1
|
Saviozzi C, Mojic M, Biancalana L, Funaioli T, Biver T, Zacchini S, Mijatovic S, Maksimovic-Ivanic D, Marchetti F. Incorporating Alkylthio Groups Provides Potent In Vitro Anticancer Activity to Water Soluble and Aqueous Stable Diiron(I) Bis-Cyclopentadienyl Complexes. Chem Biol Interact 2025:111561. [PMID: 40403868 DOI: 10.1016/j.cbi.2025.111561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/27/2025] [Accepted: 05/15/2025] [Indexed: 05/24/2025]
Abstract
We synthesized five novel diiron(I) complexes with a varying S-functionalized vinyliminium ligand, 3a-e, which were structurally characterized by IR and NMR spectroscopy, and single crystal X-ray diffraction in one representative case. Based on NMR and UV-Vis methods, these complexes show adequate water solubility (3 - 19 mM), balanced amphiphilicity (Log Pow values ranging from -0.46 to 0.16), and substantial stability in physiological-like solutions (> 90% unchanged after 24 h in DMEM cell culture medium). The cytotoxicity of the N-cyclohexyl complexes 3a-d was determined on human (A2780, A375, MCF-7) and murine cancer (B16F10, 4T1) cell lines. The leading compound 3d, featuring methylthio-group, N-cyclohexyl and 4-methoxyphenyl substituents, exhibited IC50 values in the low micromolar range and demonstrated remarkable selectivity for malignant phenotypes. Several in-depth experiments were conducted to elucidate the biochemistry of 3d, including evaluation of cell death induction, proliferation rate and cellular redox status. Spectroelectrochemical and binding studies with DNA and bovine serum albumin (BSA) were also conducted. Despite its similarity to cisplatin in inducing apoptosis, the redox signature of 3d is distinct, characterized by a strong scavenging potential of reactive oxygen and nitrogen species (ROS and RNS).
Collapse
Affiliation(s)
- Chiara Saviozzi
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Marija Mojic
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108 Belgrade, Serbia
| | - Lorenzo Biancalana
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Tiziana Funaioli
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Tarita Biver
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Stefano Zacchini
- University of Bologna, Department of Industrial Chemistry "Toso Montanari", Via P. Gobetti 85, I-40129 Bologna, Italy
| | - Sanja Mijatovic
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108 Belgrade, Serbia.
| | - Danijela Maksimovic-Ivanic
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108 Belgrade, Serbia
| | - Fabio Marchetti
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy.
| |
Collapse
|
2
|
Stocchetti S, Vančo J, Bresciani G, Biancalana L, Belza J, Zacchini S, Dvořák Z, Benetti S, Biver T, Bortoluzzi M, Trávníček Z, Marchetti F. Anticancer diiron aminocarbyne complexes with labile N-donor ligands. Eur J Med Chem 2025; 286:117304. [PMID: 39862748 DOI: 10.1016/j.ejmech.2025.117304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/14/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
The novel diiron amine complexes [Fe2Cp2(CO)(NH2R')(μ-CO){μ-CN(Me)(Cy)}]CF3SO3 [R' = H, 3; Cy, 4; CH2CH2NH2, 5; CH2CH2NMe2, 6; CH2CH2(4-C6H4OMe), 7; CH2CH2(4-C6H4OH), 8; Cp = η5-C5H5, Cy = C6H11 = cyclohexyl] were synthesized in 49-92 % yields from [Fe2Cp2(CO)2(μ-CO){μ-CN(Me)(Cy)}]CF3SO3, 1a, using a straightforward two-step procedure. They were characterized by IR and multinuclear NMR spectroscopy, and the structure of 7 was confirmed through X-ray diffraction analysis. Complexes 3-8 and the acetonitrile adducts [Fe2Cp2(CO)(NCMe)(μ-CO){μ-CN(Me)(R)}]CF3SO3 (R = Cy, 2a; Me, 2b; Xyl = 2,6-C6H3Me2, 2c) were assessed for their water solubility, octanol-water partition coefficient and stability in physiological-like solutions. The in vitro antiproliferative activity of 2a-c and 3-8 was tested on seven human cancer cell lines (A2780, A2780R, PC3, A549, MCF7, HOS and HT-29), while the selectivity was evaluated using normal MRC-5 cells. Overall, the complexes exhibited variable cytotoxicity, with IC50 values reaching the low micromolar range for 3, 7 and 8 in A2780 and A2780R cells, along with significant selectivity. Targeted experiments covered cell cycle modification, induction of cell death, mitochondrial membrane potential, ROS production and interaction with DNA and bovine serum albumin (BSA) as a model protein. The interaction of 3 with BSA was further investigated through computational studies. Results showed a negligible increase in intracellular ROS levels (except for 2b) and insignificant changes in mitochondrial membrane potential.
Collapse
Affiliation(s)
- Sara Stocchetti
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124, Pisa, Italy
| | - Ján Vančo
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, CZ-779 00, Olomouc, Czech Republic
| | - Giulio Bresciani
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124, Pisa, Italy
| | - Lorenzo Biancalana
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124, Pisa, Italy
| | - Jan Belza
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, CZ-779 00, Olomouc, Czech Republic
| | - Stefano Zacchini
- University of Bologna, Department of Industrial Chemistry "Toso Montanari", I-40136, Bologna, Italy
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-779 00, Olomouc, Czech Republic
| | - Sara Benetti
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124, Pisa, Italy
| | - Tarita Biver
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124, Pisa, Italy
| | - Marco Bortoluzzi
- University of Venezia "Ca' Foscari", Department of Molecular Science and Nanosystems, Via Torino 155, I-30170, Mestre (VE), Italy
| | - Zdeněk Trávníček
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, CZ-779 00, Olomouc, Czech Republic.
| | - Fabio Marchetti
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124, Pisa, Italy.
| |
Collapse
|
3
|
Rossi A, Biancalana L, Vančo J, Malina T, Zacchini S, Dvořák Z, Trávníček Z, Marchetti F. The effect of a varying pyridine ligand on the anticancer activity of Diiron(I) bis-cyclopentadienyl complexes. Chem Biol Interact 2025; 406:111318. [PMID: 39603517 DOI: 10.1016/j.cbi.2024.111318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/16/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024]
Abstract
The new diiron complexes [Fe2Cp2(CO)(L)(μ-CO){μ-CN(Me)(Cy)}]CF3SO3 (L = pyridine, 3a; 4-aminopyridine, 3b; 4-dimethylaminopyridine, 3c; 4-trifluoromethylpyridine, 3d; nicotinic acid, 4; Cp = η5-C5H5, Cy = C6H11 = cyclohexyl) were synthesized in moderate to high yields using two distinct synthetic routes from the precursors 1 (L = CO, for 4) and 2 (L = NCMe, for 3a-d), respectively. All products were characterized by IR and multinuclear NMR spectroscopy, and the structures of 3b and 3d were ascertained by X-ray diffraction studies. The behavior of the complexes in aqueous solutions (solubility, Log Pow, stability) was assessed using NMR and UV-Vis methods. The in vitro antiproliferative activity of 3a-c and 4 was evaluated against seven human cancer cell lines (A2780, A2780R, A549, MCF-7, PC3, HOS and HT-29) and one normal cell line (MRC-5), following 24 h of incubation (MTT test). Overall, 3-4 demonstrated stronger cytotoxicity than cisplatin, with 3c emerging as the most potent compound. The activity seems primarily linked to the inhibition of metabolic processes in the cancer cells, including depletion of reactive oxygen species (ROS) levels. However, subtle differences have been observed between the complexes, with 4 exerting its cytotoxicity through a distinct multimodal mechanism.
Collapse
Affiliation(s)
- Annachiara Rossi
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via Giuseppe Moruzzi 13, I-56124, Pisa, Italy
| | - Lorenzo Biancalana
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via Giuseppe Moruzzi 13, I-56124, Pisa, Italy
| | - Ján Vančo
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, CZ-779 00, Olomouc, Czech Republic
| | - Tomáš Malina
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, CZ-779 00, Olomouc, Czech Republic; Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, CZ-708 00, Ostrava, Poruba, Czech Republic
| | - Stefano Zacchini
- University of Bologna, Dipartimento di Chimica Industriale "Toso Montanari", Via Piero Gobetti 85, I-40129, Bologna, Italy
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-779 00, Olomouc, Czech Republic
| | - Zdeněk Trávníček
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, CZ-779 00, Olomouc, Czech Republic.
| | - Fabio Marchetti
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via Giuseppe Moruzzi 13, I-56124, Pisa, Italy.
| |
Collapse
|
4
|
De Franco M, Biancalana L, Zappelli C, Zacchini S, Gandin V, Marchetti F. 1,3,5-Triaza-7-phosphaadamantane and Cyclohexyl Groups Impart to Di-Iron(I) Complex Aqueous Solubility and Stability, and Prominent Anticancer Activity in Cellular and Animal Models. J Med Chem 2024; 67:11138-11151. [PMID: 38951717 DOI: 10.1021/acs.jmedchem.4c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Using a multigram-scalable synthesis, we obtained nine dinuclear complexes based on nonendogenous iron(I) centers and featuring variable aminocarbyne and P-ligands. One compound from the series (FEACYP) emerged for its strong cytotoxicity in vitro against four human cancer cell lines, surpassing the activity of cisplatin by 3-6 times in three cell lines, with an average selectivity index of 6.2 compared to noncancerous HEK293 cells. FEACYP demonstrated outstanding water solubility (15 g/L) and stability in physiological-like solutions. It confirmed its superior antiproliferative activity when tested in 3D spheroids of human pancreatic cancer cells and showed a capacity to inhibit thioredoxin reductase (TrxR) similar to auranofin. In vivo treatment of murine LLC carcinoma with FEACYP (8 mg kg-1 dose) led to excellent tumor growth suppression (88%) on day 15, with no signs of systemic toxicity and only limited body weight loss.
Collapse
Affiliation(s)
- Michele De Franco
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, I-35131 Padova, Italy
| | - Lorenzo Biancalana
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Chiara Zappelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Stefano Zacchini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Via P. Gobetti 85, I-40129 Bologna, Italy
| | - Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, I-35131 Padova, Italy
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| |
Collapse
|
5
|
Akhmetova VR, Akhmadiev NS, Gubaidullin AT, Samigullina AI, Glazyrin AB, Sadykov RA, Ishmetova DV, Vakhitova YV. Novel binuclear copper(II) complexes with sulfanylpyrazole ligands: synthesis, crystal structure, fungicidal, cytostatic, and cytotoxic activity. Metallomics 2024; 16:mfae024. [PMID: 38802123 DOI: 10.1093/mtomcs/mfae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/10/2024] [Indexed: 05/29/2024]
Abstract
New binuclear copper(II) [Cu(II)] tetraligand complexes (six examples) with sulfanylpyrazole ligands were synthesized. Electron spin resonance (ESR) studies have shown that in solution the complexes are transformed to the mononuclear one. Fungicidal properties against Candida albicans were found for the Cu complexes with benzyl and phenyl substituents. An in vitro evaluation of the cytotoxic properties of Cu chelates against HEK293, Jurkat, MCF-7, and THP-1 cells identified the Cu complex with the cyclohexylsulfanyl substituent in the pyrazole core as the lead compound, whereas the Cu complex without a sulfur atom in the pyrazole ligand had virtually no cytotoxic or fungicidal activity. The lead Cu(II) complex was more active than cisplatin. Effect of the S-containing Cu complex on apoptosis and cell cycle distribution has been investigated as well.
Collapse
Affiliation(s)
- Vnira R Akhmetova
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center of the Russian Academy of Sciences, Prospekt Oktyabrya 141, Ufa 450075, Russia
| | - Nail S Akhmadiev
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center of the Russian Academy of Sciences, Prospekt Oktyabrya 141, Ufa 450075, Russia
| | - Aidar T Gubaidullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of the Russian Academy of Sciences, Arbuzov str. 8, Kazan 420088, Russia
| | - Aida I Samigullina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of the Russian Academy of Sciences, Arbuzov str. 8, Kazan 420088, Russia
| | - Andrey B Glazyrin
- Ufa University of Science and Technology, Mingazheva str. 100, Ufa 450078, Russia
| | - Rais A Sadykov
- Ufa Institute of Chemistry, Ufa Federal Research Center of the Russian Academy of Sciences, Prospekt Oktyabrya 71, Ufa 450054, Russia
| | - Diana V Ishmetova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, Prospekt Oktyabrya 71, Ufa 450054, Russia
| | - Yulia V Vakhitova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, Prospekt Oktyabrya 71, Ufa 450054, Russia
| |
Collapse
|
6
|
Bajaj K, Andres SA, Hofsommer DT, Michael OC, Mashuta MS, Bates PJ, Buchanan RM, Grapperhaus CA. Ligand and Linkage Isomers of Bis(ethylthiocarbamato) Copper Complexes with Cyclic C 6H 8 Backbone Substituents: Synthesis, Characterization, and Antiproliferation Activity. Eur J Inorg Chem 2023; 26:e202300447. [PMID: 38584911 PMCID: PMC10997340 DOI: 10.1002/ejic.202300447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Indexed: 04/09/2024]
Abstract
A series of isomeric bis(alkylthiocarbamate) copper complexes have been synthesized, characterized, and evaluated for antiproliferation activity. The complexes were derived from ligand isomers with 3-methylpentyl (H2L2) and cyclohexyl (H2L3) backbone substituents, which each yield a pair of linkage isomers. The thermodynamic products CuL2a/3a have two imino N and two S donors resulting in three five-member chelate rings (555 isomers). The kinetic isomers CuL2b/3b have one imino and one hydrazino N donor and two S donors resulting in four-, six-, and five-member rings (465 isomers). The 555 isomers have more accessible CuII/I potentials (E1/2 = -811/-768 mV vs. ferrocenium/ferrocene) and lower energy charge transfer bands than their 465 counterparts (E1/2 = -923/-854 mV). Antiproliferation activities were evaluated against the lung adenocarcinoma cell line (A549) and nonmalignant lung fibroblast cell line (IMR-90) using the MTT assay. CuL2a was potent (A549EC50 = 0.080 μM) and selective (IMR-90EC50/A549EC50 = 25) for A549. Its linkage isomer CuL2b had equivalent A549 activity, but lower selectivity (IMR-90EC50/A549EC50 = 12.5). The isomers CuL3a and CuL3b were less potent with A549EC50 values of 1.9 and 0.19 μM and less selective with IMR-90EC50/A549EC50 ratios of 2.3 and 2.65, respectively. There was no correlation between reduction potential and A549 antiproliferation activity/selectivity.
Collapse
Affiliation(s)
- Kritika Bajaj
- Department of Chemistry, University of Louisville, Louisville, KY 40292 United States
| | - Sarah A Andres
- Department of Medicine and Brown Cancer Center, University of Louisville, Louisville, KY 40202 United States
| | - Dillon T Hofsommer
- Department of Chemistry, University of Louisville, Louisville, KY 40292 United States
| | | | - Mark S Mashuta
- Department of Chemistry, University of Louisville, Louisville, KY 40292 United States
| | - Paula J Bates
- Department of Medicine and Brown Cancer Center, University of Louisville, Louisville, KY 40202 United States
| | - Robert M Buchanan
- Department of Chemistry, University of Louisville, Louisville, KY 40292 United States
| | - Craig A Grapperhaus
- Department of Chemistry, University of Louisville, Louisville, KY 40292 United States
| |
Collapse
|
7
|
Zhang Y, Wu C, Zhang N, Fan R, Ye Y, Xu J. Recent Advances in the Development of Pyrazole Derivatives as Anticancer Agents. Int J Mol Sci 2023; 24:12724. [PMID: 37628906 PMCID: PMC10454718 DOI: 10.3390/ijms241612724] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Pyrazole derivatives, as a class of heterocyclic compounds, possess unique chemical structures that confer them with a broad spectrum of pharmacological activities. They have been extensively explored for designing potent and selective anticancer agents. In recent years, numerous pyrazole derivatives have been synthesized and evaluated for their anticancer potential against various cancer cell lines. Structure-activity relationship studies have shown that appropriate substitution on different positions of the pyrazole ring can significantly enhance anticancer efficacy and tumor selectivity. It is noteworthy that many pyrazole derivatives have demonstrated multiple mechanisms of anticancer action by interacting with various targets including tubulin, EGFR, CDK, BTK, and DNA. Therefore, this review summarizes the current understanding on the structural features of pyrazole derivatives and their structure-activity relationships with different targets, aiming to facilitate the development of potential pyrazole-based anticancer drugs. We focus on the latest research advances in anticancer activities of pyrazole compounds reported from 2018 to present.
Collapse
Affiliation(s)
- Yingqian Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (C.W.); (N.Z.); (R.F.); (Y.Y.)
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
| | - Chenyuan Wu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (C.W.); (N.Z.); (R.F.); (Y.Y.)
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
| | - Nana Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (C.W.); (N.Z.); (R.F.); (Y.Y.)
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
| | - Rui Fan
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (C.W.); (N.Z.); (R.F.); (Y.Y.)
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
| | - Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (C.W.); (N.Z.); (R.F.); (Y.Y.)
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
| | - Jun Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
8
|
Fernández-Delgado E, Estirado S, Rodríguez AB, Luna-Giles F, Viñuelas-Zahínos E, Espino J, Pariente JA. Cytotoxic Effects of New Palladium(II) Complexes with Thiazine or Thiazoline Derivative Ligands in Tumor Cell Lines. Pharmaceutics 2023; 15:696. [PMID: 36840017 PMCID: PMC9963275 DOI: 10.3390/pharmaceutics15020696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The synthesis of analogs of cisplatin, which is a widely used chemotherapeutic agent, using other metal centers could be an alternative for cancer treatment. Pd(II) could be a substitute for Pt(II) due to its coordination chemistry similarity. For that reason, six squared-planar Pd(II) complexes with thiazine and thiazoline ligands and formula [PdCl2(L)] were synthesized and characterized in this work. The potential anticarcinogenic ability of the compounds was studied via cytotoxicity assay in three different human tumor cell lines, i.e., epithelial cervix carcinoma (HeLa), promyelocytic leukemia (HL-60), and histiocytic lymphoma (U-937). Data obtained showed that complexes with methyl substitutions did not modify cell viability, while no-methyl substituted compounds had a moderate cytotoxic effect on all three cell lines. The complexes with phenyl substitutions displayed the lowest IC50 values, which ranged between 46.39 ± 3.99 μM and 62.74 ± 6.45 μM. Moreover, Pd accumulation inside the cell was observed after incubation with any of the four complexes mentioned, and the two complexes with phenyl rings were found to induce an increase in the percentage of apoptotic cells. These results suggested that the presence of bulky substitutions on the ligands such as phenyl groups may influence the cytotoxicity of the chemotherapeutic agents synthesized.
Collapse
Affiliation(s)
- Elena Fernández-Delgado
- Neuroimmunophysiology and Chrononutrition Research Group, Department of Physiology, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain
| | - Samuel Estirado
- Neuroimmunophysiology and Chrononutrition Research Group, Department of Physiology, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain
| | - Ana B. Rodríguez
- Neuroimmunophysiology and Chrononutrition Research Group, Department of Physiology, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain
| | - Francisco Luna-Giles
- Coordination Chemistry Research Group, Department of Organic and Inorganic Chemistry, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain
| | - Emilio Viñuelas-Zahínos
- Coordination Chemistry Research Group, Department of Organic and Inorganic Chemistry, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain
| | - Javier Espino
- Neuroimmunophysiology and Chrononutrition Research Group, Department of Physiology, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain
| | - José Antonio Pariente
- Neuroimmunophysiology and Chrononutrition Research Group, Department of Physiology, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
9
|
Al-Otaibi JS, Sheena Mary Y, Fazil S, Mary YS, Sarala S. Modeling the structure and reactivity landscapes of a pyrazole-ammonium ionic derivative using wavefunction-dependent characteristics and screening for potential anti-inflammatory activity. J Biomol Struct Dyn 2022; 40:11190-11202. [PMID: 34328395 DOI: 10.1080/07391102.2021.1957020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Spectroscopic investigations of 1-phenyl -2,3-dimethyl-5-oxo-1,2-dihydro-1H-pyrazol-4-ammonium 2[(2-carboxyphenyl) disulfanyl]benzoate (PACB) reported experimentally and theoretically. NH-O interaction is observed and there is a very large downshift for NH-O stretching frequency. Reactive sites are identified from the chemical and electronic properties. For PACB the maximum repulsion was around H33, H55 and H57 atom. LOL shows red regions between C-C and blue around C atoms are surrounded by a delocalized electron cloud. The red ring is a hallmark of electron density depletion from the NCI plot due to electrostatic repulsion and its existences suggests that coordination sphere for PACB is minimally strained around the central ion. Atomic contact energy values and high score of the docking results obtained propose that, PACB may have inhibitory properties and have a significant function in pharmacological chemistry. Molecular dynamics simulation was performed to validate the stability of the title compound with the Bovine thrombin-activatable fibrinolysis inhibitor protein.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jamelah S Al-Otaibi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | - Shiji Fazil
- Department of Chemistry, Mannaniya College of Arts and Science, Pangode, Kerala, India
| | | | - S Sarala
- Department of Physics, Kanchi Shri Krishna College of Arts and Science, Kanchipuram, Tamil Nadu, India
| |
Collapse
|
10
|
Akhmadiev N, Mescheryakova E, Khayrullina V, Khalilov L, Akhmetova V. DOS
strategy, crystal structure, and in silico evaluation of the anti‐inflammatory activity of hydroxysulfanylazole derivatives. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nail Akhmadiev
- Institute of Petrochemistry and Catalysis of the Russian Academy of Sciences Ufa Russia
| | | | | | - Leonard Khalilov
- Institute of Petrochemistry and Catalysis of the Russian Academy of Sciences Ufa Russia
| | - Vnira Akhmetova
- Institute of Petrochemistry and Catalysis of the Russian Academy of Sciences Ufa Russia
| |
Collapse
|
11
|
Cervinka J, Gobbo A, Biancalana L, Markova L, Novohradsky V, Guelfi M, Zacchini S, Kasparkova J, Brabec V, Marchetti F. Ruthenium(II)-Tris-pyrazolylmethane Complexes Inhibit Cancer Cell Growth by Disrupting Mitochondrial Calcium Homeostasis. J Med Chem 2022; 65:10567-10587. [PMID: 35913426 PMCID: PMC9376960 DOI: 10.1021/acs.jmedchem.2c00722] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
While ruthenium arene complexes have been widely investigated
for
their medicinal potential, studies on homologous compounds containing
a tridentate tris(1-pyrazolyl)methane ligand are almost absent in
the literature. Ruthenium(II) complex 1 was obtained
by a modified reported procedure; then, the reactions with a series
of organic molecules (L) in boiling alcohol afforded novel complexes 2–9 in 77–99% yields. Products 2–9 were fully structurally characterized. They are
appreciably soluble in water, where they undergo partial chloride/water
exchange. The antiproliferative activity was determined using a panel
of human cancer cell lines and a noncancerous one, evidencing promising
potency of 1, 7, and 8 and
significant selectivity toward cancer cells. The tested compounds
effectively accumulate in cancer cells, and mitochondria represent
a significant target of biological action. Most notably, data provide
convincing evidence that the mechanism of biological action is mediated
by the inhibiting of mitochondrial calcium intake.
Collapse
Affiliation(s)
- Jakub Cervinka
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic.,Faculty of Science, Department of Biochemistry, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Alberto Gobbo
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy.,Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Lorenzo Biancalana
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Lenka Markova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Massimo Guelfi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Stefano Zacchini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Jana Kasparkova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic.,Faculty of Science, Department of Biophysics, Palacky University in Olomouc, Slechtitelu 27, CZ-78371 Olomouc, Czech Republic
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| |
Collapse
|
12
|
Akhmetova VR, Bikbulatova EM, Mescheryakova ES, Gil'manova EN, Dzhemileva LU, D'yakonov VA. Synthesis, crystal structure, and in vitro evaluation of the anticancer activity of new Pt (Pd) complexes with 1-[(dimethylamino)methyl]-2-naphthol ligand. Metallomics 2021; 13:6420263. [PMID: 34734292 DOI: 10.1093/mtomcs/mfab063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/14/2021] [Indexed: 11/14/2022]
Abstract
The synthesis of new Pt(II) and Pd(II) complexes with 1-aminomethyl-2-naphtol ligands has been first performed. The adducts of [PtCl4]2- and [PdCl4]2- anions with the 1-aminomethyl-2-naphtol NH cation were synthesized. The structure for four Pt (Pd)-containing compounds was investigated using X-ray diffraction. The obtained compounds were examined for in vitro cytotoxic activity against Jurkat and K562 human leukemia cells, lymphoma U937cells, A2780 and the cisplatin-resistant A2780cis lines of human ovarian cancer, and normal fibroblasts. Study of induction of apoptosis and the effect of new palladium and platinum complexes on the cell cycle was carried out. The cells showed a higher sensitivity to Pt(II) compounds than to Pd(II) ones. All the synthesized metal complexes show much more antitumor activity compared with a platinum-containing cisplatin drug.
Collapse
Affiliation(s)
- Vnira R Akhmetova
- Department of Chemistry, Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 Prospekt Oktybrya, 450075 Ufa, Russian Federation
| | - El'mira M Bikbulatova
- Department of Chemistry, Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 Prospekt Oktybrya, 450075 Ufa, Russian Federation
| | - Ekaterina S Mescheryakova
- Department of Physical Chemistry, Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 Prospekt Oktybrya, 450075 Ufa, Russian Federation
| | - Elina N Gil'manova
- Department of Chemistry, Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 Prospekt Oktybrya, 450075 Ufa, Russian Federation
| | - Lilya U Dzhemileva
- Department of Biology, Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 Prospekt Oktybrya, 450075 Ufa, Russian Federation
| | - Vladimir A D'yakonov
- Department of Biology, Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 Prospekt Oktybrya, 450075 Ufa, Russian Federation
| |
Collapse
|
13
|
Unconventional π-hole and Semi-coordination regium bonding interactions directed supramolecular assemblies in pyridinedicarboxylato bridged polymeric Cu(II) Compounds: Antiproliferative evaluation and theoretical studies. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Braccini S, Rizzi G, Biancalana L, Pratesi A, Zacchini S, Pampaloni G, Chiellini F, Marchetti F. Anticancer Diiron Vinyliminium Complexes: A Structure-Activity Relationship Study. Pharmaceutics 2021; 13:1158. [PMID: 34452119 PMCID: PMC8398472 DOI: 10.3390/pharmaceutics13081158] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/31/2022] Open
Abstract
A series of 16 novel diiron complexes of general formula [Fe2Cp2(CO)(μ-CO){μ-η1:η3-C(R')C(R″)CN(R)(Y)}]CF3SO3 (2-7), bearing different substituents on the bridging vinyliminium ligand, was synthesized in 69-95% yields from the reactions of diiron μ-aminocarbyne precursors with various alkynes. The products were characterized by elemental analysis, IR, 1H and 13C NMR spectroscopy; moreover the X-ray structures of 2c (R = Y = CH2Ph, R' = R″ = Me) and 3a (R = CH2CH=CH2, Y = R' = Me, R″ = H) were ascertained by single-crystal X-ray diffraction studies. NMR and UV-Vis methods were used to assess the D2O solubility, the stability in aqueous solution at 37 °C and the octanol-water partition coefficients of the complexes. A screening study evidenced a potent cytotoxicity of 2-7 against the A2780 cancer cell line, with a remarkable selectivity compared to the nontumoral Balb/3T3 cell line; complex 4c (R = Cy, Y = R' = R″ = Me) revealed as the most performant of the series. The antiproliferative activity of a selection of complexes was also assessed on the cisplatin-resistant A2780cisR cancer cell line, and these complexes were capable of inducing a significant ROS production. Moreover, ESI-MS experiments indicated the absence of interaction of selected complexes with cytochrome c and the potentiality to inhibit the thioredoxin reductase enzyme (TrxR).
Collapse
Affiliation(s)
- Simona Braccini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (S.B.); (G.R.); (L.B.); (A.P.); (G.P.)
| | - Giorgia Rizzi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (S.B.); (G.R.); (L.B.); (A.P.); (G.P.)
| | - Lorenzo Biancalana
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (S.B.); (G.R.); (L.B.); (A.P.); (G.P.)
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (S.B.); (G.R.); (L.B.); (A.P.); (G.P.)
| | - Stefano Zacchini
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy;
| | - Guido Pampaloni
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (S.B.); (G.R.); (L.B.); (A.P.); (G.P.)
| | - Federica Chiellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (S.B.); (G.R.); (L.B.); (A.P.); (G.P.)
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (S.B.); (G.R.); (L.B.); (A.P.); (G.P.)
| |
Collapse
|
15
|
Zanda E, Busto N, Biancalana L, Zacchini S, Biver T, Garcia B, Marchetti F. Anticancer and antibacterial potential of robust Ruthenium(II) arene complexes regulated by choice of α-diimine and halide ligands. Chem Biol Interact 2021; 344:109522. [PMID: 34029541 DOI: 10.1016/j.cbi.2021.109522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/02/2021] [Accepted: 05/14/2021] [Indexed: 01/04/2023]
Abstract
Several complexes of general formula [Ru(halide)(η6-p-cymene)(α-diimine)]+, in the form of nitrate, triflate and hexafluorophosphate salts, including a newly synthesized iodide compound, were investigated as potential anticancer drugs and bactericides. NMR and UV-Vis studies evidenced remarkable stability of the complexes in water and cell culture medium. In general, the complexes displayed strong cytotoxicity against A2780 and A549 cancer cell lines with IC50 values in the low micromolar range, and one complex (RUCYN) emerged as the most promising one, with a significant selectivity compared to the non-cancerous HEK293 cell line. A variable affinity of the complexes for BSA and DNA binding was ascertained by spectrophotometry/fluorimetry, circular dichroism, electrophoresis and viscometry. The performance of RUCYN appears associated to enhanced cell internalization, favored by two cyclohexyl substituents, rather than to specific interaction with the evaluated biomolecules. The chloride/iodide replacement, in one case, led to increased cellular uptake and cytotoxicity at the expense of selectivity, and tuned DNA binding towards intercalation. Complexes with iodide or a valproate bioactive fragment exhibited the best antimicrobial profiles.
Collapse
Affiliation(s)
- Emanuele Zanda
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Natalia Busto
- Universidad de Burgos, Departamento de Química, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain.
| | - Lorenzo Biancalana
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy.
| | - Stefano Zacchini
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Tarita Biver
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, I-56126 Pisa, Italy
| | - Begoña Garcia
- Universidad de Burgos, Departamento de Química, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Fabio Marchetti
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy.
| |
Collapse
|