1
|
Mandal RR, Bashir Z, Raj D. Microbe-assisted phytoremediation for sustainable management of heavy metal in wastewater - A green approach to escalate the remediation of heavy metals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124199. [PMID: 39848176 DOI: 10.1016/j.jenvman.2025.124199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/30/2024] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
Water pollution from Heavy metal (HM) contamination poses a critical threat to environmental sustainability and public health. Industrial activities have increased the presence of HMs in wastewater, necessitating effective remediation strategies. Conventional methods like chemical precipitation, ion exchange, adsorption, and membrane filtration are widely used but possess various limitations. These include high costs, environmental impacts, and the potential for generating secondary pollutants, highlighting the need for sustainable alternatives. Phytoremediation, enhanced by microbial interactions, offers an eco-friendly solution to this issue. The unique physiological and biochemical traits of plants, combined with microbial metabolic capabilities, enable efficient uptake and detoxification of HMs. Microbial enzymes play a crucial role in these processes by breaking down complex compounds, enhancing HM bioavailability, and facilitating their conversion into less toxic forms. Synergistic interactions between root-associated microbes and plants further improves metal absorption and stabilization, boosting phytoremediation efficiency. However, challenges remain, including the limited bioavailability of contaminants and plant resilience in highly polluted environments. Recent advancements focus on improving microbial-assisted phytoremediation through mechanisms like bioavailability facilitation, phytoextraction, and phytostabilization. Genetic engineering facilitates the altering of genes that control plant immune responses and growth which improves the ability of plants to interact beneficially with microbes to thrive in HM rich environments while efficiently cleaning contaminated wastewater. This review examines these strategies and highlights future research directions to enhance wastewater remediation using phytoremediation technologies.
Collapse
Affiliation(s)
- Rashmi Ranjan Mandal
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India
| | - Zahid Bashir
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India
| | - Deep Raj
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India.
| |
Collapse
|
2
|
Yesankar PJ, Qureshi A. Insights into the functionality of biofilm-forming bacterial consortia as bioavailability enhancers towards biodegradation of pyrene in hydrocarbon-contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124295. [PMID: 39884207 DOI: 10.1016/j.jenvman.2025.124295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/03/2025] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
Hydrophobic organic compounds (HOCs), such as pyrene, pose significant challenges for microbial-based remediation in soil due to limited substrate availability and the sustainability of augmented microbes. Research targets are to investigate the potential of biofilm-forming bacterial cells to enhance pyrene bioavailability and biodegradation in two different hydrocarbon-contaminated soil microcosms, employing microbiological, molecular, and chemical analysis validated through statistical tools. The microcosm augmented with strong biofilm bacterial consortia (A) significantly enhanced pyrene availability by 1-1.5% compared to the weak biofilm consortia (B) and mixed consortia (AB). Analysis of 16 S rDNA amplicons revealed notable differences in bacterial community composition between consortia A and B augmented soil, with Proteobacteria as the dominant phylum. Taxonomic composition of soil microbiome predicted enhanced xenobiotic biodegradative potential of strong biofilm consortia (A) up to 20 days, exhibiting a higher abundance of functional genes related to upstream degradative pathway of PAHs, such as naphthalene dioxygenase (nahAa), PAH dioxygenase subunit genes (nidA, nidB), extradiol dioxygenase (phdF) and aldehyde dehydrogenase (nidD). Our study highlights the significant role of biofilm-forming bacteria as "bioavailability enhancers," for high molecular weight PAHs like pyrene, in contaminated soils with their implications for designing future sustainable bioremediation programs.
Collapse
Affiliation(s)
- Prerna J Yesankar
- Sustainable Environmental Processes (Environmental Bioprocesses), CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Asifa Qureshi
- Sustainable Environmental Processes (Environmental Bioprocesses), CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| |
Collapse
|
3
|
Song Y, Li H, Gu Y, Shen Z, Zhou Y. Potential and characteristics on nitrobenzene degradation by biological acidification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123971. [PMID: 39742753 DOI: 10.1016/j.jenvman.2024.123971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/24/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Biological acidification, efficient and low-cost biotechnology, is crucial in treating pharmaceutical, pesticide water, and petrochemical wastewater. Nitrobenzene is a typical organic pollutant in petrochemical wastewater with high toxicity and long persistence. However, its effect on hydrolysis acidification is yet to be fully elucidated. The present study sought to investigate the inhibitory effect of nitrobenzene on biological acidification. Volatile fatty acid toxicity assays were performed to examine the acid production of sludge exposed to different concentrations of nitrobenzene over time. Extracellular polymeric substances (EPS) were measured by the phenol-sulfuric acid technique and Coomassie brilliant blue G250 to characterize the changes in extracellular polymers after exposure to different nitrobenzene concentrations. Enzyme-linked immunosorbent assay kits were employed to evaluate representative enzyme activities of acidified bacteria after exposure to nitrobenzene. Nitrobenzene and its products were respectively determined by liquid chromatography and gas chromatography-mass spectrometry, and the transformation properties of nitrobenzene were explored in the context of acid production, EPS, and changes in key enzymes. Results showed that nitrobenzene inhibited acid production at high concentrations (median effective concentration (EC50) = 104.81 mg/L), and acetic fermentation was predominant. Furthermore, the amounts of EPS significantly dropped when the nitrobenzene concentration was above 100 mg/L. The contents of key enzymes decreased with an increase in nitrobenzene concentration. The process of nitrobenzene hydrolysis acidification was characterized as follows: EPS and anaerobic granular sludge adsorbed nitrobenzene, which is subsequently transformed to aniline by the joint action of microbial consortium reductase. Therefore, high concentrations of nitrobenzene should be pretreated before entering the biological treatment system since the capacity of bio-acidification to remove it is restricted.
Collapse
Affiliation(s)
- Yupei Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Huan Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Yanyue Gu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Zhiqiang Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Yuexi Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| |
Collapse
|
4
|
Dai JX, Yu Y, You LX, Zhong HL, Li YP, Wang AJ, Chorover J, Feng RW, Alwathnani HA, Herzberg M, Rensing C. Integrated induction of silver resistance determinants and production of extracellular polymeric substances in Cupriavidus metallidurans BS1 in response to silver ions and silver nanoparticles. CHEMOSPHERE 2024; 366:143503. [PMID: 39401671 DOI: 10.1016/j.chemosphere.2024.143503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024]
Abstract
Although the antimicrobial mechanisms of nanomaterials have been extensively investigated, bacterial defense mechanisms associated with AgNPs have not been fully elucidated. We here report that dissolved Ag+ (>0.05 μg mL-1) displayed higher toxicity on cell growth of strain Cupriavidus metallidurans BS1 (GCA_003260185.2) in comparison to 2 and 20 nm AgNPs. The genes necessary for synthesis of distinct abundance and composition of extracellular polymeric substances (EPS) were induced in strain BS1 exposed to Ag stress. This resulted in 20.1% (Ag(I)-EPS) and 24.2% (2 nm AgNPs-EPS) of the CO band integrated intensities being converted into C-OH/C-O-C group vibrations and the Ag-O bond was formed between EPS and 20 nm AgNPs. Meanwhile, the expression of primary resistance genes of the cus, sil and cup operon encoding HME-RND-driven efflux systems as well as a PIB1-type ATPase (CupA) were significantly induced after exposure to Ag(I), 2 and 20 nm AgNPs, respectively. Furthermore, distinct genes involved in biosynthesis pathways responsible for production of EPS were induced to relieve the toxicity of Ag(I), 2 nm and 20 nm AgNPs. This combined action is one potential reason why strain BS1 displayed distinct resistances in response to Ag(I) compared to 2 and 20 nm AgNPs. This work will help in understanding processes important in bacterial defensive mechanisms to AgNPs.
Collapse
Affiliation(s)
- Jia-Xin Dai
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Yanshuang Yu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Le-Xing You
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China.
| | - Hong-Lin Zhong
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Yuan-Ping Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Jon Chorover
- Department of Environmental Science, University of Arizona, Tucson, AZ, 85719, USA
| | - Ren-Wei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Hend A Alwathnani
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Martin Herzberg
- Department of Solar Materials Biotechnology (SOMA), Helmholtz Centre for Environmental Research GmbH (UFZ), Permoserstr. 15, 04318, Leipzig, Germany
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China.
| |
Collapse
|
5
|
Sujiritha PB, Vikash VL, Ponesakki G, Ayyadurai N, Kamini NR. Microbially induced carbonate precipitation with Arthrobacter creatinolyticus: An eco-friendly strategy for mitigation of chromium contamination. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121300. [PMID: 38955041 DOI: 10.1016/j.jenvman.2024.121300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/14/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
Chromium contamination from abandoned industrial sites and inadequately managed waste disposal areas poses substantial environmental threat. Microbially induced carbonate precipitation (MICP) has shown promising, eco-friendly solution to remediate Cr(VI) and divalent heavy metals. In this study, MICP was carried out for chromium immobilization by an ureolytic bacterium Arthrobacter creatinolyticus which is capable of reducing Cr(VI) to less toxic Cr(III) via extracellular polymeric substances (EPS) production. The efficacy of EPS driven reduction was confirmed by cellular fraction analysis. MICP carried out in aqueous solution with 100 ppm of Cr(VI) co-precipitated 82.21% of chromium with CaCO3 and the co-precipitation is positively correlated with reduction of Cr(VI). The organism was utilized to remediate chromium spiked sand and found that MICP treatment decreased the exchangeable fraction of chromium to 0.54 ± 0.11% and increased the carbonate bound fraction to 26.1 ± 1.15% compared to control. XRD and SEM analysis revealed that Cr(III) produced during reduction, influenced the polymorph selection of vaterite during precipitation. Evaluation of MICP to remediate Cr polluted soil sample collected from Ranipet, Tamil Nadu also showed effective immobilization of chromium. Thus, A. creatinolyticus proves to be viable option for encapsulating chromium contaminated soil via MICP process, and effectively mitigating the infiltration of Cr(VI) into groundwater and adjacent water bodies.
Collapse
Affiliation(s)
- Parthasarathy Baskaran Sujiritha
- Department of Biochemistry and Biotechnology, CSIR - Central Leather Research Institute, Chennai, 600020, Tamil Nadu, India; University of Madras, Chennai, 600005, Tamil Nadu, India
| | - Vijan Lal Vikash
- Department of Biochemistry and Biotechnology, CSIR - Central Leather Research Institute, Chennai, 600020, Tamil Nadu, India
| | - Ganesan Ponesakki
- Department of Biochemistry and Biotechnology, CSIR - Central Leather Research Institute, Chennai, 600020, Tamil Nadu, India
| | - Niraikulam Ayyadurai
- Department of Biochemistry and Biotechnology, CSIR - Central Leather Research Institute, Chennai, 600020, Tamil Nadu, India
| | - Numbi Ramudu Kamini
- Department of Biochemistry and Biotechnology, CSIR - Central Leather Research Institute, Chennai, 600020, Tamil Nadu, India.
| |
Collapse
|
6
|
Amanze C, Wu X, Anaman R, Alhassan SI, Fosua BA, Chia RW, Yang K, Yunhui T, Xiao S, Cheng J, Zeng W. Elucidating the impacts of cobalt (II) ions on extracellular electron transfer and pollutant degradation by anodic biofilms in bioelectrochemical systems during industrial wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134007. [PMID: 38490150 DOI: 10.1016/j.jhazmat.2024.134007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/03/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Electrogenic biofilms in bioelectrochemical systems (BES) are critical in wastewater treatment. Industrial effluents often contain cobalt (Co2+); however, its impact on biofilms is unknown. This study investigated how increasing Co2+ concentrations (0-30 mg/L) affect BES biofilm community dynamics, extracellular polymeric substances, microbial metabolism, electron transfer gene expression, and electrochemical performance. The research revealed that as Co2+ concentrations increased, power generation progressively declined, from 345.43 ± 4.07 mW/m2 at 0 mg/L to 160.51 ± 0.86 mW/m2 at 30 mg/L Co2+. However, 5 mg/L Co2+ had less effect. The Co2+ removal efficiency in the reactors fed with 5 and 10 mg/L concentrations exceeded 99% and 94%, respectively. However, at 20 and 30 mg/L, the removal efficiency decreased substantially, likely because of reduced biofilm viability. FTIR indicated the participation of biofilm functional groups in Co2+ uptake. XPS revealed Co2+ presence in biofilms as CoO and Co(OH)2, indicating precipitation also aided removal. Cyclic voltammetry and electrochemical impedance spectroscopy tests revealed that 5 mg/L Co2+ had little impact on the electrocatalytic activity, while higher concentrations impaired it. Furthermore, at a concentration of 5 mg/L Co2+, there was an increase in the proportion of the genus Anaeromusa-Anaeroarcus, while the genus Geobacter declined at all tested Co2+ concentrations. Additionally, higher concentrations of Co2+ suppressed the expression of extracellular electron transfer genes but increased the expression of Co2+-resistance genes. Overall, this study establishes how Co2+ impacts electrogenic biofilm composition, function, and treatment efficacy, laying the groundwork for the optimized application of BES in remediating Co2+-contaminated wastewater.
Collapse
Affiliation(s)
- Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Xiaoyan Wu
- School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Richmond Anaman
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Sikpaam Issaka Alhassan
- Herbert Wertheim College of Engineering, Department of Materials Science & Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Bridget Ataa Fosua
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Rogers Wainkwa Chia
- Department of Geology, Kangwon National University, Chuncheon, the Republic of Korea
| | - Kai Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Tang Yunhui
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Shanshan Xiao
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Jinju Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China.
| |
Collapse
|
7
|
Munir Ahamed J, Dahms HU, Huang YL. Heavy metal tolerance, and metal biosorption by exopolysaccharides produced by bacterial strains isolated from marine hydrothermal vents. CHEMOSPHERE 2024; 351:141170. [PMID: 38219989 DOI: 10.1016/j.chemosphere.2024.141170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/14/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
The present study highlights heavy metal tolerance, EPS production, and biosorption capacity of four hydrothermal vent bacterial strains, namely Exiguobacterium aquaticum, Mammaliicoccus sciuri, Micrococcus luteus, and Jeotgalicoccus huakuii against As, Cd, Cr, Cu, Co, Pb and Ni. The biosorption assay showed high removal efficiency of As (83%) by E. aquaticum, Cd (95%) by M. sciuri, Cu (94%) by M. luteus, and Ni (89%) by J. huakuii and their produced EPS with these metals in aqueous solution were 84%, 85%, 98%, and 91%, respectively. The maximum EPS yield was attained by optimized medium composition consisting of 1% Xylose, and 1% NaCl at pH 7. In metal-amended conditions, the four bacterial strains showed induced EPS production in the initial concentrations. SEM with EDX and CLSM images showed that the growth and EPS production of bacterial strains were affected by metal ion concentrations. A phenol sulphuric acid method and BCA assay were used to identify both the carbohydrate and total protein content of four extracted EPS. A DPPH assay revealed that EPS influences free radical scavenging and has a highly enhanced synergistic effect with its antioxidant activity. FT-IR analysis of four extracted EPS showed the shifting of peaks in the functional groups of EPS before and after adsorption of metal ions. At pH 5 and after 60 min contact time metal removal efficiency and adsorption capacity increased as calculated for As, Cd, Cu, and Ni by four extracted EPS: (86%, 20 mg/g), (74%, 19 mg/g), (94%, 60 mg/g) and (89%, 32 mg/g) and (89%, 16 mg/g), (85%, 16 mg/g), (96%, 22 mg/g) and (91%, 16 mg/g), respectively. The Langmuir compared to the Freundlich model was found to better represent the adsorption by EPS providing maximum adsorption capacities for As (34.65 mg/g), Cd (52.88 mg/g), Cu (24.91 mg/g), and Ni (58.38 mg/g).
Collapse
Affiliation(s)
- Johnthini Munir Ahamed
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| | - Yeou Lih Huang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; College of Professional Studies, National Pingtung University of Science and Technology, Pingtung, Taiwan; Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
8
|
Rahal S, Menaa B, Chekireb D. Screening of heavy metal-resistant rhizobial and non-rhizobial microflora isolated from Trifolium sp. growing in mining areas. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:283. [PMID: 38372826 DOI: 10.1007/s10661-024-12445-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
Plant growth-promoting rhizobacteria (PGPR) can promote plant growth and development with several beneficial effects, especially in challenging environmental conditions, such as the presence of toxic contaminants. In this study, 49 isolates obtained from Trifolium sp. nodules growing on a Pb/Zn mine site were characterized for PGP traits including siderophores production, phosphate solubilization, extracellular enzymes production, and antifungal activity. The isolates were also screened for their ability to grow at increasing concentrations of NaCl and heavy metals, including lead, zinc, cobalt, copper, nickel, cadmium, and chromium. The findings of our study indicated that isolates Cupriavidus paucula RSCup01-RSCup08, Providencia rettgeri RSPro01, Pseudomonas putida RSPs01, Pseudomonas thivervalensis RSPs03-RSPs09, and Acinetobacter beijerinckii RSAci01 showed several key traits crucial for promoting plant growth, thus demonstrating the greatest potential. Most isolates displayed resistance to salt and heavy metals. Notably, Staphylococcus xylosus RSSta01, Pseudomonas sp. RSPs02, Micrococcus yunnanensis RSMicc01, and Kocuria dechangensis RSKoc01 demonstrated a significant capacity to grow at salt concentrations ranging from 10 to 20%, and isolates including Cupravidus paucula RSCup01-RSCup08 exhibited resistance to high levels of heavy metals, up to 1300 mg/L Pb++, 1200 mg/L Zn++, 1000 mg/L Ni++, 1000 mg/L Cd++, 500 mg/L Cu++, 400 mg/L Co++, and 50 mg/L CrVI+. Additionally, the analysis revealed that metal-resistant genes pbrA, czcD, and nccA were exclusively detected in the Cupriavidus paucula RSCup01 strain. The results of this study provide insights into the potential of plant growth-promoting rhizobacteria strains that might be used as inoculants to improve phytoremediation in heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Sarah Rahal
- Laboratory of Applied Biochemistry and Microbiology (LABM), Faculty of Sciences, Department of Biochemistry, University Badji Mokhtar Annaba, B.P. 12, Sidi Amar, 23200, Annaba, Algeria.
| | - Belkis Menaa
- Laboratory of Applied Biochemistry and Microbiology (LABM), Faculty of Sciences, Department of Biochemistry, University Badji Mokhtar Annaba, B.P. 12, Sidi Amar, 23200, Annaba, Algeria
| | - Djamel Chekireb
- Laboratory of Applied Biochemistry and Microbiology (LABM), Faculty of Sciences, Department of Biochemistry, University Badji Mokhtar Annaba, B.P. 12, Sidi Amar, 23200, Annaba, Algeria
| |
Collapse
|
9
|
Wang M, Vollstedt C, Siebels B, Yu H, Wu X, Shen L, Li J, Liu Y, Yu R, Streit WR, Zeng W. Extracellular proteins enhance Cupriavidus pauculus nickel tolerance and cell aggregate formation. BIORESOURCE TECHNOLOGY 2024; 393:130133. [PMID: 38043689 DOI: 10.1016/j.biortech.2023.130133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Heavy metal-resistant bacteria secrete extracellular proteins (e-PNs). However, the role of e-PNs in heavy metal resistance remains elusive. Here Fourier Transform Infrared Spectroscopy implied that N-H, C = O and NH2-R played a crucial role in the adsorption and resistance of Ni2+ in the model organism Cuprividus pauculus 1490 (C. pauculus). Proteinase K treatment reduced Ni2+ resistance of C. pauculus underlining the essential role of e-PNs. Further three-dimension excitation-emission matrix fluorescence spectroscopy analysis demonstrated that tryptophan proteins as part of the e-PNs increased significantly with Ni2+ treatment. Proteomic and quantitative real-time polymerase chain reaction data indicated that major changes were induced in the metabolism of C. pauculus in response to Ni2+. Among those lipopolysaccharide biosynthesis, general secretion pathways, Ni2+-affiliated transporters and multidrug efflux play an essential role in Ni2+ resistance. Altogether the results provide a conceptual model for comprehending how e-PNs contribute to bacterial resistance and adsorption of Ni2+.
Collapse
Affiliation(s)
- Mingwei Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Department of Microbiology and Biotechnology, University of Hamburg, Hamburg 22609, Germany
| | - Christel Vollstedt
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg 22609, Germany
| | - Bente Siebels
- Institute for Clinical Chemistry and Laboratory Medicine, University of Hamburg, Hamburg 20246, Germany
| | - Huang Yu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Xueling Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Jiaokun Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Yuandong Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Runlan Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg 22609, Germany.
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China.
| |
Collapse
|
10
|
Thai TD, Lim W, Na D. Synthetic bacteria for the detection and bioremediation of heavy metals. Front Bioeng Biotechnol 2023; 11:1178680. [PMID: 37122866 PMCID: PMC10133563 DOI: 10.3389/fbioe.2023.1178680] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Toxic heavy metal accumulation is one of anthropogenic environmental pollutions, which poses risks to human health and ecological systems. Conventional heavy metal remediation approaches rely on expensive chemical and physical processes leading to the formation and release of other toxic waste products. Instead, microbial bioremediation has gained interest as a promising and cost-effective alternative to conventional methods, but the genetic complexity of microorganisms and the lack of appropriate genetic engineering technologies have impeded the development of bioremediating microorganisms. Recently, the emerging synthetic biology opened a new avenue for microbial bioremediation research and development by addressing the challenges and providing novel tools for constructing bacteria with enhanced capabilities: rapid detection and degradation of heavy metals while enhanced tolerance to toxic heavy metals. Moreover, synthetic biology also offers new technologies to meet biosafety regulations since genetically modified microorganisms may disrupt natural ecosystems. In this review, we introduce the use of microorganisms developed based on synthetic biology technologies for the detection and detoxification of heavy metals. Additionally, this review explores the technical strategies developed to overcome the biosafety requirements associated with the use of genetically modified microorganisms.
Collapse
Affiliation(s)
| | | | - Dokyun Na
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Hasani Zadeh P, Fermoso FG, Collins G, Serrano A, Mills S, Abram F. Impacts of metal stress on extracellular microbial products, and potential for selective metal recovery. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114604. [PMID: 36758509 DOI: 10.1016/j.ecoenv.2023.114604] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Harnessing microbial capabilities for metal recovery from secondary waste sources is an eco-friendly and sustainable approach for the management of metal-containing wastes. Soluble microbial products (SMP) and extracellular polymeric substances (EPS) are the two main groups of extracellular compounds produced by microorganisms in response to metal stress that are of great importance for remediation and recovery of metals. These include various high-, and low, molecular weight components, which serve various functional and structural roles. These compounds often contain functional groups with metal binding potential that can attenuate metal stress by sequestering metal ions, making them less bioavailable. Microorganisms can regulate the content and composition of EPS and SMP in response to metal stress in order to increase the compounds specificity and capacity for metal binding. Thus, EPS and SMP represent ideal candidates for developing technologies for selective metal recovery from complex wastes. To discover highly metal-sorptive compounds with specific metal binding affinity for metal recovery applications, it is necessary to investigate the metal binding affinity of these compounds, especially under metal stressed conditions. In this review we critically reviewed microbial EPS and SMP production as a response to metal stress with a particular emphasis on the metal binding properties of these compounds and their role in altering metal bioavailability. Furthermore, for the first time, we compiled the available data on potential application of these compounds for selective metal recovery from waste streams.
Collapse
Affiliation(s)
- Parvin Hasani Zadeh
- Bioprocesses for the Circular Economy Group, Instituto de la Grasa, Spanish National Research Council (CSIC), Seville, Spain; Microbiology, School of Biological and Chemical Sciences, National University of Ireland Galway, Galway, Ireland.
| | - Fernando G Fermoso
- Bioprocesses for the Circular Economy Group, Instituto de la Grasa, Spanish National Research Council (CSIC), Seville, Spain
| | - Gavin Collins
- Microbiology, School of Biological and Chemical Sciences, National University of Ireland Galway, Galway, Ireland
| | - Antonio Serrano
- Institute of Water Research, University of Granada, Granada 18071, Spain; Department of Microbiology, Pharmacy Faculty, University of Granada, Campus de Cartuja s/n, Granada 18071, Spain
| | - Simon Mills
- Microbiology, School of Biological and Chemical Sciences, National University of Ireland Galway, Galway, Ireland
| | - Florence Abram
- Microbiology, School of Biological and Chemical Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
12
|
Li J, Wang Y, Fan Z, Tang P, Wu M, Xiao H, Zeng Z. Toxicity of Tetracycline and Metronidazole in Chlorella pyrenoidosa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3623. [PMID: 36834317 PMCID: PMC9964688 DOI: 10.3390/ijerph20043623] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/28/2023] [Accepted: 02/16/2023] [Indexed: 05/12/2023]
Abstract
Antibiotics have become a new kind of organic pollutant as they are widely used in the water environment of China. Tetracycline (TC) is a class of broad-spectrum antibiotics produced or semi-synthesized by actinomycetes. Metronidazole (MTZ) is the first generation of typical nitroimidazoles. The content of nitroimidazoles is relatively high in medical wastewater, and their ecotoxicity is worthy of attention because they are difficult to completely eliminate. In this paper, the effects of TC and MTZ on the growth, cell morphology, extracellular polymer and oxidative stress of Chlorella pyrenoidosa (C. pyrenoidosa) were studied, and the toxic interactions between TC and MTZ mixture components were analyzed. The results showed that the 96h-EC50 of TC and MTZ was 8.72 mg/L and 45.125 mg/L, respectively. The toxicity of TC to C. pyrenoidosa was higher than that of MTZ, and the combined toxicity effect of TC and MTZ was synergistic after the combined action of a 1:1 toxicity ratio. In addition, the algal cells of C. pyrenoidosa died to varying degrees, the membrane permeability of algal cells was increased, the membrane was damaged, the surface of algal cells exposed to higher concentration of pollutants was wrinkled, and their morphology was changed. The extracellular polymer of C. pyrenoidosa was affected by a change in concentration. The effect of pollutants on the reactive oxygen species (ROS) level and malondialdehyde (MDA) content of C. pyrenoidosa also had an obvious dose-effect relationship. This study contributes to the assessment of the possible ecological risks to green algae due to the presence of TC and MTZ in aquatic environments.
Collapse
Affiliation(s)
- Junrong Li
- Department of Environmental Engineering, College of Environment, Sichuan Agricultural University, Chengdu 611100, China
| | - Yingjun Wang
- Department of Environmental Engineering, College of Environment, Sichuan Agricultural University, Chengdu 611100, China
| | - Ziqi Fan
- Sichuan SEP Analytical Services Co., Ltd., Chengdu 610000, China
| | - Panyang Tang
- Department of Environmental Engineering, College of Environment, Sichuan Agricultural University, Chengdu 611100, China
| | - Mengting Wu
- Department of Environmental Engineering, College of Environment, Sichuan Agricultural University, Chengdu 611100, China
| | - Hong Xiao
- Department of Environmental Engineering, College of Environment, Sichuan Agricultural University, Chengdu 611100, China
| | - Zhenxing Zeng
- Department of Environmental Engineering, College of Environment, Sichuan Agricultural University, Chengdu 611100, China
| |
Collapse
|
13
|
Palanivel TM, Pracejus B, Novo LAB. Bioremediation of copper using indigenous fungi Aspergillus species isolated from an abandoned copper mine soil. CHEMOSPHERE 2023; 314:137688. [PMID: 36584825 DOI: 10.1016/j.chemosphere.2022.137688] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Bioremediation of mining soils using metal tolerant fungi is widely considered as a promising cost-effective and ecofriendly approach. This study assessed the copper removal efficiency and bioaccumulation ability of the indigenous species Aspergillus hiratsukae LF1 and Aspergillus terreus LF2 isolated from the soils of an abandoned copper mine in Oman. Nutrient medium containing five different Cu (II) levels (0 - control, 100, 200, 300 and 500 mg/L) was employed for assessing both parameters. The removal efficiency from nutrient medium (100-500 mg Cu per L) ranged from 57% to 21% for A. hiratsukae LF1, and from 69% to 24% for A. terreus LF2. A. hiratsukae LF1 and A. terreus LF2 accumulated a maximum of 4.63 and 5.95 mg Cu/g,espectively, at 500 mg/L of Cu (II) concentration. The compositional analysis of extracellular polymeric substances excreted by both species revealed a hormetic response by A. hiratsukae LF1 at 100 mg/L; whereas increasing media Cu levels induced carbohydrates production in A. terreus LF2. These results hint at the involvement of carbohydrates in the Cu-tolerance mechanism of the latter. Copper accumulation in both species was further demonstrated through scanning electron microscopy and energy dispersive spectrometry. In line with the pertaining literature, our results are somewhat inconclusive concerning whether proteins or carbohydrates play a more pivotal role in copper complexation in both species; yet, FTIR analysis showed the participation of different functional groups in Cu sorption. Overall, although additional research is required to advance the knowledge about both Aspergillus species, our findings suggest that A. terreus LF2 presents greater promise for copper bioremediation due to enhanced tolerance and accumulation capacity.
Collapse
Affiliation(s)
| | - Bernhard Pracejus
- Department of Earth Science, College of Science,Sultan Qaboos University, P.O. Box 36, 123 Al-Khoud, Muscat, Oman
| | - Luís A B Novo
- Scotland's Rural College (SRUC), Peter Wilson Building, King's Buildings, Edinburgh, EH9 3JG, UK.
| |
Collapse
|
14
|
da Silva MSRDA, de Carvalho LAL, Braos LB, de Sousa Antunes LF, da Silva CSRDA, da Silva CGN, Pinheiro DG, Correia MEF, Araújo EDS, Colnago LA, Desoignies N, Zonta E, Rigobelo EC. Effect of the application of vermicompost and millicompost humic acids about the soybean microbiome under water restriction conditions. Front Microbiol 2022; 13:1000222. [DOI: 10.3389/fmicb.2022.1000222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Humic substances (HSs) are constituent fractions of organic matter and are highly complex and biologically active. These substances include humic acids (HA), fulvic acids (FA), and humin. HS are known to stimulate the root system and plant growth and to mitigate stress damage, including hydric stress. Humic acids have already been reported to increase microbial growth, affecting their beneficial effect on plants. However, there is scarce information on whether HA from vermicompost and millicompost, along with Bradyrhizobium, improves the tolerance of soybean to water restriction. This study aimed to evaluate the responses of soybean plants to the application of vermicompost HA (HA-V) and millicompost (HA-M) along with Bradyrhizobium sp. under water restriction. The experiment was carried out in a greenhouse, and the treatments received Bradyrhizobium sp. inoculation with or without the application of HA from vermicompost and millicompost with or without water restriction. The results showed that HA provided greater soybean growth and nodulation than the control. The application of HA-M stimulated an increase in the richness of bacterial species in roots compared to the other treatments. After the application of water stress, the difference between the treatments disappeared. Microbial taxa were differentially abundant in plants, with the fungal fraction most affected by HA application in stressed roots. HA-V appears to be more prominent in inducing taxa under stress conditions. Although the results showed slight differences between HA from vermicompost and millicompost regarding plant growth, both humic acids promoted an increase in plant development compared to the control.
Collapse
|
15
|
Butnaru I, Constantin CP, Damaceanu MD. Optimization of triphenylamine-based polyimide structure towards molecular sensors for selective detection of heavy/transition metal ions. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
16
|
Hasani Zadeh P, Serrano A, Collins G, Fermoso FG. Interrelating EPS, soluble microbial products and metal solubility in a methanogenic consortium stressed by nickel and cobalt. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113579. [PMID: 35551045 DOI: 10.1016/j.ecoenv.2022.113579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
The relationships between extracellular polymeric substances (EPS), soluble microbial product production, metal solubility, and methanogenic activity were investigated. The individual, and joint, toxic effects of nickel and cobalt on methanogenic consortia fed with glucose as model substrate were studied using biomethane potential assays. Cobalt was found to be less toxic to methanogens than nickel at each concentration tested, and the combined effects of Ni and Co on methane production in the bimetal experiment was higher than the sum of the effects of each metal alone. The protein content of EPS, and extracellular soluble protein fractions, decreased with increasing concentrations of total metals. Meanwhile, no significant change in response to metal stress was apparent for carbohydrate content of EPS or extracellular soluble carbohydrate. Decreasing protein content of EPS was accompanied by reduced methanogenic activity and an increase in the soluble metal fraction. The strong associations observed between these variables could be due to the critical role of EPS in protecting microbial cells against nickel and cobalt stress, possibly by capturing metal cations through their functional groups, thus reducing metal availability to the microbial cells in the methanogenic consortia underpinning the anaerobic digestion process.
Collapse
Affiliation(s)
- Parvin Hasani Zadeh
- Bioprocesses for the Circular Economy Group, Instituto de la Grasa, Spanish National Research Council (CSIC), Seville, Spain; Microbial Communities Laboratory, School of Biological and Chemical Sciences, National University of Ireland Galway, Galway, Ireland
| | - Antonio Serrano
- Institute of Water Research, University of Granada, Granada 18071, Spain; Department of Microbiology, Pharmacy Faculty, University of Granada, Campus de Cartuja s/n, Granada 18071, Spain
| | - Gavin Collins
- Microbial Communities Laboratory, School of Biological and Chemical Sciences, National University of Ireland Galway, Galway, Ireland.
| | - Fernando G Fermoso
- Bioprocesses for the Circular Economy Group, Instituto de la Grasa, Spanish National Research Council (CSIC), Seville, Spain
| |
Collapse
|
17
|
Wu J, Gao T, Zhao L, Bao H, Yu C, Hu J, Ma F. Investigating Phragmites australis response to copper exposure using physiologic, Fourier Transform Infrared and metabolomic approaches. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:365-381. [PMID: 35290177 DOI: 10.1071/fp21258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Phragmites australis (Cav.) Trin. ex Steud is a landscape plant with resistance to heavy metals that has significance in phytoremediation. However, little is known about the metabolomic background of the heavy metal resistance mechanisms of Phragmites . We studied copper stress on Phragmites and monitored physiological indicators such as malondialdehyde (MDA) and electrolyte leakage (EL). In addition, Fourier Transform Infrared (FTIR) was used to study the related chemical composition in the roots, stems, and leaves under copper stress. Furthermore, LC-MS technology was used to analyse the plants metabolic profile. Results showed that increased copper concentration in Phragmites led to the accumulation of MDA and EL. FTIR spectrum detected the presence of O-H and C=O stretching. O-H stretching was related to the presence of flavonoids, while C=O stretching reflected the presence of protein amide I. The latter was related to the change of amino acid composition. Both flavonoids and amino acids are regarded as contributors to the antioxidant of Phragmites under copper stress. Metabolomics analysis revealed that arginine and ayarin were accumulated and Phragmites leaves responded to copper stress with changes in the pool size of arginine and ayarin. It is speculated that they could improve resistance. Arginine is accumulated through two pathways: the citrulline decomposition and conversion pathway; and the circular pathway composed of ornithine, citrulline, l -argininosuccinate and arginine. Ayarin is synthesised through the quercetin methylation pathway. This study elucidates the antioxidant mechanisms for enhancing its resistance to heavy metal stress, thus improving of phytoremediation efficiency.
Collapse
Affiliation(s)
- Jieting Wu
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China
| | - Tian Gao
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Hongxu Bao
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China
| | - Chang Yu
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China
| | - Jianing Hu
- Dalian Neusoft University of Information, Dalian 116032, People's Republic of China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| |
Collapse
|
18
|
Peng T, Liao W, Gu G, Qiu G, Wu X, Yang F, Zeng W. Insights into the role of extracellular DNA in heavy metal adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152067. [PMID: 34863749 DOI: 10.1016/j.scitotenv.2021.152067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/12/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Extracellular polymeric substances (EPS) participate in heavy metal adsorption in the aquatic environments. Extracellular DNA (eDNA) is an essential component of EPS, but its involvement in metal binding remains ambiguous. Herein, the role of eDNA in Cd(II) and Ni(II) adsorption was described using a combination of semi-quantitative and qualitative approaches. EPS were extracted from Burkholderia sp. MBR-1 and eDNA accounted for 6.9% of the total mass of EPS. The eDNA in the extracted EPS was digested using the DNase II to prepare an eDNA-free EPS sample. Potentiometric titration unveiled that the number of total binding sites of the eDNA-free EPS was 19% lower than the untreated EPS. The Cd(II) and Ni(II) adsorption capacity of the eDNA-free EPS was lower than the untreated EPS at the pH range of 4-7. At pH 7, the results of batch adsorption experiments showed that removing eDNA from EPS resulted in declines of 12.6% and 15.7% in the adsorption capacities for Cd(II) and Ni(II), respectively. Furthermore, Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy unraveled that the phosphoryl groups and purines of eDNA are responsible for Cd(II) and Ni(II) complexation. The results demonstrated that eDNA plays an essential role in heavy metal adsorption.
Collapse
Affiliation(s)
- Tangjian Peng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Wanqing Liao
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Guohua Gu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Xueling Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; CSIRO Process Science and Engineering, Clayton, Victoria 3168, Australia.
| |
Collapse
|
19
|
Dhanya BE, Athmika, Rekha PD. Characterization of an exopolysaccharide produced by Enterobacter sp. YU16-RN5 and its potential to alleviate cadmium induced cytotoxicity in vitro. 3 Biotech 2021; 11:491. [PMID: 34790515 PMCID: PMC8578477 DOI: 10.1007/s13205-021-03034-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022] Open
Abstract
Natural biopolymers have gained remarkable attention for bioremediation particularly in heavy metal removal and oil degradation due to their non-toxic nature and lack of secondary pollution. The exopolysaccharides (EPS) produced by the bacteria have become an important class of biopolymers that are employed in bioremediation. The bacteria isolated from the rhizospheric soil have higher metal tolerance and their EPS are effective in biosorption of heavy metals. Here, we report the characterization of an EPS (EPS-RN5) isolated from the root nodule-associated bacteria, Enterobacter cancerogenus strain YU16-RN5 and its heavy metal biosorption abilities. The bacteria isolated from the West coast of India was cultured in yeast extract mannitol (YEM) medium for EPS extraction and to study the production kinetics on a temporal scale. The biochemical composition, rheological properties and thermostability of EPS-RN5 was characterized by standard methods. The biosorption potential of EPS-RN5 against the selected heavy metals was analyzed by employing the inductively coupled plasma atomic emission spectroscopy (ICP-AES) technique. Further, cell culture experiments were used to test the role of EPS-RN5 in reducing the cytotoxicity exerted by the heavy metals in vitro using a human embryonic kidney cell line (HEK 293T). The bacteria showed good growth in YEM media and the maximum EPS yield was 1800 mg/L at 96 h. The molecular weight of EPS-RN5 was 0.7 × 106 Da and it contained 61.5% total sugars and 14.5% proteins. The monosaccharide composition of the EPS included glucose, sorbose and galactose in the ratio 0.25:0.07:1.0. The EPS-RN5 showed high thermal stability with a degradation temperature of 273 °C. Rheological analysis revealed the non-Newtonian behavior, with pseudoplastic characteristics. The EPS-RN5 efficiently absorbed cadmium and other heavy metals such as mercury, strontium, copper, arsenic, and uranium. In vitro studies revealed significant protective effect against the cadmium-induced cytotoxicity in HEK 293T cells. These results indicate the potential applications of EPS-RN5.
Collapse
Affiliation(s)
- Bythadka Erappa Dhanya
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018 India
| | - Athmika
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018 India
| | - Punchappady Devasya Rekha
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018 India
| |
Collapse
|
20
|
Etemadzadeh SS, Emtiazi G. Expression regulation of chitin-binding protein and metal-binding peptide in new Bacillus velezensis: MALDI-TOF MS/MS analysis. J Basic Microbiol 2021; 61:982-992. [PMID: 34496046 DOI: 10.1002/jobm.202100159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/11/2021] [Accepted: 08/24/2021] [Indexed: 11/06/2022]
Abstract
Metallothionein and metal-binding peptides are small cysteine-rich proteins produced by different organisms in stress conditions. In this study, the metal-binding peptide was detected in extracellular proteins of a new Bacillus velezensis strain, isolated from metal contaminated soil, and grown on the lead-enriched medium, for the first time. The presence of sulfide peptide was assayed by two simple tests (lead sulfide and Ellman's reagent test) for preliminary, and subsequently confirmed using polyacrylamide gel electrophoresis at media with different lead concentrations that the low-molecular-weight protein fragments (≈10 kDa) were observed while none were detected in the medium containing sodium chloride or calcium salt. The amino acids of the observed fragments were analyzed by matrix-assisted laser desorption ionization time-of-flight tandem mass spectrometry (MALDI-TOF MS/MS). Also, the metal adsorption was confirmed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) by staining with chromium solution. The results showed that the putative sulfide peptide is metallothionein, which is induced in stress conditions. It was interesting that in all SDS profiles, one protein fragment (≈18 kDa) was inhibited in lead-enriched media. The data from MALDI-TOF MS/MS analysis showed that this fraction was a chitin-binding protein whose production was regulated by metal contamination. It is anticipated that these two proteins regulate the toxicity of lead.
Collapse
Affiliation(s)
- Shekoofeh S Etemadzadeh
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Giti Emtiazi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
21
|
Yu Q, Li P, Li B, Zhang C, Zhang C, Ge Y. Effects of algal-bacterial ratio on the growth and cadmium accumulation of Chlorella salina-Bacillus subtilis consortia. J Basic Microbiol 2021; 62:518-529. [PMID: 34486742 DOI: 10.1002/jobm.202100314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/10/2021] [Accepted: 08/21/2021] [Indexed: 01/23/2023]
Abstract
Algae-bacteria consortia have been proven effective in the removal of metal pollutants, but the effects of algal-bacterial ratio in the metal accumulation and resistance by this symbiotic system have not been systematically investigated. In this study, we set up consortia with various ratios of Chlorella salina-Bacillus subtilis, determined their growth, Cd accumulation, levels of intracellular glutathione (GSH), extracellular polysaccharide, phosphorus (P) in the culture medium, and functional groups of consortia after Cd treatments (0.1, 0.5, 1 mg L-1 ) for 7 days. With the addition of B. subtilis in the C. salina culture, the dry weight and specific growth rate of the consortia significantly increased compared with C. salina alone, reaching 68.33 mg and 0.382 (mg L-1 ) d-1 respectively at the 1:4 algal-bacterial ratio with 1 mg L-1 Cd treatment. Maximum Cd removal (51.66%) was also observed upon the same Cd exposure and algal-bacterial ratio. Cadmium was mostly taken up into cells at 1 mg L-1 Cd whereas its adsorption dominated the accumulation when Cd was 0.1 and 0.5 mg L-1 . The amounts of extracellular polysaccharides, GSH, and P of the symbiotic system were also increased by the bacterial addition. Besides, Fouriertransform infrared (FTIR) spectroscopy analysis showed that functional groups like N-H, O-H, and P-O-C were involved in the Cd complexation. Taken together, a higher bacterial ratio promoted the Cd accumulation and detoxification by the C. salina-B. subtilis consortia through intra- and extracellular processes.
Collapse
Affiliation(s)
- Qingnan Yu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Peihuan Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Benwei Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Chen Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Chunhua Zhang
- Demonstration Laboratory of Element and Life Science Research, Laboratory Centre of Life Science, College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Ying Ge
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
22
|
Ma X, Yan X, Yao J, Zheng S, Wei Q. Feasibility and comparative analysis of cadmium biosorption by living scenedesmus obliquus FACHB-12 biofilms. CHEMOSPHERE 2021; 275:130125. [PMID: 33677276 DOI: 10.1016/j.chemosphere.2021.130125] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/06/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Microalgal biofilm has been recognized as a cost-effective biorsorbent for heavy metal and a promising method for microalgae-water separation. In this study, living suspended Scenedesmus obliquus FACHB-12 (isolated from southern China) and its biofilm with different carriers were investigated to remove cadmium from aqueous solution. S. obliquus FACHB-12 biofilm with luffa sponge carrier showed highest cadmium removal efficiency at 92.7% compared to biofilm with K3 carrier (75.3%) and significantly higher than suspended S. obliquus FACHB-12 (61.8%) in 2 h experiment with initial Cd2+ concentration at 3.0 mg/L at pH = 6.0 with 0.8 g/L of biomass under room temperature. S. obliquus FACHB-12 biofilm with K3 and luffa sponge carrier also demonstrated higher tolerance towards increased Cd2+ concentration with highest biosorption efficiency at 85.1% and 90.35% respectively under 20 mg/L of Cd2+, while suspended S. obliquus FACHB-12 biosorption efficiency achieved 81.4% under 10 mg/L of Cd2+ and started to decline over increased cadmium concentration. The adsorption kinetics for all experimental groups followed the pseudo-second-order adsorption model, with biosorption equilibrium favored in Langmuir isotherm. The maximum biosorption capacity estimated by Langmuir isotherm reached 133.14 mg/g biomass in S. obliquus FACHB-12 biofilm with luffa sponge carrier, followed by 78.76 mg/g with K3 carrier, and 60.03 mg/g with suspended S. obliquus FACHB-12. Results suggest an efficient, inexpensive microalgal biofilm with biological carrier system could enhance high cadmium removal for advanced wastewater treatment and provide a cost-effective method for microalgae harvesting process.
Collapse
Affiliation(s)
- Xiangmeng Ma
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 53004, People's Republic of China
| | - Xin Yan
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 53004, People's Republic of China
| | - Jinjie Yao
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 53004, People's Republic of China
| | - Simi Zheng
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 53004, People's Republic of China
| | - Qun Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 53004, People's Republic of China.
| |
Collapse
|
23
|
Enhanced tolerance and resistance characteristics of Scenedesmus obliquus FACHB-12 with K3 carrier in cadmium polluted water. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Shen L, Chen R, Wang J, Fan L, Cui L, Zhang Y, Cheng J, Wu X, Li J, Zeng W. Biosorption behavior and mechanism of cadmium from aqueous solutions by Synechocystis sp. PCC6803. RSC Adv 2021; 11:18637-18650. [PMID: 35480929 PMCID: PMC9033491 DOI: 10.1039/d1ra02366g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/16/2021] [Indexed: 02/03/2023] Open
Abstract
Cyanobacteria are promising adsorbents that are widely used for heavy metal removal in aqueous solutions. However, the underlying adsorption mechanism of Synechocystis sp. PCC6803 is currently unclear. In this study, the adsorption behavior and mechanism of cadmium (Cd2+) were investigated. Batch biosorption experiments showed that the optimal adsorption conditions were pH 7.0, 30 °C, 15 min, and an initial ion concentration of 4.0 mg L−1. The adsorption process fitted well with the pseudo-second order kinetic model, mainly based on chemisorption. Complexation of Cd2+ with carboxyl, hydroxyl, carbonyl, and amido groups was demonstrated by Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectrometry (EDX) analyses confirmed the presence of Cd2+ on the cyanobacterial cell surface and intracellularly. Cd2+ could lead to reactive oxygen species (ROS) accumulation and photosynthesis inhibition in cyanobacterial cells, and glutathione (GSH) played an important role in alleviating Cd2+ toxicity. Analyses of three-dimensional fluorescence spectroscopy (3D-EEM) and high performance anion exchange chromatography-pulsed amperometric detection (HPAEC-PAD) revealed the changes of the composition and content of EPS after Cd2+ adsorption, respectively. Real-time quantitative polymerase chain reaction (RT-qPCR) revealed the potential molecular regulatory mechanisms involved in Cd2+ biosorption. These results revealed the adsorption mechanism of Cd2+ by Synechocystis sp. PCC6803 and provided theoretical guidance for insight into the biosorption mechanisms of heavy metals by other strains. The results of extracellular polymeric substances (EPS) extraction, physiological and biochemical determination and gene expression revealed the adsorption mechanism of Synechocystis sp. PCC6803 under cadmium stress.![]()
Collapse
Affiliation(s)
- Li Shen
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha 410083
- China
- Key Laboratory of Biometallurgy
| | - Ran Chen
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha 410083
- China
| | - Junjun Wang
- School of Metallurgy and Environment
- Central South University
- Changsha 410083
- China
| | - Ling Fan
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha 410083
- China
| | - Linlin Cui
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha 410083
- China
| | - Yejuan Zhang
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha 410083
- China
| | - Jinju Cheng
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha 410083
- China
| | - Xueling Wu
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha 410083
- China
- Key Laboratory of Biometallurgy
| | - Jiaokun Li
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha 410083
- China
- Key Laboratory of Biometallurgy
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha 410083
- China
- Key Laboratory of Biometallurgy
| |
Collapse
|