excellent selectivity, and good stability. Owing to their highly efficient electrocatalytic properties, N-CuO-MF could be explored as potential electrocatalysts in NEG sensors for rapid diagnostic tests and health monitoring.
Collapse
Affiliation(s)
- Xiaodi Liu
- College of Chemical and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, China.
| | - Yonghui Shao
- College of Chemical and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, China
| | - Jiachuang Xu
- College of Chemical and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, China
| | - Yu Zhang
- College of Chemical and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, China
| | - Qiang Zhao
- College of Chemical and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, China
| | - Hao Chen
- College of Chemical and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, China
| | - Yan Yang
- College of Chemical and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, China.
| | - Jianmin Ma
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
2
|
Liu M, Lin H, Sun L, Ying Y, He B, Liu Y. Enhanced charge storage in supercapacitors using carbon nanotubes and N-doped graphene quantum dots-modified (NiMn)Co 2O 4. J Colloid Interface Sci 2025; 678:763-771. [PMID: 39265346 DOI: 10.1016/j.jcis.2024.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
The integration of ternary metal oxides into carbon materials is anticipated to significantly boost the electrochemical performance of supercapacitor electrodes. This article synthesized carbon nanotubes (CNT)/(NiMn)Co2O4 composite materials using a straightforward hydrothermal method and subsequently prepared composite thin films of CNT/P-(NiMn)Co2O4@NGQD by phosphating and incorporating nitrogen-doped graphene quantum dots (NGQD). These films served as the functional electrode material for supercapacitors, enhancing their performance capabilities. The specific capacity of CNT/P-(NiMn)Co2O4@NGQD was measured at 2172.0 F g-1 at a current density of 1 A g-1, maintaining a capacitance of 1954.0 F g-1 at 10 A g-1, thus demonstrating excellent rate performance. Electrochemical impedance spectroscopy (EIS) further revealed enhancements in electrolyte flow dynamics and capacitance behavior post-NGQD introduction. The energy density of the composite material reached 94.4 Wh kg-1 at power density of 800 W kg-1, demonstrating superior electrochemical performance. The enhancement in these electrochemical properties is attributed to the high specific surface area and active sites of CNT/P-(NiMn)Co2O4@NGQD films, along with the synergistic effects of NGQD and metal ions facilitating rapid electrons and charge transfer. This work provides new insights into developing high-performance supercapacitors.
Collapse
Affiliation(s)
- Min Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Huachen Lin
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Lin Sun
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yulong Ying
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Bin He
- Huzhou Key Laboratory of Environmental Functional Materials and Pollution Control, Department of Materials Chemistry, Huzhou University, Huzhou 313000, PR China
| | - Yu Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
3
|
Sun X, Yu X, Li W, Chen M, Liu D. Mechanical properties, degradation behavior and cytocompatibility of biodegradable 3vol%X (X = MgO, ZnO and CuO)/Zn matrix composites with excellent dispersion property fabricated by graphene oxide-assisted hetero-aggregation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 134:112722. [DOI: 10.1016/j.msec.2022.112722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/24/2022] [Accepted: 02/14/2022] [Indexed: 01/10/2023]
|
4
|
Gajraj V, Kumar A, Ekta D, Kaushik R, Amilan Jose D, Ghosh A, Mariappan CR. Multifunctionality exploration of NiCo 2O 4-rGO nanocomposites: photochemical water oxidation, methanol electro-oxidation and asymmetric supercapacitor applications. Dalton Trans 2021; 50:18001-18015. [PMID: 34821893 DOI: 10.1039/d1dt02417e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Different weight percentages of NiCo2O4-rGO nanocomposites were prepared via a facile hydrothermal method. The prepared nanocomposites were structurally and morphologically characterized by X-ray diffraction, Raman spectroscopy, and electron microscopy. The structural studies show the formation of rGO-NiCo2O4 nanocomposites by embedment of porous NiCo2O4 rods on rGO sheets. The effect of the NiCo2O4 content on photochemical water oxidation was investigated. It revealed that the catalysts NiCo2O4-rGO with 1 : 26 ratio (NCO26) and 1 : 13 ratio (NCO13) are efficient in generating oxygen under light illumination. It proves that NCO26 works far more effectively as a photocatalyst compared to NCO13. Methanol electro-oxidation of the NCO26 nanocomposite shows a current density of 24 mA cm-2 at a potential of 0.45 V in cyclic voltammetry and maintains the current for 3600 s at 0.45 V in chronoamperometry. An onset potential of 0.344 V was observed for 0.5 M methanol oxidation. The specific capacitance values were found to be 354.75 F g-1 and 375.32 F g-1 at 1 mV s-1 and 1 A g-1, respectively, for NCO26 in supercapacitor studies. The charge stored via capacitive and diffusion-controlled processes was determined using Power's law and Trasatti plot. An asymmetric supercapacitor device shows a specific capacitance of 122.2 F g-1 at a current density of 1 A g-1 and exhibits a retention of 74.3% after 5000 cycles. An energy density of 67.89 W h kg-1 and a power density of 1 kW kg-1 at a current density of 1 A g-1 are observed.
Collapse
Affiliation(s)
- V Gajraj
- Department of Physics, National Institute of Technology, Kurukshetra, Haryana - 136119, India. .,Research and Development cell, Uttaranchal University, Dehradun, Uttarakhand-248001, India
| | - A Kumar
- Department of Physics, National Institute of Technology, Kurukshetra, Haryana - 136119, India.
| | - D Ekta
- Department of Physics, National Institute of Technology, Kurukshetra, Haryana - 136119, India.
| | - Rahul Kaushik
- Department of Chemistry, National Institute of Technology, Kurukshetra, Haryana - 136119, India.
| | - D Amilan Jose
- Department of Chemistry, National Institute of Technology, Kurukshetra, Haryana - 136119, India.
| | - Amirta Ghosh
- Department of Chemistry, National Institute of Technology, Kurukshetra, Haryana - 136119, India.
| | - C R Mariappan
- Department of Physics, National Institute of Technology, Kurukshetra, Haryana - 136119, India. .,Department of Physics, National Institute of Technology-Puducherry, Karaikal-609609, India
| |
Collapse
|
5
|
Zhang W, Zhou T, Hao Y, Wang Z, Chen C. Practical Synthesis for N‐doped Carbon Microsphere Coated with Zn
0.76
Co
0.24
S Nanoparticles towards High‐performance Supercapacitors. ChemistrySelect 2021. [DOI: 10.1002/slct.202102152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wenjun Zhang
- School of Chemistry & Chemical Engineering Hefei University of Technology 193 Tunxi Rd. Hefei Anhui 230009 P. R. China
| | - Ting Zhou
- School of Chemistry & Chemical Engineering Hefei University of Technology 193 Tunxi Rd. Hefei Anhui 230009 P. R. China
| | - Yonghao Hao
- School of Chemistry & Chemical Engineering Hefei University of Technology 193 Tunxi Rd. Hefei Anhui 230009 P. R. China
| | - Zhongbing Wang
- Instrumental Analysis Center Hefei University of Technology 193 Tunxi Rd. Hefei Anhui 230009 P. R. China
| | - Chunnian Chen
- School of Chemistry & Chemical Engineering Hefei University of Technology 193 Tunxi Rd. Hefei Anhui 230009 P. R. China
| |
Collapse
|
6
|
Kumar R. NiCo 2O 4 Nano-/Microstructures as High-Performance Biosensors: A Review. NANO-MICRO LETTERS 2020; 12:122. [PMID: 34138118 PMCID: PMC7770908 DOI: 10.1007/s40820-020-00462-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/28/2020] [Indexed: 05/13/2023]
Abstract
Non-enzymatic biosensors based on mixed transition metal oxides are deemed as the most promising devices due to their high sensitivity, selectivity, wide concentration range, low detection limits, and excellent recyclability. Spinel NiCo2O4 mixed oxides have drawn considerable attention recently due to their outstanding advantages including large specific surface area, high permeability, short electron, and ion diffusion pathways. Because of the rapid development of non-enzyme biosensors, the current state of methods for synthesis of pure and composite/hybrid NiCo2O4 materials and their subsequent electrochemical biosensing applications are systematically and comprehensively reviewed herein. Comparative analysis reveals better electrochemical sensing of bioanalytes by one-dimensional and two-dimensional NiCo2O4 nano-/microstructures than other morphologies. Better biosensing efficiency of NiCo2O4 as compared to corresponding individual metal oxides, viz. NiO and Co3O4, is attributed to the close intrinsic-state redox couples of Ni3+/Ni2+ (0.58 V/0.49 V) and Co3+/Co2+ (0.53 V/0.51 V). Biosensing performance of NiCo2O4 is also significantly improved by making the composites of NiCo2O4 with conducting carbonaceous materials like graphene, reduced graphene oxide, carbon nanotubes (single and multi-walled), carbon nanofibers; conducting polymers like polypyrrole (PPy), polyaniline (PANI); metal oxides NiO, Co3O4, SnO2, MnO2; and metals like Au, Pd, etc. Various factors affecting the morphologies and biosensing parameters of the nano-/micro-structured NiCo2O4 are also highlighted. Finally, some drawbacks and future perspectives related to this promising field are outlined.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Chemistry, Jagdish Chandra DAV College, Dasuya, Distt. Hoshiarpur, 144205, Punjab, India.
| |
Collapse
|