1
|
Qu G, Liu G, Zhao C, Yuan Z, Yang Y, Xiang K. Detection and treatment of mono and polycyclic aromatic hydrocarbon pollutants in aqueous environments based on electrochemical technology: recent advances. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23334-23362. [PMID: 38436845 DOI: 10.1007/s11356-024-32640-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Mono and polycyclic aromatic hydrocarbons are widely distributed and severely pollute the aqueous environment due to natural and human activities, particularly human activity. It is crucial to identify and address them in order to reduce the dangers and threats they pose to biological processes and ecosystems. In the fields of sensor detection and water treatment, electrochemistry plays a crucial role as a trustworthy and environmentally friendly technology. In order to accomplish trace detection while enhancing detection accuracy and precision, researchers have created and studied sensors using a range of materials based on electrochemical processes, and their results have demonstrated good performance. One cannot overlook the challenges associated with treating aromatic pollutants, including mono and polycyclic. Much work has been done and good progress has been achieved in order to address these challenges. This study discusses the mono and polycyclic aromatic hydrocarbon sensor detection and electrochemical treatment technologies for contaminants in the aqueous environment. Additionally mentioned are the sources, distribution, risks, hazards, and problems in the removal of pollutants. The obstacles to be overcome and the future development plans of the field are then suggested by summarizing and assessing the research findings of the researchers.
Collapse
Affiliation(s)
- Guangfei Qu
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China.
| | - Guojun Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Chenyang Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Zheng Yuan
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Yixin Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Keyi Xiang
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| |
Collapse
|
2
|
Al-Ghamdi YO, Jabli M, Alhalafi MH, Khan A, Alamry KA. Hybridized sulfated-carboxymethyl cellulose/MWNT nanocomposite as highly selective electrochemical probe for trace detection of arsenic in real environmental samples. RSC Adv 2023; 13:18382-18395. [PMID: 37342813 PMCID: PMC10278092 DOI: 10.1039/d3ra03808d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023] Open
Abstract
A highly selective and ultra-sensitive electrochemical sensing probe was proposed by combining sulfated-carboxymethyl cellulose (CMC-S) and a functionalized-multiwalled carbon nanotube (f-MWNT) nano-composite with high conductivity and durability. The CMC-S/MWNT nanocomposite was impregnated on a glassy carbon electrode (GCE) to construct the non-enzymatic and mediator-free electrochemical sensing probe for trace detection of As(iii) ions. The fabricated CMC-S/MWNT nanocomposite was characterized by FTIR, SEM, TEM, and XPS. Under the optimized experimental conditions, the sensor exhibited the lowest detection limit of 0.024 nM, a high sensitivity (69.93 μA nM-1 cm-2) with a good linear relationship in the range of 0.2-90 nM As(iii) concentration. The sensor demonstrated strong repeatability, with the current response continuing at 84.52% after 28 days of use, in addition to good selectivity for the determination of As(iii). Additionally, with recovery ranging from 97.2% to 107.2%, the sensor demonstrated comparable sensing capability in tap water, sewage water, and mixed fruit juice. The electrochemical sensor for detecting trace levels of As(iii) in actual samples is anticipated to be produced by this effort and is expected to possess great selectivity, good stability, and sensitivity.
Collapse
Affiliation(s)
- Youssef O Al-Ghamdi
- Department of Chemistry, College of Science Al-Zulfi, Majmaah University Al-Majmaah 11952 Saudi Arabia
| | - Mahjoub Jabli
- Department of Chemistry, College of Science Al-Zulfi, Majmaah University Al-Majmaah 11952 Saudi Arabia
| | - Mona H Alhalafi
- Department of Chemistry, College of Science Al-Zulfi, Majmaah University Al-Majmaah 11952 Saudi Arabia
| | - Ajahar Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Khalid A Alamry
- Department of Food and Nutrition, Bionanocomposite Research Center, Kyung Hee University 26 Kyungheedae-ro, Dongdaemun-gu Seoul South Korea
| |
Collapse
|
3
|
Veerapandi G, Govindan R, Sekar C. Quick and accurate determination of hazardous phenolic compounds using CaCu 2O 3 nanorods based electrochemical sensor. CHEMOSPHERE 2023; 313:137370. [PMID: 36435324 DOI: 10.1016/j.chemosphere.2022.137370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
In the present work, we report the fabrication of a novel electrochemical sensor based on nanostructured CaCu2O3 as electrode material for the simultaneous determination of 2-Aminophenol (o-AP), 2-Chlorophenol (o-CP) and 2-Nitrophenol (o-NP). Nanorods-shaped CaCu2O3 have been synthesized by chemical precipitation method and characterized by powder X-ray diffraction (XRD), X-ray photo-electron microscopy (XPS), field emission electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM). Glassy carbon electrodes (3 mm diameter) have been modified using CaCu2O3 nanorods by drop-casting method. Cyclic voltammetry (CV) studies at CaCu2O3/GCE exhibited excellent electrochemical behaviours towards the oxidation of 2-AP, 2-CP and 2-NP at different potentials well separated from each other. The CaCu2O3/GCE displayed the lowest detection limits of 5.74 nM (0.626 ppb), 1.38 nM (0.177 ppb) and 1.03 nM (0.143 ppb) for 2-AP, 2-CP and 2-NP respectively over wide measurable linear ranges of 175 nM-68 μM (2-AP), 50 nM-90 μM (2-CP) and 25 nM-32 μM (2-NP). Cyclic stability studies showed a loss of 7%, 13% and 14% from initial current responses after conducting 100 cycles of CV for 2-AP, 2-CP and 2-NP in PBS (pH 7.0) which indicated the excellent stability of the fabricated electrode. Reproducibility studies of six different CaCu2O3/GCEs exhibited good recoveries in the order of 3.23% (2-AP), 3.54% (2-CP) and 2.46% (2-NP) respectively. The fabricated electrode with excellent sensitivity, stability and reproducibility has been successfully applied for the determination of 2-AP, 2-CP and 2-NP simultaneously in tap water and agricultural water samples. Selectivity studies carried out on CaCu2O3/GCE revealed its ability to detect 4-aminophenol and 4-nitorphenol at different oxidation potentials. High performance liquid chromatography (HPLC) studies have been carried out to validate the practical utility of the fabricated sensor.
Collapse
Affiliation(s)
- G Veerapandi
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi, 630 004, Tamilnadu, India
| | - R Govindan
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi, 630 004, Tamilnadu, India; Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamilnadu, India
| | - C Sekar
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi, 630 004, Tamilnadu, India.
| |
Collapse
|
4
|
Sangamithirai D, Ramanathan S. Electrochemical sensing platform for the detection of nitroaromatics using g-C3N4/V2O5 nanocomposites modified glassy carbon electrode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Faisal M, Alam MM, Ahmed J, Asiri AM, Jalalah M, Alruwais RS, Rahman MM, Harraz FA. Sensitive Electrochemical Detection of 4-Nitrophenol with PEDOT:PSS Modified Pt NPs-Embedded PPy-CB@ZnO Nanocomposites. BIOSENSORS 2022; 12:bios12110990. [PMID: 36354499 PMCID: PMC9688362 DOI: 10.3390/bios12110990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 05/09/2023]
Abstract
In this study, a selective 4-nitrophenol (4-NP) sensor was developed onto a glassy carbon electrode (GCE) as an electron-sensing substrate, which decorated with sol-gel, prepared Pt nanoparticles- (NPs) embedded polypyrole-carbon black (PPy-CB)/ZnO nanocomposites (NCs) using differential pulse voltammetry. Characterizations of the NCs were performed using Field Emission Scanning Electron Microscopy (FESEM), Energy-Dispersive Spectroscopy (EDS), X-ray Photoelectron Spectroscopy (XPS), Ultraviolet-visible Spectroscopy (UV-vis), Fourier Transform Infrared Spectroscopy (FTIR), High Resolution Transmission Electron Microscopy (HRTEM), and X-ray Diffraction Analysis (XRD). The GCE modified by conducting coating binders [poly(3,4-ethylenedioxythiophene) polystyrene sulfonate; PEDOT:PSS] based on Pt NPs/PPy-CB/ZnO NCs functioned as the working electrode and showed selectivity toward 4-NP in a phosphate buffer medium at pH 7.0. Our analysis of 4-NP showed the linearity from 1.5 to 40.5 µM, which was identified as the linear detection range (LDR). A current versus concentration plot was formed and showed a regression co-efficient R2 of 0.9917, which can be expressed by ip(µA) = 0.2493C(µM) + 15.694. The 4-NP sensor sensitivity was calculated using the slope of the LDR, considering the surface area of the GCE (0.0316 cm2). The sensitivity was calculated as 7.8892 µAµM-1cm-2. The LOD (limit of detection) of the 4-NP was calculated as 1.25 ± 0.06 µM, which was calculated from 3xSD/σ (SD: Standard deviation of blank response; σ: Slope of the calibration curve). Limit of quantification (LOQ) is also calculated as 3.79 µM from LOQ = 10xLOD/3.3. Sensor parameters such as reproducibility, response time, and analyzing stability were outstanding. Therefore, this novel approach can be broadly used to safely fabricate selective 4-NP sensors based on nanoparticle-decorated nanocomposite materials in environmental measurement.
Collapse
Affiliation(s)
- Mohd Faisal
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box 1988, Najran 11001, Saudi Arabia
- Department of Chemistry, Faculty of Science and Arts, Najran University, Najran 11001, Saudi Arabia
| | - Md. Mahmud Alam
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jahir Ahmed
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box 1988, Najran 11001, Saudi Arabia
| | - Abdullah M. Asiri
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Jalalah
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box 1988, Najran 11001, Saudi Arabia
- Department of Electrical Engineering, College of Engineering, Najran University, Najran 11001, Saudi Arabia
| | - Raja Saad Alruwais
- Chemistry Department, Faculty of Science and Humanities, Shaqra University, Dawadmi 17472, Saudi Arabia
| | - Mohammed M. Rahman
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (M.M.R.); (F.A.H.)
| | - Farid A. Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box 1988, Najran 11001, Saudi Arabia
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Najran 11001, Saudi Arabia
- Correspondence: (M.M.R.); (F.A.H.)
| |
Collapse
|
6
|
Veerakumar P, Hung ST, Hung PQ, Lin KC. Review of the Design of Ruthenium-Based Nanomaterials and Their Sensing Applications in Electrochemistry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8523-8550. [PMID: 35793416 DOI: 10.1021/acs.jafc.2c01856] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this review, ruthenium nanoparticles (Ru NPs)-based functional nanomaterials have attractive electrocatalytic characteristics and they offer considerable potential in a number of fields. Ru-based binary or multimetallic NPs are widely utilized for electrode modification because of their unique electrocatalytic properties, enhanced surface-area-to-volume ratio, and synergistic effect between two metals provides as an effective improved electrode sensor. This perspective review suggests the current research and development of Ru-based nanomaterials as a platform for electrochemical (EC) sensing of harmful substances, biomolecules, insecticides, pharmaceuticals, and environmental pollutants. The advantages and limitations of mono-, bi-, and multimetallic Ru-based nanocomposites for EC sensors are discussed. Besides, the relevant EC properties and analyte sensing approaches are also presented. On the basis of these insights, we highlighted recent results for synthesizing techniques and EC environmental pollutant sensors from the perspectives of diverse supports, including graphene, carbon nanotubes, silica, semiconductors, metal sulfides, and polymers. Finally, this work overviews the modern improvements in the utilization of Ru-based nanocomposites on the basis for electroanalytical sensors as well as suggestions for the field's future development.
Collapse
Affiliation(s)
- Pitchaimani Veerakumar
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Shih-Tung Hung
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Pei-Qi Hung
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - King-Chuen Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
7
|
NGAHA MC, TCHIEDA V, KAMDEM A, DOUNGMO G, Njanja E, TONLE I. Aminoalcohol‐Functionalization of Alkali Palm Oil Fiber and Application as Electrochemical Sensor for 2‐Nitrophenol Determination. ELECTROANAL 2022. [DOI: 10.1002/elan.202200086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
8
|
Polyvinylpyrrolidone and graphene-modified hematite nanoparticles for efficient electrocatalytic oxidation of p-nitrophenol. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05146-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Silambarasan P, Moon IS. Enhancing the mediated electrochemical reduction process combined with developed liquid-gas electrochemical flow sensors for sustainable N 2O removal at room temperature. ENVIRONMENTAL RESEARCH 2022; 204:111912. [PMID: 34450160 DOI: 10.1016/j.envres.2021.111912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
New electrocatalysts with high reduction efficiency are needed to upgrade the mediated electrochemical reduction for real applications. In addition, automation is required to quantify active electrocatalysts in alkaline media and air pollution. In this study, N2O was removed sustainably by electrogenerated low valent nickel(I) phthalocyanine tetrasulfonate [Ni(I)TSPc] in 1 M KOH using an electroscrubbing system. Ni(I)TSPc electro generation and N2O removal were automated by two (liquid/gas) electrochemical flow sensors, respectively. The Ni(I)TSPc was generated electrochemically up to 95% in 1 M KOH, and high removal efficiency (100%) was observed for 5 ppm N2O and 90% for 10 ppm N2O. A limiting potential change in the in-situ LSV of the chemically synthesized Ni(I)TSPc was taken and derived from the calibration plot and validated by an ex-situ potentiometric titration using an oxygen reduction potential electrode. Using the obtained calibration plot, electrogenerated Ni(I)TSPc allowed a direct determination in a liquid flow cell. The gas flow sensor developed using a KOH/Ni(II)CN4 (TCN (II))-fabricated silver solid amalgam electrode showed an excellent response to N2O concentrations up to 32 ppm. A calibration plot with known concentration was derived and validated by gas chromatography. The response time and sensitivity obtained were approximately 500s and -0.012 mA ppm-1 cm-2, respectively. The sensor stability test confirmed its good stability. Finally, the developed in-situ electrochemical flow sensors were applied to the sustainable automation of N2O pollutant removal.
Collapse
Affiliation(s)
- P Silambarasan
- Department of Chemical Engineering, Sunchon National University, 255-Jungang-ro, Suncheon-si, Jeollanam-do, 57922, South Korea
| | - I S Moon
- Department of Chemical Engineering, Sunchon National University, 255-Jungang-ro, Suncheon-si, Jeollanam-do, 57922, South Korea.
| |
Collapse
|
10
|
Arham Z, Kurniawan K. Electrode modifier performance of TiO2 incorporated carbon quantum dots nanocomposites on Fe(CN)3−6/Fe(CN)4−6 electrochemical system. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-0980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Dighole RP, Munde AV, Mulik BB, Zade SS, Sathe BR. Melamine functionalised multiwalled carbon nanotubes (M-MWCNTs) as a metal-free electrocatalyst for simultaneous determination of 4-nitrophenol and nitrofurantoin. NEW J CHEM 2022. [DOI: 10.1039/d2nj03901j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An innovative melamine functionalised multiwalled carbon nanotube (M-MWCNTs) based electrochemical sensor has been developed for the determination of environmental nitro-aromatic pollutants, such as 4-nitrophenol (4-NP) and nitrofurantoin (NFT).
Collapse
Affiliation(s)
- Raviraj P. Dighole
- Department of Chemistry, Dr Babasaheb Ambedkar Marathwada University, Aurangabad 431004, MS, India
- Arts, Science & Commerce College, Badnapur 431202, India
| | - Ajay V. Munde
- Department of Chemistry, Dr Babasaheb Ambedkar Marathwada University, Aurangabad 431004, MS, India
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Balaji B. Mulik
- Department of Chemistry, Dr Babasaheb Ambedkar Marathwada University, Aurangabad 431004, MS, India
| | - Sanjio S. Zade
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Bhaskar R. Sathe
- Department of Chemistry, Dr Babasaheb Ambedkar Marathwada University, Aurangabad 431004, MS, India
| |
Collapse
|
12
|
Peñalver R, Jacobs MR, Hegarty S, Regan F. Assessment of anthropogenic pollution by monitoring occurrence and distribution of chemicals in the river Liffey in Dublin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53754-53766. [PMID: 34036505 PMCID: PMC8476352 DOI: 10.1007/s11356-021-14508-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
This paper evaluates for the first time the spatial distribution of a wide group of organic (phthalates, nitro, aliphatic, halogen, aromatic, phenol and amino compounds) and inorganic pollutants along the Liffey river in Dublin city. The work takes into account the effect of short-term weather conditions on the occurrence of these contaminants. The results showed that rainfall conditions affect the levels of pollutants along the river in the days following a rainfall event. In addition, the tributaries entering the river Liffey were not found to impact its water quality. In relation to organic pollutants, 2,4,6-trichlorophenol, 2-nitrophenol and phthalate compounds were found in many water samples between concentrations of 0.21 and 2.17 μg L-1. On the other hand, dimethyl phthalate was present in certain samples at levels around 100 μg L-1. The levels of these contaminants in the river were lower than the toxicity values reported in the literature. Regarding inorganic pollutants, nitrates were detected from 0.59 to 6.81 mg L-1 increasing from upstream to downstream. Based on the chemical nature and applications of detected pollutants, the river contamination can be mainly related to agricultural, industrial activities as well as diffuse urban contributions. These vary with location within a short distance and have the potential to impact aquatic biodiversity as the chemical composition changes with rainfall events.
Collapse
Affiliation(s)
- Rosa Peñalver
- Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, Murcia, Spain
| | - Matthew R Jacobs
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, 9, Ireland
- DCU Water Institute, Dublin City University, Glasnevin, Dublin, Ireland
| | - Susan Hegarty
- DCU Water Institute, Dublin City University, Glasnevin, Dublin, Ireland
- School of History and Geography, Dublin City University, St Patrick's Campus, Drumcondra, Ireland
| | - Fiona Regan
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, 9, Ireland.
- DCU Water Institute, Dublin City University, Glasnevin, Dublin, Ireland.
| |
Collapse
|
13
|
Dib M, Moutcine A, Ouchetto H, Ouchetto K, Chtaini A, Hafid A, Khouili M. Novel synthesis of α-Fe2O3@Mg/Al-CO3-LDH nanocomposite for rapid electrochemical detection of p-nitrophenol. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Real-time monitoring of chlorobenzene gas using an electrochemical gas sensor during mediated electrochemical degradation at room temperature. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Simultaneous determination of nitrophenol isomers based on reduced graphene oxide modified with sulfobutylether-β-cyclodextrin. Carbohydr Polym 2021; 271:118446. [PMID: 34364581 DOI: 10.1016/j.carbpol.2021.118446] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022]
Abstract
The present study reports the development of an electrochemical sensor based on sulfobutylether-β-cyclodextrin modified reduced graphene oxide hybrid (SBCD-rGO) for simultaneous detection of nitrophenol isomers. First, SBCD-rGO hybrid was synthesized and detailed characterized. Afterwards, a sensor was fabricated via the modification of glassy carbon electrode (GCE) with SBCD-rGO, and its electrochemical detection performances were also investigated. Then, the constructed electrochemical sensor was applied to detect nitrophenol isomers by voltammetry analysis. The results suggested that the sensitivities were 389.26, 280.88 and 217.19 μA/mM for p-nitrophenol (p-NP), m-nitrophenol (m-NP), and o-nitrophenol (o-NP), respectively, and their corresponding detection limits were all about 0.05 μM. Significantly, the combination of voltammetry analysis with the constructed sensor and data analysis by multiple linear regression realized the simultaneous detection of nitrophenol isomers.
Collapse
|
16
|
Alam MM, Asiri AM, Rahman MM. Electrochemical Detection of 2-Nitrophenol Using a Glassy Carbon Electrode Modified with BaO Nanorods. Chem Asian J 2021; 16:1475-1485. [PMID: 33847437 DOI: 10.1002/asia.202100250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/11/2021] [Indexed: 01/10/2023]
Abstract
Here, an electrochemical detection approach (differential pulse voltammetry) was employed to develop a 2-nitrophenol (2-NP) sensor probe using a glassy carbon electrode (GCE) coated by wet-chemically synthesized nanorods (NRs) of BaO. The prepared BaO NRs were characterized by field-emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and powder X-ray diffraction (XRD) analysis. The peak currents by differential pulse voltammetric (DPV) analysis of 2-NP are plotted against the concentration to obtain the calibration curve of the 2-NP detection. It was found to be linear from 1.5 to 9.0 μM, defined as the dynamic range (LDR) for 2-NP detection in phosphate buffer solution. The sensor sensitivity was calculated from the slope of LDR by considering the active surface area of NRs coated on GCE (0.0316 cm2 ) and found as 17.6 μAμM-1 cm-2 . The limit of detection (LOD) was calculated as 0.50±0.025 μM from the signal/noise (S/N) ratio of 3. Moreover, the sensor analytical parameters such as reproducibility, long-term performing ability (stability), response time and validity in real environmental samples were found acceptable and to give satisfactory results. The development of a nanomaterial-based electrochemical chemical sensor might be an effective approach to sensor technology to detect carcinogenic and hazardous toxins for environmental safety and healthcare fields in a broad scale.
Collapse
Affiliation(s)
- M M Alam
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, P.O. Box 80203, Saudi Arabia
| | - Abdullah M Asiri
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, P.O. Box 80203, Saudi Arabia.,Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, P.O. Box 80203, Saudi Arabia
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, P.O. Box 80203, Saudi Arabia.,Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, P.O. Box 80203, Saudi Arabia
| |
Collapse
|
17
|
Wet-chemically synthesis of SnO2-doped Ag2O nanostructured materials for sensitive detection of choline by an alternative electrochemical approach. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Beitollahi H, Tajik S, Garkani Nejad F, Safaei M. Recent advances in ZnO nanostructure-based electrochemical sensors and biosensors. J Mater Chem B 2021; 8:5826-5844. [PMID: 32542277 DOI: 10.1039/d0tb00569j] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanostructured metal oxides, such as zinc oxide (ZnO), are considered as excellent materials for the fabrication of highly sensitive and selective electrochemical sensors and biosensors due to their good properties, including a high specific surface area, high catalytic efficiency, strong adsorption ability, high isoelectric point (IEP, 9.5), wide band gap (3.2 eV), biocompatibility and high electron communication features. Thus, ZnO nanostructures are widely used to fabricate efficient electrochemical sensors and biosensors for the detection of various analytes. In this review, we have discussed the synthesis of ZnO nanostructures and the advances in various ZnO nanostructure-based electrochemical sensors and biosensors for medical diagnosis, pharmaceutical analysis, food safety, and environmental pollution monitoring.
Collapse
Affiliation(s)
- Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | | | | | | |
Collapse
|
19
|
Shinde P, Sharma V, Punde A, Waghmare A, Vairale P, Hase Y, Pandharkar S, Bhorde A, Aher R, Nair S, Doiphode V, Jadkar V, Patil N, Rondiya S, Prasad M, Jadkar S. 2D alignment of zinc oxide@ZIF8 nanocrystals for photoelectrochemical water splitting. NEW J CHEM 2021. [DOI: 10.1039/d0nj05567k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thin films of zinc oxide nano-sheets loaded with Zeolitic Imidazole Framework 8 nanocrystals were synthesized using electrodeposition and chemical bath deposition for photoelectrochemical application.
Collapse
|
20
|
Fabrication of Sn-doped ZnO hexagonal micro discs anchored on rGO for electrochemical detection of anti-androgen drug flutamide in water and biological samples. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105689] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Sapner VS, Sathe BR. Metal-free graphene-based nanoelectrodes for the electrochemical determination of ascorbic acid (AA) and p-nitrophenol ( p-NP): implication towards biosensing and environmental monitoring. NEW J CHEM 2021. [DOI: 10.1039/d0nj05806h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Herein, tyramine functionalized graphene oxide electrocatalyst is used for the electrochemical determination of ascorbic acid and p-nitrophenol in 1 M phosphate buffer solution at pH-7 with long term current/potential stability and reproducibility.
Collapse
Affiliation(s)
- Vijay S. Sapner
- Department of Chemistry
- Dr Babasaheb Ambedkar Marathwada University
- Aurangabad
- India
| | - Bhaskar R. Sathe
- Department of Chemistry
- Dr Babasaheb Ambedkar Marathwada University
- Aurangabad
- India
| |
Collapse
|
22
|
Tajik S, Aflatoonian MR, Beitollahi H, Shoaie IS, Dourandish Z, Fariba GN, Aflatoonian B, Bamorovat M. Electrocatalytic oxidation and selective voltammetric detection of methyldopa in the presence of hydrochlorothiazide in real samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105182] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Alam MM, Mukhlish MZB, Tazrin A, Jui NA, Asiri AM, Rahman MM, Islam MA, Uddin MT. A novel highly selective electrochemical chlorobenzene sensor based on ternary oxide RuO2/ZnO/TiO2 nanocomposites. RSC Adv 2020; 10:32532-32547. [PMID: 35516515 PMCID: PMC9056640 DOI: 10.1039/d0ra05824f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
A novel electrochemical (EC) chlorobenzene (CBZ) sensor was fabricated using a ternary oxide RuO2/ZnO/TiO2 nanocomposite (NC)-decorated glassy carbon electrode (GCE). The nanoparticles (NPs) were synthesized by a wet-chemical method and characterized by X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), and ultraviolet-visible (UV-vis) spectroscopy. The synthesized RuO2/ZnO/TiO2 NC was layered as thin film on a GCE with Nafion (5% suspension in ethanol) adhesive, and the as-prepared sensor was subjected to CBZ analysis using an electrochemical approach. The calibration of the proposed CBZ sensor was executed with a linear relation of current versus concentration of CBZs known as the calibration curve. The sensitivity (32.02 μA μM−1 cm−2) of the CBZ sensor was calculated from the slope of the calibration curve by considering the active surface area of the GCE (0.0316 cm2). The lower detection limit (LD; 98.70 ± 4.90 pM) was also calculated at a signal-to-noise ratio of 3. Besides these, the response current followed a linear relationship with the concentration of chlorobenzene and the linear dynamic range (LDR) was denoted in the range of 0.1 nM to 1.0 μM. Moreover, the CBZ sensor was found to exhibit good reproducibility, reliability, stability, and fast response time. Finally, the sensing mechanism was also discussed with the energy-band theory of ternary doped semiconductor materials. The sensing activity of the proposed sensor was significantly enhanced due to the combined result of depletion layer formation at the heterojunction of RuO2/ZnO/TiO2 NCs as well as the activity of RuO2 NPs as oxidation catalysts. The proposed CBZ sensor probe based on ternary oxide RuO2/ZnO/TiO2 NCs was developed with significant analytical parameters for practical application in monitoring the environmental pollutants of CBZs for the safety of environmental fields on a large scale. A novel electrochemical (EC) chlorobenzene (CBZ) sensor was fabricated using a ternary oxide RuO2/ZnO/TiO2 nanocomposite (NC)-decorated glassy carbon electrode (GCE).![]()
Collapse
Affiliation(s)
- Md. Mahmud Alam
- Department of Chemical Engineering and Polymer Science
- Shahjalal University of Science and Technology
- Sylhet 3100
- Bangladesh
| | - Muhammad Zobayer Bin Mukhlish
- Department of Chemical Engineering and Polymer Science
- Shahjalal University of Science and Technology
- Sylhet 3100
- Bangladesh
| | - Ayesha Tazrin
- Department of Chemical Engineering and Polymer Science
- Shahjalal University of Science and Technology
- Sylhet 3100
- Bangladesh
| | - Nahida Akter Jui
- Department of Chemical Engineering and Polymer Science
- Shahjalal University of Science and Technology
- Sylhet 3100
- Bangladesh
| | - Abdullah M. Asiri
- Department of Chemistry
- King Abdulaziz University
- Faculty of Science
- Jeddah 21589
- Saudi Arabia
| | - Mohammed M. Rahman
- Department of Chemistry
- King Abdulaziz University
- Faculty of Science
- Jeddah 21589
- Saudi Arabia
| | - Md. Akhtarul Islam
- Department of Chemical Engineering and Polymer Science
- Shahjalal University of Science and Technology
- Sylhet 3100
- Bangladesh
| | - Md. Tamez Uddin
- Department of Chemical Engineering and Polymer Science
- Shahjalal University of Science and Technology
- Sylhet 3100
- Bangladesh
| |
Collapse
|