1
|
Kaźmierczak M, Weselski M, Siczek M, Wolny JA, Schünemann V, Bronisz R. [2 + 2] Photocyclization converts thermally induced spin crossover effect into "hidden hysteresis" one. Chem Sci 2025; 16:7884-7893. [PMID: 40191125 PMCID: PMC11966535 DOI: 10.1039/d4sc05587j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
The light induced [2 + 2] cyclization of the flexible coumarin-based ligand (L) converts the spin crossover active HS1 ⇆ LS1 mononuclear system [Fe(L)6](BF4)2·4CH3CN (1) into the high spin 1D coordination polymer (2). The contribution of the resulting high spin form HS2 is directly related to the degree of photoconversion and, at the same time, practically does not affect the properties of the remaining thermally active spin crossover centers (HS1). The origin of such a fundamental change in properties is an appearance of strain caused by ligand dimerization, which acts directly on the metal chromophores and is transmitted to the crystal lattice. The spin state of 2 can be changed by applying pressure as well as by light irradiation revealing a "hidden hysteresis" phenomenon (Appl. Phys. Lett., 2008, 93, 21906), referring to the appearance of the low spin state not accessible through thermal activation but through reversed-LIESST. A unique feature of 2 is the feasibility to attain any steady state within the hidden hysteresis region by combination of perturbations triggered by changes in temperature and light (808 nm HS2 → LS2 and 532 nm LS2 → HS2). Such states are stable within a time scale of several hours.
Collapse
Affiliation(s)
- Marcin Kaźmierczak
- Faculty of Chemistry, University of Wrocław F. Joliot-Curie 14, 50-383 Wrocław Poland
| | - Marek Weselski
- Faculty of Chemistry, University of Wrocław F. Joliot-Curie 14, 50-383 Wrocław Poland
| | - Miłosz Siczek
- Faculty of Chemistry, University of Wrocław F. Joliot-Curie 14, 50-383 Wrocław Poland
| | - Juliusz A Wolny
- Faculty of Physics, RPTU Kaiserslautern-Landau Erwin Schrödinger Str. 46 67663 Kaiserlautern Germany
| | - Volker Schünemann
- Faculty of Physics, RPTU Kaiserslautern-Landau Erwin Schrödinger Str. 46 67663 Kaiserlautern Germany
| | - Robert Bronisz
- Faculty of Chemistry, University of Wrocław F. Joliot-Curie 14, 50-383 Wrocław Poland
| |
Collapse
|
2
|
Omoto K, Rapenne G. Design of crystalline layered coordination polymers that respond to light and heat stimuli. Dalton Trans 2025; 54:7179-7188. [PMID: 40260614 DOI: 10.1039/d5dt00156k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Layered coordination polymers have attracted significant attention as a class of crystsalline materials characterized by the layer-by-layer stacking of rigid two-dimensional (2D) coordination networks. One of their remarkable features is the flexibility of their crystal structures, which allows for interlayer displacement, swelling, and exfoliation. Incorporating stimuli-responsive moieties into their structures is a promising strategy for the rational design of layered coordination polymers with targeted flexible properties and functions. Despite the challenges associated with crystal design, a variety of stimuli-responsive layered coordination polymers have been developed over the past two decades. This article provides an overview of representative examples of layered coordination polymers whose properties and functions can be modulated by photo- and thermal stimuli.
Collapse
Affiliation(s)
- Kenichiro Omoto
- Division of Chemistry and Materials Science, Graduate School of Integrated Science and Technology, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki, 852-8521, Japan.
| | - Gwénaël Rapenne
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, 630-0192, Japan.
- CEMES, Université de Toulouse, CNRS, 29 Rue Marvig, F-31055 Toulouse Cedex 4, France
| |
Collapse
|
3
|
Li XF, Yao NT, Shao Z, Chen DY, Zhang LY, Zhao L, Meng YS, Liu T. Switching the Multiple Function Channels in 2D Hofmann-Type Coordination Polymers. Inorg Chem 2025; 64:2897-2904. [PMID: 39910046 DOI: 10.1021/acs.inorgchem.4c05057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
The modulation of multifunctional molecular materials by utilizing the stimuli-responsive spin crossover (SCO) has attracted considerable research interest due to its potential applications in information storage and smart switching devices. However, the complexity of achieving the integration and interconnection of multiple functions constitutes a formidable challenge. Herein, we present a pair of 2D FeII-based Hofmann-type coordination polymers (HTCPs), namely {FeII(aep)2[AgI(CN)2]2}·0.3DMF (1) and {FeII(avp)2[AgI(CN)2]2} (2), using fluorescence ligands 4-[2-(9-anthracenyl)ethynyl]pyridine (aep) and 4-[2-(9-anthryl)vinyl]pyridine (avp), respectively. Both complexes exhibit one-step SCO, with transition temperatures of 216 K for complex 1 and 255 K for complex 2. Their dielectric properties align well with the observed magnetic behaviors, demonstrating the dielectric transition process caused by the change of spin state. A variable-temperature fluorescence study reveals the coexistence of SCO and luminescent properties in both complexes, with a remarkable synergistic coupling observed in complex 2 due to the shorter distance between the SCO centers and the fluorophore. These findings underscore the potential of HTCPs as a promising platform for modulating multiple functions. By manipulating their spin states through external stimuli, SCO materials will promisingly advance the development of next-generation molecule-based sensors and devices.
Collapse
Affiliation(s)
- Xin-Feng Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Nian-Tao Yao
- School of Chemistry and Chemical Engineering, Liaocheng University, Liao Cheng 252059, China
| | - Zhen Shao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Du-Yong Chen
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Li-Yan Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
- Liaoning Binhai Laboratory, Dalian 116023, China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
- Liaoning Binhai Laboratory, Dalian 116023, China
| |
Collapse
|
4
|
Cao C, Xue XR, Ge Y, Liu D, Braunstein P, Lang JP. Photodimerization-Triggered Photopolymerization of Triene Coordination Polymers Enables Macroscopic Photomechanical Movements. J Am Chem Soc 2024; 146:25028-25034. [PMID: 39213504 DOI: 10.1021/jacs.4c07453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Controlling the packing of olefinic molecules in crystals is essential for triggering solid-state [2 + 2] photocycloaddition reactions and the synthesis of photocontrolled smart materials. Herein, we report the stepwise photodimerization-triggered photopolymerization of two triene coordination polymers (CPs), {[Zn(2-BBA)2(tpeb)]·0.5CH3CN}n (1, 2-HBBA = 2-bromobenzoic acid, tpeb = 1,3,5-tri-4-pyridyl-1,2-ethenylbenzene) and {[Zn(3-BBA)2(tpeb)]·CH3CN)}n (2, 3-HBBA = 3-bromobenzoic acid). Upon irradiation with 420 nm light, each pair of closely packed and parallel olefinic bonds in 1 undergoes a [2 + 2] cycloaddition reaction, which connects two adjacent Z-shaped chains into a ladder-like coordination chain [Zn(2-BBA)2(bpbdpvpcb)0.5]n (1a, bpbdpvpcb = 1,3-bis(4-pyridyl)-2,4-bis(3,5-di(2-(4-pyridyl)vinyl)phenyl]cyclobutene) through single-crystal to single-crystal (SCSC) transformation. After photodimerization from 1 to 1a has occurred, the olefinic bonds that were initially distant are brought in close enough proximity to meet the requirements for a subsequent [2 + 2] cycloaddition reaction. Upon further light irradiation, the neighboring bpbdpvpcb ligands in 1a experience a SCSC photopolymerization based on [2 + 2] photocycloaddition and transform into poly-3b,4,5,5a,8b,9,10a-octahydro-4,5,9,10-tetrapyridyl-2,7-di(2-(4-pyridyl)vinyl)dicyclobuta[e,l]-pyren (poly-otpdpvdcbp). 2 showed similar structural changes under UV light illumination. Under light exposure, single crystals of 1 and 2 with different morphologies exhibit bending, cracking, and jumping photomechanical motions. The composite film (1-PVA) engineered by dispersing crystalline particles of 1 in poly(vinyl alcohol) (PVA) displays interesting light-wavelength-dependent photomechanical motions and can perform photodriven swimming on a liquid surface. This work provides a useful and promising approach to enable photodimerization of those photoinactive olefin pairs embedded in CPs and opens a new route to synthesize organic polymers by using olefinic CP platforms.
Collapse
Affiliation(s)
- Chen Cao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Xin-Ran Xue
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yu Ge
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Dong Liu
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, Jiangsu, P. R. China
| | - Pierre Braunstein
- Institut de Chimie (UMR 7177 CNRS), Université de Strasbourg, 67081 Strasbourg, France
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
5
|
Šagátová A, Kotrle K, Brachňaková B, Havlíček L, Nemec I, Herchel R, Hofbauerova M, Halahovets Y, Šiffalovič P, Čižmár E, Fellner OF, Šalitroš I. Above room temperature spin crossover in mononuclear iron(II) complexes featuring pyridyl-benzimidazole bidentate ligands adorned with aliphatic chains. Dalton Trans 2024; 53:14037-14045. [PMID: 39105652 DOI: 10.1039/d4dt01338g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Two bidentate ligands (L1 = 1-pentyl-2-(pyridin-2-yl)-1H-benzimidazole and L2 = 1-heptyl-2-(pyridin-2-yl)-1H-benzimidazole) were employed for the synthesis of five mononuclear Fe(II) coordination compounds 1-5 containing perchlorate, tetrafluoroborate and triflate counterions. Single-crystal X-ray diffraction analysis confirmed the expected molecular structures of all the reported compounds, revealing a moderately distorted octahedral geometry of {FeN6} coordination chromophores. All five compounds exhibit thermal spin crossover with T1/2 temperatures allocated above 400 K. The theoretical calculations supported the experimental magnetic investigation and helped to explain the electronic structures of the reported complexes with respect to the occurrence of thermal spin state switching. In addition, compound 4 was employed for the preparation of Langmuir-Blodgett films and fabrication of molecular films using the method of spontaneous evaporation of the subphase. While the formation of Langmuir-Blodgett films was unsuccessful due to the instability of the compound at the water/air interface, the latter technique allowed the formation of molecular films of 4 with well-defined thickness and homogeneity.
Collapse
Affiliation(s)
- Alexandra Šagátová
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia.
| | - Kamil Kotrle
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Barbora Brachňaková
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia.
| | - Lubomír Havlíček
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
- Institute of Physics of Materials, Czech Academy of Sciences, Žižkova 22, 61662 Brno, Czech Republic
| | - Ivan Nemec
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Monika Hofbauerova
- Institute of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovakia
- Centre of Excellence for Advanced Materials Application, 84511 Bratislava, Slovakia
| | - Yuriy Halahovets
- Institute of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovakia
- Centre of Excellence for Advanced Materials Application, 84511 Bratislava, Slovakia
| | - Peter Šiffalovič
- Institute of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovakia
- Centre of Excellence for Advanced Materials Application, 84511 Bratislava, Slovakia
| | - Erik Čižmár
- Institute of Physics, Faculty of Science, P.J. Šafárik University, Park Angelinum 9, 04154 Košice, Slovakia
| | - Ondřej F Fellner
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Ivan Šalitroš
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia.
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| |
Collapse
|
6
|
Halcrow MA. Mix and match - controlling the functionality of spin-crossover materials through solid solutions and molecular alloys. Dalton Trans 2024; 53:13694-13708. [PMID: 39119634 DOI: 10.1039/d4dt01855a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The influence of dopant molecules on the structure and functionality of spin-crossover (SCO) materials is surveyed. Two aspects of the topic are well established. Firstly, isomorphous inert metal ion dopants in SCO lattices are a useful probe of the energetics of SCO processes. Secondly, molecular alloys of iron(II)/triazole coordination polymers containing mixtures of ligands were used to tune their spin-transitions towards room temperature. More recent examples of these and related materials are discussed that reveal new insights into these questions. Complexes which are not isomorphous can also be co-crystallised, either as solid solutions of the precursor molecules or as a random distribution of homo- and hetero-leptic centres in a molecular alloy. This could be a powerful method to manipulate SCO functionality. Published molecular alloys show different SCO behaviours, which may or may not include allosteric switching of their chemically distinct metal sites.
Collapse
Affiliation(s)
- Malcolm A Halcrow
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| |
Collapse
|
7
|
Cruz C, Galdames J, Camayo-Gutierrez L, Rouzières M, Mathonière C, Menéndez N, Audebrand N, Reyes-Lillo SE, Clérac R, Venegas-Yazigi D, Paredes-García V. Thermally and Photoinduced Spin-Crossover Behavior in Iron(II)-Silver(I) Cyanido-Bridged Coordination Polymers Bearing Acetylpyridine Ligands. Inorg Chem 2024. [PMID: 39137340 DOI: 10.1021/acs.inorgchem.4c02170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
We report two new cyanido-bridged Fe(II)-Ag(I) coordination polymers using different acetylpyridine isomers, {Fe(4acpy)2[Ag(CN)2]2} 1 and {Fe(3acpy)[Ag(CN)2]2} 2 (4acpy = 4-acetylpyridine; 3acpy = 3-acetylpyridine) displaying thermally and photoinduced spin crossover (SCO). In both cases, the acetylpyridine ligand directs the coordination polymer structure and the SCO of the materials. Using 4-acetylpyridine, a two-dimensional (2D) structure is observed in 1 made of layers stacked on each other by silver-ketone interactions leading to a complete SCO and reversible thermally and photoswitching of the magnetic and optical properties. Changing the acetyl group to a 3-position, a completely different structure is obtained for 2. The unexpected coordination of the carbonyl group to the Fe(II) centers induces a three-dimensional (3D) structure, leading to statistical disorder around the Fe(II) with three different coordination spheres, [N6], [N4O2], and [N5O]. This disorder gives rise to an incomplete thermally induced SCO with a poor photoswitchability. These results demonstrate that the choice of the acetyl position on the pyridine dictates the structural characteristics of the compounds with a direct impact on the SCO behavior. Remarkably, this work opens interesting perspectives for the future design of Fe-Ag cyanido coordination polymers with judiciously substituted pyridine ligands to tune the thermally and photoinduced SCO properties.
Collapse
Affiliation(s)
- Carlos Cruz
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago 8370146, Chile
- Centro de Nanociencia y Nanotecnología, CEDENNA, Santiago 8370146, Chile
| | - Jorge Galdames
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago 8370146, Chile
- Centro de Nanociencia y Nanotecnología, CEDENNA, Santiago 8370146, Chile
| | - Liz Camayo-Gutierrez
- Doctorado en Fisicoquímica Molecular, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago 8370146, Chile
| | | | | | - Nieves Menéndez
- Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Nathalie Audebrand
- Univ. Rennes, CNRS, INSA Rennes, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226 Rennes, F-35000, France
| | - Sebastian E Reyes-Lillo
- Departamento de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago 8370146, Chile
| | - Rodolphe Clérac
- Univ. Bordeaux, CNRS, CRPP, UMR 5031, Pessac , F-33600, France
| | - Diego Venegas-Yazigi
- Centro de Nanociencia y Nanotecnología, CEDENNA, Santiago 8370146, Chile
- Departamento de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago 8370146, Chile
- Facultad de Química y Biología, Departamento de Química de los Materiales, Universidad de Santiago de Chile, Santiago 8370146, Chile
| | - Verónica Paredes-García
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago 8370146, Chile
- Centro de Nanociencia y Nanotecnología, CEDENNA, Santiago 8370146, Chile
| |
Collapse
|
8
|
Du SN, Deng W, Liu JC, Chen YC, Yao CY, Zhou YQ, Wu SG, Liu JL, Tong ML. Phase Transition Control in Molecular Solids via Complementarity of Hydrogen-Bond Strength. Chemistry 2024; 30:e202401395. [PMID: 38802980 DOI: 10.1002/chem.202401395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
Phase transitions in molecular solids involve synergistic changes in chemical and electronic structures, leading to diversification in physical and chemical properties. Despite the pivotal role of hydrogen bonds (H-bonds) in many phase-transition materials, it is rare and challenging to chemically regulate the dynamics and to elucidate the structure-property relationship. Here, four high-spin CoII compounds were isolated and systematically investigated by modifying the ligand terminal groups (X=S, Se) and substituents (Y=Cl, Br). S-Cl and Se-Br undergo a reversible structural phase transition near room temperature, triggering the rotation of 15-crown-5 guests and the swing between syn- and anti-conformation of NCX- ligands, accompanied by switchable magnetism. Conversely, S-Br and Se-Cl retain stability in ordered and disordered phases, respectively. H-bonds geometric analysis and ab initio calculations reveal that the electronegativity of X and Y affects the strength of NY-ap-H⋅⋅⋅X interactions. Entropy-driven structural phase transitions occur when the H-bond strength is appropriate; otherwise, the phase stays unchanged if it is too strong or weak. This work highlights a phase transition driven by H-bond strength complementarity - pairing strong acceptor with weak donor and vice versa, which offers a straightforward and effective approach for designing phase-transition molecular solids from a chemical perspective.
Collapse
Affiliation(s)
- Shan-Nan Du
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Wei Deng
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jia-Chuan Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Yan-Cong Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Chan-Ying Yao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Ying-Qian Zhou
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Si-Guo Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jun-Liang Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
9
|
Zakrzewski J, Liberka M, Wang J, Chorazy S, Ohkoshi SI. Optical Phenomena in Molecule-Based Magnetic Materials. Chem Rev 2024; 124:5930-6050. [PMID: 38687182 PMCID: PMC11082909 DOI: 10.1021/acs.chemrev.3c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Since the last century, we have witnessed the development of molecular magnetism which deals with magnetic materials based on molecular species, i.e., organic radicals and metal complexes. Among them, the broadest attention was devoted to molecule-based ferro-/ferrimagnets, spin transition materials, including those exploring electron transfer, molecular nanomagnets, such as single-molecule magnets (SMMs), molecular qubits, and stimuli-responsive magnetic materials. Their physical properties open the application horizons in sensors, data storage, spintronics, and quantum computation. It was found that various optical phenomena, such as thermochromism, photoswitching of magnetic and optical characteristics, luminescence, nonlinear optical and chiroptical effects, as well as optical responsivity to external stimuli, can be implemented into molecule-based magnetic materials. Moreover, the fruitful interactions of these optical effects with magnetism in molecule-based materials can provide new physical cross-effects and multifunctionality, enriching the applications in optical, electronic, and magnetic devices. This Review aims to show the scope of optical phenomena generated in molecule-based magnetic materials, including the recent advances in such areas as high-temperature photomagnetism, optical thermometry utilizing SMMs, optical addressability of molecular qubits, magneto-chiral dichroism, and opto-magneto-electric multifunctionality. These findings are discussed in the context of the types of optical phenomena accessible for various classes of molecule-based magnetic materials.
Collapse
Affiliation(s)
- Jakub
J. Zakrzewski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Michal Liberka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Junhao Wang
- Department
of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tonnodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Szymon Chorazy
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Shin-ichi Ohkoshi
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
10
|
Yang G, Wu SG, Ruan ZY, Chen YC, Xie KP, Ni ZP, Tong ML. Single-Crystal Transformation Engineering the Spin Change of Metal-Organic Frameworks via Cluster Deconstruction. Angew Chem Int Ed Engl 2023; 62:e202312685. [PMID: 37779343 DOI: 10.1002/anie.202312685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/03/2023]
Abstract
Spin crossover (SCO) materials with new architectures will expand and enrich the research in the SCO field. Here, we report two metal-organic frameworks (MOFs) containing tetradentate organic ligands and hexatopic linkers [Ag8 X8 (CN)6 ]6- (X=Br and I), which represents the first SCO MOF with clusters as building blocks. The silver halide cluster can be further removed after reacting with lithium tetracyanoquinodimethan (LiTCNQ). Such post-synthetic modification (PSM) is realized via single-crystal to single-crystal (SCSC) transformation from urk to nbo topology. Accordingly, the spin state and fluorescence properties are greatly modified by cluster deconstruction. Therefore, these achievements will provide new ideas for the design of new SCO systems and the development of PSM methods.
Collapse
Affiliation(s)
- Guang Yang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Si-Guo Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Ze-Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yan-Cong Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Kai-Ping Xie
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Zhao-Ping Ni
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
11
|
Sharma I, Kaur J, Poonia G, Mehta SK, Kataria R. Nanoscale designing of metal organic framework moieties as efficient tools for environmental decontamination. NANOSCALE ADVANCES 2023; 5:3782-3802. [PMID: 37496632 PMCID: PMC10368002 DOI: 10.1039/d3na00169e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/12/2023] [Indexed: 07/28/2023]
Abstract
Environmental pollutants, being a major and detrimental component of the ecological imbalance, need to be controlled. Serious health issues can get intensified due to contaminants present in the air, water, and soil. Accurate and rapid monitoring of environmental pollutants is imperative for the detoxification of the environment and hence living beings. Metal-organic frameworks (MOFs) are a class of porous and highly diverse adsorbent materials with tunable surface area and diverse functionality. Similarly, the conversion of MOFs into nanoscale regime leads to the formation of nanometal-organic frameworks (NMOFs) with increased selectivity, sensitivity, detection ability, and portability. The present review majorly focuses on a variety of synthetic methods including the ex situ and in situ synthesis of MOF nanocomposites and direct synthesis of NMOFs. Furthermore, a variety of applications such as nanoabsorbent, nanocatalysts, and nanosensors for different dyes, antibiotics, toxic ions, gases, pesticides, etc., are described along with illustrations. An initiative is depicted hereby using nanostructures of MOFs to decontaminate hazardous environmental toxicants.
Collapse
Affiliation(s)
- Indu Sharma
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160 014 India
| | - Jaspreet Kaur
- School of Basic Sciences, Indian Institute of Information Technology (IIIT) Una-177 209 India
| | - Gargi Poonia
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160 014 India
| | - Surinder Kumar Mehta
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160 014 India
| | - Ramesh Kataria
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160 014 India
| |
Collapse
|
12
|
Dong YN, Liu ZK, Xue JP, Li Y, Sun K, Yao ZS, Tao J. Two-Dimensional Coordination Polymer Showing Spin-Crossover Behavior with a 64 K Wide Hysteresis Loop. Inorg Chem 2022; 61:20232-20236. [DOI: 10.1021/acs.inorgchem.2c03626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ya-Nan Dong
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing102488, PR China
| | - Zhi-Kun Liu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing102488, PR China
| | - Jin-Peng Xue
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing102488, PR China
| | - Yun Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing102488, PR China
| | - Ke Sun
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing102488, PR China
| | - Zi-Shuo Yao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing102488, PR China
| | - Jun Tao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing102488, PR China
| |
Collapse
|
13
|
Li NY, Liu B, Zhang ZW, Yao H, Zhang LL, Ma J, Liu LL, Liu D. Reversible Single-Crystal-to-Single-Crystal Transformation of a Coordination Polymer through Solar-Switchable Cycloaddition and Cycloreversion Reaction. Inorg Chem 2022; 61:18950-18956. [DOI: 10.1021/acs.inorgchem.2c03188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ni-Ya Li
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, P. R. China
| | - Bo Liu
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, P. R. China
| | - Zhao-Wei Zhang
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, P. R. China
| | - Han Yao
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, P. R. China
| | - Li-Li Zhang
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, P. R. China
| | - Jian Ma
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, P. R. China
| | - Lei-Lei Liu
- School of Environment and Material Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, P. R. China
| | - Dong Liu
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, P. R. China
| |
Collapse
|
14
|
Li J, Sun XP, Bi S, Xu M, Jia S, Tang Z, Ma P, Wang J, Tao J, Niu J. Regulating Spin-State Switching by Integrating Polyoxometalate Anion into Spin Crossover System. Inorg Chem 2022; 61:17932-17936. [DOI: 10.1021/acs.inorgchem.2c03032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jiajia Li
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Xiao-Peng Sun
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Shiqi Bi
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Minglu Xu
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Siyu Jia
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Zheng Tang
- Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Jun Tao
- Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
15
|
Tetraolefin stereospecific photodimerization and photopolymerization in coordination polymers. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1313-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
16
|
Polyzou CD, Gkolfi P, Chasapis CT, Bekiari V, Zianna A, Psomas G, Ondrej M, Tangoulis V. Stimuli-responsive spin crossover nanoparticles for drug delivery and DNA-binding studies. Dalton Trans 2022; 51:12427-12431. [PMID: 35920617 DOI: 10.1039/d2dt01509a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aminated silica hybrid, spin-crossover (SCO) nanoparticles (AmNPs) coupled with (S)-naproxen (NAP) were proposed for potential drug nanocarriers through drug release experiments at various pH values. DNA- and albumin-binding studies were also carried out using diverse techniques in order to investigate the interaction of the nanoparticles with calf-thymus DNA and serum albumins and to determine the corresponding binding constants.
Collapse
Affiliation(s)
- Christina D Polyzou
- Department of Chemistry, Laboratory of Inorganic Chemistry, University of Patras, 26504 Patras, Greece.
| | - Patroula Gkolfi
- Department of Chemistry, Laboratory of Inorganic Chemistry, University of Patras, 26504 Patras, Greece.
| | - Christos T Chasapis
- NMR Facility, Instrumental Analysis Laboratory, School of Natural Sciences, University of Patras, 26504 Patras, Greece
| | - Vlasoula Bekiari
- Department of Crop Science, University of Patras, 30200 Messolonghi, Greece
| | - Ariadni Zianna
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - George Psomas
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - Malina Ondrej
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Czech Republic
| | - Vassilis Tangoulis
- Department of Chemistry, Laboratory of Inorganic Chemistry, University of Patras, 26504 Patras, Greece.
| |
Collapse
|
17
|
Wu SG, Wang LF, Ruan ZY, Du SN, Gómez-Coca S, Ni ZP, Ruiz E, Chen XM, Tong ML. Redox-Programmable Spin-Crossover Behaviors in a Cationic Framework. J Am Chem Soc 2022; 144:14888-14896. [PMID: 35918175 DOI: 10.1021/jacs.2c06313] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metal-organic frameworks (MOFs) provide versatile platforms to construct multi-responsive materials. Herein, by introducing the neutral tetradentate ligand and the linear dicyanoaurate(I) anion, we reported a rare cationic MOF [FeII(TPB){AuI(CN)2}]I·4H2O·4DMF (TPB = 1,2,4,5-tetra(pyridin-4-yl)benzene) with hysteretic spin-crossover (SCO) behavior near room temperature. This hybrid framework with an open metal site (AuI) exhibits redox-programmable capability toward dihalogen molecules. By means of post-synthetic modification, all the linear [AuI(CN)2]- linkers can be oxidized to square planar [AuIII(CN)2X2]- units, which results in the hysteretic SCO behaviors switching from one-step to two-step for Br2 and three-step for I2. More importantly, the stepwise SCO behaviors can go back to one-step via the reduction by l-ascorbic acid (AA). Periodic DFT calculations using various SCAN-type exchange-correlation functionals have been employed to rationalize the experimental data. Hence, these results demonstrate for the first time that switchable one-/two-/three-stepped SCO dynamics can be manipulated by chemical redox reactions, which opens a new perspective for multi-responsive molecular switches.
Collapse
Affiliation(s)
- Si-Guo Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, Guangdong, P. R. China
| | - Long-Fei Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, Guangdong, P. R. China
| | - Ze-Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, Guangdong, P. R. China
| | - Shan-Nan Du
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, Guangdong, P. R. China
| | - Silvia Gómez-Coca
- Departament de Química Inorgànica i Orgànica and Institut de Recerca de Química Teórica i Computacional, Universitat de Barcelona, Diagonal 645, E-08028 Barcelona, Spain
| | - Zhao-Ping Ni
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, Guangdong, P. R. China
| | - Eliseo Ruiz
- Departament de Química Inorgànica i Orgànica and Institut de Recerca de Química Teórica i Computacional, Universitat de Barcelona, Diagonal 645, E-08028 Barcelona, Spain
| | - Xiao-Ming Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, Guangdong, P. R. China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, Guangdong, P. R. China
| |
Collapse
|
18
|
Ahmed M, Arachchige KSA, Xie Z, Price JR, Cruddas J, Clegg JK, Powell BJ, Kepert CJ, Neville SM. Guest-Induced Multistep to Single-Step Spin-Crossover Switching in a 2-D Hofmann-Like Framework with an Amide-Appended Ligand. Inorg Chem 2022; 61:11667-11674. [PMID: 35862437 DOI: 10.1021/acs.inorgchem.2c01253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A detailed study of the two-dimensional (2-D) Hofmann-like framework [Fe(furpy)2Pd(CN)4]·nG (furpy: N-(pyridin-4-yl)furan-2-carboxamide, G = H2O,EtOH (A·H2O,Et), and H2O (A·H2O)) is presented, including the structural and spin-crossover (SCO) implications of subtle guest modification. This 2-D framework is characterized by undulating Hofmann layers and an array of interlayer spacing environments─this is a strategic approach that we achieve by the inclusion of a ligand with multiple host-host and host-guest interaction sites. Variable-temperature magnetic susceptibility studies reveal an asymmetric multistep SCO for A·H2O,Et and an abrupt single-step SCO for A·H2O with an upshift in transition temperature of ∼75 K. Single-crystal analyses show a primitive orthorhombic symmetry for A·H2O,Et characterized by a unique FeII center─the multistep SCO character is attributed to local ligand orientation. Counterintuitively, A·H2O shows a triclinic symmetry with two inequivalent FeII centers that undergo a cooperative single-step high-spin (HS)-to-low-spin (LS) transition. We conduct detailed structure-function analyses to understand how the guest ethanol influences the delicate balance between framework communication and, therefore, the local structure and spin-state transition mechanism.
Collapse
Affiliation(s)
- Manan Ahmed
- School of Chemistry, The University of New South Wales, Sydney 2052, Australia
| | - Kasun S A Arachchige
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Zixi Xie
- The School of Chemistry, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Jason R Price
- Australian Synchrotron, ANSTO Clayton, Victoria 3800, Australia
| | - Jace Cruddas
- School of Mathematics and Physics, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Benjamin J Powell
- School of Mathematics and Physics, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Cameron J Kepert
- The School of Chemistry, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Suzanne M Neville
- School of Chemistry, The University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
19
|
Kumar B, Paul A, Mondal DJ, Paliwal P, Konar S. Spin-State Modulation in Fe II -Based Hofmann-Type Coordination Polymers: From Molecules to Materials. CHEM REC 2022; 22:e202200135. [PMID: 35815939 DOI: 10.1002/tcr.202200135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/21/2022] [Indexed: 11/05/2022]
Abstract
Spin crossover complexes that reversibly interconvert between two stable states imitate a binary state of 0 and 1, delivering a promising possibility to address the data processing concept in smart materials. Thus, a comprehensive understanding of the modulation of magnetic transition between high spin and low spin and the factors responsible for stabilizing the spin states is an essential theme in modern materials design. In this context, the present review attempts to provide a concise outline of the design strategy employed at the molecular level for fine-tuning the spin-state switching in FeII -based Hofmann-type coordination polymers and their effects on the optical and magnetic response. In addition, development towards the nanoscale architectures of HCPs, i. e., in terms of nanoparticles and thin films, are emphasized to bridge the gap between the laboratory and reality.
Collapse
Affiliation(s)
- Bhart Kumar
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Abhik Paul
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Dibya Jyoti Mondal
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Piyush Paliwal
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Sanjit Konar
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
20
|
Wu WW, Xie KP, Huang GZ, Ruan ZY, Chen YC, Wu SG, Ni ZP, Tong ML. Single-Crystal to Single-Crystal Transformation of a Spin-Crossover Hybrid Perovskite via Thermal-Induced Cyanide Linkage Isomerization. Inorg Chem 2022; 61:9047-9054. [PMID: 35678748 DOI: 10.1021/acs.inorgchem.2c00314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Linkage isomers involving changes in the bonding mode of ambidentate ligands have potential applications in data storage, molecular machines, and motors. However, the observation of the cyanide-linkage-isomerism-induced spin change (CLIISC) effect characterized by single-crystal X-ray diffraction remains a considerable challenge. Meanwhile, the high-spin and low-spin states can be reversibly switched in spin-crossover (SCO) compounds, which provide the potential for applications to data storage, switches, and sensors. Here, a new perovskite-type SCO framework (PPN)[Fe{Ag(CN)2}3] (PPN+ = bis(trisphenylphosphine)iminium cation) is synthesized, which displays the unprecedented aging and temperature dependences of hysteretic multistep SCO behaviors near room temperature. Moreover, the thermal-induced cyanide linkage isomerization from FeII-N≡C-AgI to FeII-C≡N-AgI is revealed by single-crystal X-ray diffraction, Raman, and Mössbauer spectra, which is associated with a transition from the mixed spin state to the low-spin state and a dramatic volume shrinkage. Considering the wide use of cyanogen in magnetic systems, the association of CLIISC and SCO opens a new dimension to modulate the spin state and realize a colossal negative thermal expansion.
Collapse
Affiliation(s)
- Wei-Wei Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, Guangdong, P. R. China
| | - Kai-Ping Xie
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, Guangdong, P. R. China
| | - Guo-Zhang Huang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, Guangdong, P. R. China
| | - Ze-Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, Guangdong, P. R. China
| | - Yan-Cong Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, Guangdong, P. R. China
| | - Si-Guo Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, Guangdong, P. R. China
| | - Zhao-Ping Ni
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, Guangdong, P. R. China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, Guangdong, P. R. China
| |
Collapse
|
21
|
You M, Shao D, Deng YF, Yang J, Yao NT, Meng YS, Ungur L, Zhang YZ. [Au I(CN) 2]-Armed [Fe III2Fe II2] Square Complex Showing Unusual Spin-Crossover Behavior Due to a Symmetry-Breaking Phase Transition. Inorg Chem 2022; 61:5855-5860. [PMID: 35377631 DOI: 10.1021/acs.inorgchem.2c00192] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The incorporation of two different cyanide building blocks of [(TpR)FeIII(CN)3]- and [AuI(CN)2]- into one molecule afforded a novel hexanuclear [FeIII2FeII2AuI2] complex (1·2Et2O), in which the cyanide-bridged [FeIII2FeII2] square was further grafted by two [AuI(CN)2]- fragments as long arms in syn orientations. Complex 1·2Et2O undergoes a gradual spin crossover (SCO) ffrom low-spin (LS) to high-spin (HS) state for the Fe(II) centers upon desolvation. Remarkably, its desolvated phase (1) exhibits a reversible but atypical two-step (sharp-gradual) SCO behavior with considerable hysteresis (21 K). Variable-temperature single-crystal X-ray structural studies reveal that the hysteretic spin transition takes place synchronously with the concerted displacive motions of the molecules, representing another rare example including multistep and hysteretic spin transitions due to the synergetic SCO and structural phase transition.
Collapse
Affiliation(s)
- Maolin You
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.,Department of Chemistry, National University of Singapore, Science Drive 3, Singapore 117543
| | - Dong Shao
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yi-Fei Deng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Jiong Yang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Nian-Tao Yao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Liviu Ungur
- Department of Chemistry, National University of Singapore, Science Drive 3, Singapore 117543
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
22
|
Sun XP, Tang Z, Li J, Ma P, Yao ZS, Wang J, Niu J, Tao J. Discovery of Kinetic Effect in a Valence Tautomeric Cobalt-Dioxolene Complex. Inorg Chem 2022; 61:4240-4245. [PMID: 35234459 DOI: 10.1021/acs.inorgchem.1c03898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two isostructural valence tautomeric (VT) complexes with different critical temperatures were prepared and fully investigated through a series of magnetic, structural, spectral, and differential scanning calorimetry evidence. The kinetic effect in the VT complex was observed for the first time through scan-rate-dependent studies and further validated by annealing tests.
Collapse
Affiliation(s)
- Xiao-Peng Sun
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Zheng Tang
- Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, China
| | - Jiajia Li
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Zi-Shuo Yao
- Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Jun Tao
- Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
23
|
Qiu JZ, You Y, Yu Y, Chen ZF, Guo CJ, Zhong YL, Lin WQ, Shu XG. A Mononuclear Iron(II) Spin-Crossover Molecule Decorated by Photochromic Azobenzene Group. Molecules 2022; 27:molecules27051571. [PMID: 35268672 PMCID: PMC8912052 DOI: 10.3390/molecules27051571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/15/2022] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
Aiming at constructing photoresponsive spin crossover (SCO) behavior, herein we designed a new ligand Abtz (Abtz = (E)-N-(4-((E)-phenyldiazenyl)phenyl)-1-(thiazol-4-yl)methanimine) which was decorated by a photochromic azobenzene group. Based on this photochromic ligand, a mononuclear Fe(II) SCO molecule [Fe(Abtz)3](BF4)2·(EAC)2 (1, EAC = ethyl acetate) was successfully synthesized and showed a complete one-step SCO behavior. Under continuous UV light and blue-light exposure, the cis–trans photoisomerization of both ligand Abtz and compound 1 in the liquid phase was confirmed through UV–Vis spectra. Moreover, the 1H-NMR spectra of Abtz reveal a trans–cis conversion ratio of 37%. Although the UV–Vis spectra reveal the photochromic behavior for 1 in the solution phase, the SCO behavior in the liquid state is absent according to the variable-temperature Evans method, suggesting the possible decomposition. Moreover, in the solid state, the cis–trans photoisomerization of both Abtz and 1 was not observed, due to the steric hindrance.
Collapse
Affiliation(s)
- Jiang-Zhen Qiu
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (Y.Y.); (Y.Y.); (Z.-F.C.); (C.-J.G.)
- Correspondence: (J.-Z.Q.); (W.-Q.L.); (X.-G.S.)
| | - Yong You
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (Y.Y.); (Y.Y.); (Z.-F.C.); (C.-J.G.)
| | - Ye Yu
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (Y.Y.); (Y.Y.); (Z.-F.C.); (C.-J.G.)
| | - Zhuo-Fan Chen
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (Y.Y.); (Y.Y.); (Z.-F.C.); (C.-J.G.)
| | - Cheng-Jie Guo
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (Y.Y.); (Y.Y.); (Z.-F.C.); (C.-J.G.)
| | - Yi-Ling Zhong
- Guangzhou Key Laboratory for Clean Energy and Materials, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China;
| | - Wei-Quan Lin
- Guangzhou Key Laboratory for Clean Energy and Materials, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China;
- Correspondence: (J.-Z.Q.); (W.-Q.L.); (X.-G.S.)
| | - Xu-Gang Shu
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (Y.Y.); (Y.Y.); (Z.-F.C.); (C.-J.G.)
- Correspondence: (J.-Z.Q.); (W.-Q.L.); (X.-G.S.)
| |
Collapse
|
24
|
Yan D, Chen Y, Yang Y, Guo Z, Guo J. Single-Crystal-to-Single-Crystal Transformation of Two Copper(II) Metal-Organic Frameworks Modulated by Auxiliary Ligands. Inorg Chem 2022; 61:1360-1367. [PMID: 35067063 DOI: 10.1021/acs.inorgchem.1c02854] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The single-crystal-to-single-crystal (SCSC) transformations of metal-organic frameworks (MOFs) are fascinating because we can directly observe the change of the crystal structure during the transformation process. It also greatly helps to understand the delicate interaction between the guest molecules and the skeleton framework and therefore fosters a deep understanding of gas storage and separation within the frameworks. Herein, we report two novel MOFs, [Cu8(BCB)4(μ3-OH)2(μ3-O)(H2O)8(Py)5]·16DMF·52H2O (1) and [Cu3(BCB)2(Py)6]·DMF·11H2O (2) (Py = pyridine; DMF = N,N'-dimethylformamide), which were constructed through the self-assembly of Cu2+ and 4,4',4″-benzenetricarbonyltribenzoic acid (H3BCB) by a solvothermal reaction. Although the structure and coordination patterns of compound 1 are pretty different from those of 2, the two Cu-MOFs were prepared from identical ligands and similar reaction conditions. Interestingly, compound 1 will change to 2 wholly and gradually after the addition of a certain amount of Py with a small amount of dilute hydrochloric acid. This conversion represents a scarce example of SCSC transformation involving transition-metal-based MOFs. Moreover, with its microporous nature, compound 2 shows large carbon dioxide (CO2) uptake capability and good selectivity for CO2/N2 separation. Furthermore, both compounds 1 and 2 could be used as excellent heterogeneous catalysts toward the cyanosilylation reaction under solvent-free conditions.
Collapse
Affiliation(s)
- Dan Yan
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China.,Testing Center, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Yiming Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Yunhui Yang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Zhiyong Guo
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Junfang Guo
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430205, P. R. China
| |
Collapse
|
25
|
Li NY, Guo XY, Liu LL, Ma J, Liu D. Topological structural transformation of a two-dimensional coordination polymer via single-crystal to single-crystal photoreaction. Dalton Trans 2022; 51:17235-17240. [DOI: 10.1039/d2dt03063b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A two-dimensional coordination polymer can carry out photoinduced C–C coupling reaction through single-crystal to single-crystal transformation and exhibit photocontrolled fluorescence.
Collapse
Affiliation(s)
- Ni-Ya Li
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, Jiangsu, P. R. China
| | - Xin-Yu Guo
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, Jiangsu, P. R. China
| | - Lei-Lei Liu
- School of Environment and Material Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, Shandong, P. R. China
| | - Jian Ma
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, Jiangsu, P. R. China
| | - Dong Liu
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, Jiangsu, P. R. China
| |
Collapse
|
26
|
Enríquez-Cabrera A, Getzner L, Salmon L, Routaboul L, Bousseksou A. Post-synthetic modification mechanism for 1D spin crossover coordination polymers. NEW J CHEM 2022. [DOI: 10.1039/d2nj04015h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Suitable solvent os crucial to achieve a quantitative PSM reaction. Then, this method is not restricted to porous materials.
Collapse
Affiliation(s)
| | - Livia Getzner
- LCC, CNRS, 205 route de Narbonne, 31077 Toulouse, France
| | - Lionel Salmon
- LCC, CNRS, 205 route de Narbonne, 31077 Toulouse, France
| | | | | |
Collapse
|
27
|
Li NY, Jiang ZD, Wang YJ, Liu LL, Liu D. Crystallographic Visualization of a Guest-Induced Solar-Driven Cycloaddition Reaction Based on a Recyclable Nonporous Coordination Polymer. Inorg Chem 2021; 60:17173-17177. [PMID: 34714643 DOI: 10.1021/acs.inorgchem.1c02477] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Stimuli-responsive solids with adjustable photophysical properties are particularly attractive because they can be used as smart materials in anticounterfeiting, information storage, holographic imaging, and other fields. Herein, we report a unique nonporous coordination polymer, {[Ag(3,3'-dpe)](2,2'-Hbpdc)}n (1; 3,3'-dpe = 1,2-dipyridin-3-ylethene and 2,2'-H2bpdc = 2,2'-biphenyldicarboxylic acid), that can convert to an extremely photoreactive compound, 1·H2O·MeCN (MeCN = acetonitrile), through guest capture. Upon irradiation of sunlight, 1·H2O·MeCN can transform to {[Ag(3,3'-tpcb)0.5](2,2'-Hbpdc)(H2O)(MeCN)}n (2·H2O·MeCN; 3,3'-tpcb = 1,2,3,4-tetrapyridin-3-ylcyclobutane). 2·H2O·MeCN can lose its solvent molecules to form 2 and further return to 1 at high temperature. Accompanied by direct visualization based on multistep single-crystal-to-single-crystal conversions, the recyclable crystalline solid exhibits remarkable fluorescence changes, which makes it a supramolecular switch for application in multiple anticounterfeiting.
Collapse
Affiliation(s)
- Ni-Ya Li
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, P. R. China
| | - Zhi-Dong Jiang
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, P. R. China
| | - Yun-Jian Wang
- College of Chemistry and Materials Science, Huaibei Normal University, 100 DongShan Road, Huaibei 235000, P. R. China
| | - Lei-Lei Liu
- School of Environment and Material Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, P. R. China
| | - Dong Liu
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, P. R. China
| |
Collapse
|
28
|
Wang LF, Lv BH, Wu FT, Huang GZ, Ruan ZY, Chen YC, Liu M, Ni ZP, Tong ML. Reversible on-off switching of spin-crossover behavior via photochemical [2+2] cycloaddition reaction. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1093-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Wang SY, Jiang Y, Ren J, Huang Y, Fan Y, Xu J. A novel 4f-4d complex resulted from heptacyanomolybdate(III). INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Guerra C, Ayarde-Henríquez L, Duque-Noreña M, Cárdenas C, Pérez P, Chamorro E. On the nature of bonding in the photochemical addition of two ethylenes: C-C bond formation in the excited state? Phys Chem Chem Phys 2021; 23:20598-20606. [PMID: 34505860 DOI: 10.1039/d1cp03554a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, the 2s + 2s (face-to-face) prototypical example of a photochemical reaction has been re-examined to characterize the evolution of chemical bonding. The analysis of the electron localization function (as an indirect measure of the Pauli principle) along the minimum energy path provides strong evidence supporting that CC bond formation occurs not in the excited state but in the ground electronic state after crossing the rhombohedral S1/S0 conical intersection.
Collapse
Affiliation(s)
- Cristian Guerra
- Universidad Andres Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Avenida República 275, 8370146, Santiago, Chile.
| | - Leandro Ayarde-Henríquez
- Universidad Andres Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Avenida República 275, 8370146, Santiago, Chile.
| | - Mario Duque-Noreña
- Universidad Andres Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Avenida República 275, 8370146, Santiago, Chile.
| | - Carlos Cárdenas
- Universidad de Chile, Facultad de Ciencias, Departamento de Física, Avenida Las Palmeras 3425, Santiago, Chile. .,Centro para el Desarrollo de la Nanociencia y la Nanotecnología (CEDENNA), 9170124 Santiago, Chile
| | - Patricia Pérez
- Universidad Andres Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Avenida República 275, 8370146, Santiago, Chile.
| | - Eduardo Chamorro
- Universidad Andres Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Avenida República 275, 8370146, Santiago, Chile.
| |
Collapse
|
31
|
Galadzhun I, Kulmaczewski R, Cespedes O, Halcrow MA. Iron/2,6‐Di(pyrazol‐1‐yl)pyridine Complexes with a Discotic Pattern of Alkyl or Alkynyl Substituents. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Iurii Galadzhun
- School of Chemistry University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | | | - Oscar Cespedes
- School of Physics and Astronomy University of Leeds EC Stoner Building Leeds LS2 9JT UK
| | | |
Collapse
|
32
|
Turo-Cortés R, Valverde-Muñoz FJ, Meneses-Sánchez M, Muñoz MC, Bartual-Murgui C, Real JA. Bistable Hofmann-Type Fe II Spin-Crossover Two-Dimensional Polymers of 4-Alkyldisulfanylpyridine for Prospective Grafting of Monolayers on Metallic Surfaces. Inorg Chem 2021; 60:9040-9049. [PMID: 34047556 PMCID: PMC9129067 DOI: 10.1021/acs.inorgchem.1c01010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Indexed: 12/02/2022]
Abstract
Aiming at investigating the suitability of Hofmann-type two-dimensional (2D) coordination polymers {FeII(Lax)2[MII(CN)4]} to be processed as single monolayers and probed as spin crossover (SCO) junctions in spintronic devices, the synthesis and characterization of the MII derivatives (MII = Pd and Pt) with sulfur-rich axial ligands (Lax = 4-methyl- and 4-ethyl-disulfanylpyridine) have been conducted. The thermal dependence of the magnetic and calorimetric properties confirmed the occurrence of strong cooperative SCO behavior in the temperature interval of 100-225 K, featuring hysteresis loops 44 and 32.5 K/21 K wide for PtII-methyl and PtII/PdII-ethyl derivatives, while the PdII-methyl derivative undergoes a much less cooperative multistep SCO. Excluding PtII-methyl, the remaining compounds display light-induced excited spin-state trapping at 10 K with TLIESST temperatures in the range of 50-70 K. Single-crystal studies performed in the temperature interval 100-250 K confirmed the layered structure and the occurrence of complete transformation between the high- and low-spin states of the FeII center for the four compounds. Strong positional disorder seems to be the source of elastic frustration driving the multistep SCO observed for the PdII-methyl derivative. It is expected that the peripheral disulfanyl groups will favor anchoring and growing of the monolayer on gold substrates and optimal electron transport in the device.
Collapse
Affiliation(s)
- Rubén Turo-Cortés
- Instituto
de Ciencia Molecular/Departamento de Química Inorgánica, Universidad de Valencia, Catedrático Beltrán Martínez
2, 46980 Paterna, Valencia Spain
| | - Francisco Javier Valverde-Muñoz
- Instituto
de Ciencia Molecular/Departamento de Química Inorgánica, Universidad de Valencia, Catedrático Beltrán Martínez
2, 46980 Paterna, Valencia Spain
| | - Manuel Meneses-Sánchez
- Instituto
de Ciencia Molecular/Departamento de Química Inorgánica, Universidad de Valencia, Catedrático Beltrán Martínez
2, 46980 Paterna, Valencia Spain
| | - M. Carmen Muñoz
- Departamento
de Física Aplicada, Universitat Politècnica
de València, Camino
de Vera S/N 46022 Valencia, Spain
| | - Carlos Bartual-Murgui
- Instituto
de Ciencia Molecular/Departamento de Química Inorgánica, Universidad de Valencia, Catedrático Beltrán Martínez
2, 46980 Paterna, Valencia Spain
| | - José Antonio Real
- Instituto
de Ciencia Molecular/Departamento de Química Inorgánica, Universidad de Valencia, Catedrático Beltrán Martínez
2, 46980 Paterna, Valencia Spain
| |
Collapse
|
33
|
Enríquez‐Cabrera A, Ridier K, Salmon L, Routaboul L, Bousseksou A. Complete and Versatile Post‐Synthetic Modification on Iron‐Triazole Spin Crossover Complexes: A Relevant Material Elaboration Method. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Alejandro Enríquez‐Cabrera
- CNRS Laboratoire de Chimie de Coordination (LCC) 205 route de Narbonne, BP44099 Toulouse Cedex 4 31077 France
| | - Karl Ridier
- CNRS Laboratoire de Chimie de Coordination (LCC) 205 route de Narbonne, BP44099 Toulouse Cedex 4 31077 France
| | - Lionel Salmon
- CNRS Laboratoire de Chimie de Coordination (LCC) 205 route de Narbonne, BP44099 Toulouse Cedex 4 31077 France
| | - Lucie Routaboul
- CNRS Laboratoire de Chimie de Coordination (LCC) 205 route de Narbonne, BP44099 Toulouse Cedex 4 31077 France
| | - Azzedine Bousseksou
- CNRS Laboratoire de Chimie de Coordination (LCC) 205 route de Narbonne, BP44099 Toulouse Cedex 4 31077 France
| |
Collapse
|
34
|
Kucheriv OI, Fritsky IO, Gural'skiy IA. Spin crossover in FeII cyanometallic frameworks. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120303] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Xie KP, Wu SG, Wang LF, Huang GZ, Ni ZP, Tong ML. A spin-crossover phenomenon in a 2D heterometallic coordination polymer with [Pd(SCN) 4] 2- building blocks. Dalton Trans 2021; 50:4152-4158. [PMID: 33688869 DOI: 10.1039/d1dt00244a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new two-dimensional (2D) coordination polymers, [FeII(L)2{PdII(SCN)4}] (L1 = 3-(9-anthracenyl)-pyridine (1) and L2 = 4-(9-anthracenyl)-pyridine (2)), were constructed by employing square-planar [Pd(SCN)4]2- building blocks. Compound 1 exhibits a complete spin-crossover (SCO) behaviour under normal atmospheric pressure, and represents the first SCO example in a 2D system containing [Pd(SCN)4]2- units. In contrast, compound 2 only shows paramagnetic behaviour at measured temperatures. It is clear that the fine-tuning of the monodentate ligand can modulate the ligand field and packing fashions, which sheds light on developing new SCO materials.
Collapse
Affiliation(s)
- Kai-Ping Xie
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | | | | | | | | | | |
Collapse
|
36
|
Song WC, Geng CC, Li SY, Liang L, Wang XG, Yang EC, Zhao XJ. Photo-oligomerization by shifting the coordination site in a luminescent coordination polymer. Chem Commun (Camb) 2021; 57:2148-2151. [PMID: 33522525 DOI: 10.1039/d0cc08021g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A layered coordination polymer (CP) with the fine-tuned alignment of four diolefinic ligands has been designed by shifting the coordination site of the ligand. The trimeric and tetrameric cyclobutane derivatives were reversely achieved by the photoinitiated [2+2] cycloaddition of the CP due to the favorable Schmidt's distance. More interestingly, a dynamic fluorescence shift was observed during the photo-oligomerization and heat-cycloreversion of the CP system.
Collapse
Affiliation(s)
- Wei-Chao Song
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China.
| | - Chen-Chen Geng
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China.
| | - Sheng-Yang Li
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China.
| | - Ling Liang
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China.
| | - Xiu-Guang Wang
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China.
| | - En-Cui Yang
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China.
| | - Xiao-Jun Zhao
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China
| |
Collapse
|
37
|
Chakraborty G, Park IH, Medishetty R, Vittal JJ. Two-Dimensional Metal-Organic Framework Materials: Synthesis, Structures, Properties and Applications. Chem Rev 2021; 121:3751-3891. [PMID: 33630582 DOI: 10.1021/acs.chemrev.0c01049] [Citation(s) in RCA: 329] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Gouri Chakraborty
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - In-Hyeok Park
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, South Korea
| | | | - Jagadese J. Vittal
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
38
|
Xue S, Guo Y, Garcia Y. Spin crossover crystalline materials engineered via single-crystal-to-single-crystal transformations. CrystEngComm 2021. [DOI: 10.1039/d1ce00234a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This highlight illustrates the latest crystalline materials engineered via SCSC transformations, with emphasis on the onset and progress of spin crossover in a crystal control.
Collapse
Affiliation(s)
- Shufang Xue
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yunnan Guo
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yann Garcia
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain, Place L. Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
39
|
Hu FL, Qin Z, Wang MF, Kang XW, Qin YL, Wang Y, Chen SL, Young DJ, Mi Y. Modulating the regioselectivity of solid-state photodimerization in coordination polymer crystals. Dalton Trans 2020; 49:10858-10865. [PMID: 32716469 DOI: 10.1039/d0dt02038a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Coordination polymers [Cd(1,4-bpeb)(L1)] (1), [Zn2(1,4-bpeb)2(L2)2(SO42-)2] (2) and [Cd(1,4-bpeb)(L3)] (H2O) (3) (H2L1, 3-[2-(3-hydroxy-phenoxymethyl)-benzyloxy]-benzoic acid; HL2, 1H-Indazole-3-carboxylic acid; H3L3, benzene-1,2,3-tricarboxylic acid; 1,4-bpeb, 1,4-bis[2-(4-pyridyl)vinyl]benzene have been synthesized under solvothermal conditions. Complexes 1-3 underwent photodimerization in the solid-state to give quantitative yields of single isomeric products. The choice of carboxyl ligands L and metal center determined the arrangement of 1,4-bpeb ligands, which in turn directed the regiochemistry of the final photoproducts. The solid-state network structures of cadmium based 1 and 3 had 1,4-bpeb pairs aligned face-to-face with both C[double bond, length as m-dash]C centres in each ligand at an appropriate distance and alignment for photodimerization to give the corresponding para-[2.2]cyclophane (pCP) exclusively. By contrast, compound 2 possessed dinuclear (ZnSO4)2 metallocycles that positioned the 1,4-bpeb "arms" face-to-face, but with C[double bond, length as m-dash]C centres offset at an appropriate distance for only one pair to undergo [2 + 2] cycloaddition to yield a single stereoisomer of the monocyclobutane photo-product bpbpvpcb. This work highlights crystal engineering design principles that can be used to facilitate regio- and stereospecificity in solid-state transformations.
Collapse
Affiliation(s)
- Fei-Long Hu
- Guangxi Key laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, 530006, P.R. China. and Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, P.R. China
| | - Zhen Qin
- Guangxi Key laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, 530006, P.R. China.
| | - Meng-Fan Wang
- Guangxi Key laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, 530006, P.R. China.
| | - Xue Wan Kang
- Guangxi Key laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, 530006, P.R. China.
| | - Yong-Li Qin
- Guangxi Key laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, 530006, P.R. China.
| | - Yong Wang
- Guangxi Key laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, 530006, P.R. China.
| | - Shu-Li Chen
- Guangxi Key laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, 530006, P.R. China.
| | - David James Young
- College of Engineering, IT and Environment, Charles Darwin University, Darwin, NT 0909, Australia
| | - Yan Mi
- Guangxi Key laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, 530006, P.R. China.
| |
Collapse
|
40
|
Gan M, Han Y. Formation of Functional Cyclooctadiene Derivatives by Supramolecularly‐ Controlled Topochemical Reactions and Their Use as Highly Selective Fluorescent Biomolecule Probes
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ming‐Ming Gan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an, Shaanxi 710127 China
| | - Ying‐Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an, Shaanxi 710127 China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| |
Collapse
|
41
|
Hazra A, Jain A, Deenadayalan MS, Adalikwu SA, Maji TK. Acetylene/Ethylene Separation and Solid-State Structural Transformation via [2 + 2] Cycloaddition Reactions in 3D Microporous ZnII Metal–Organic Frameworks. Inorg Chem 2020; 59:9055-9064. [DOI: 10.1021/acs.inorgchem.0c00932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arpan Hazra
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064, India
| | - Aashima Jain
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064, India
| | - M. S. Deenadayalan
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064, India
| | - Stephen Adie Adalikwu
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064, India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064, India
| |
Collapse
|
42
|
Jiang MS, Tao YH, Wang YW, Lu C, Young DJ, Lang JP, Ren ZG. Reversible Solid-State Phase Transitions between Au-P Complexes Accompanied by Switchable Fluorescence. Inorg Chem 2020; 59:3072-3078. [PMID: 32058694 DOI: 10.1021/acs.inorgchem.9b03412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Six complexes {(3-bdppmapy)(AuCl)2}n (1-6; 3-bdppmapy = N,N'-bis(diphenylphosphanylmethyl)-3-aminopyridine and tht = tetrahydrothiophene) were simultaneously formed by the reaction of Au(tht)Cl and 3-bdppmapy in CH2Cl2 followed by infusion with hexane. Complexes 4-6 could be produced independently by volatilizing solvent in air, solid-state heating, or solvothermal reaction. The PPh2-Au-Cl moieties extended in different directions, forming Au-Au and Au-Au-Au interactions. Complex 4 could be converted to 5 by heating to 130 °C, with the cleavage of one Au-Au bond, while 5 reverted back to 4 upon exposure to CH2Cl2 vapor over 11 h. This solid-state phase transition could be recycled and was accompanied by a change in solid-state fluorescence, without obvious intensity decay over five cycles. The reason for both the phase transition and difference in photoluminescence is related to the different numbers and strengths of aurophilic interactions in each complex that could be modeled by density functional theory calculations.
Collapse
Affiliation(s)
- Meng-Sha Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Yan-Hui Tao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Yu-Wei Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Chengrong Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - David James Young
- College of Engineering, Information Technology and Environment, Charles Darwin University, Northern Territory 0909, Australia
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Zhi-Gang Ren
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China.,Collaborative Innovation Center for New-type Urbanization and Social Governance of Jiangsu Province, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| |
Collapse
|
43
|
Feng M, Ruan ZY, Chen YC, Tong ML. Physical stimulus and chemical modulations of bistable molecular magnetic materials. Chem Commun (Camb) 2020; 56:13702-13718. [DOI: 10.1039/d0cc04202a] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this Feature Article, we summarize the recent progress made in modulating the multifaceted magnetic behaviour of single-molecule magnets (SMMs) and spin-crossover (SCO) materials based on chemical modifications and external stimuli.
Collapse
Affiliation(s)
- Min Feng
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Ze-Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Yan-Cong Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| |
Collapse
|
44
|
Li Y, Liu M, Yao ZS, Tao J. Temperature-dependent hysteretic two-step spin crossover in two-dimensional Hofmann-type compounds. Dalton Trans 2020; 49:7245-7251. [DOI: 10.1039/d0dt00866d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Two 2D Hofmann-type compounds [FeII(ppe)2MII(CN)4]·3H2O [ppe = 1-(2-pyridyl)-2-(4-pyridyl)ethylene; M = Pd for 1 and Pt for 2] have been synthesized. Both of them show complete two-step hysteretic SCO transitions HS1.0 ⇌ HS0.6–0.5LS0.4–0.5 ⇌ LS1.0.
Collapse
Affiliation(s)
- Yue Li
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Min Liu
- School of Nuclear Science and Technology
- University of South China
- Hengyang 421001
- People's Republic of China
| | - Zi-Shuo Yao
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Liangxiang Campus
- Beijing Institute of Technology
- Beijing 102488
| | - Jun Tao
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
- Key Laboratory of Cluster Science of Ministry of Education
| |
Collapse
|
45
|
Li HY, Zhao SN, Zang SQ, Li J. Functional metal–organic frameworks as effective sensors of gases and volatile compounds. Chem Soc Rev 2020; 49:6364-6401. [DOI: 10.1039/c9cs00778d] [Citation(s) in RCA: 434] [Impact Index Per Article: 86.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review summarizes the recent advances of metal organic framework (MOF) based sensing of gases and volatile compounds.
Collapse
Affiliation(s)
- Hai-Yang Li
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Shu-Na Zhao
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Shuang-Quan Zang
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Jing Li
- Department of Chemistry and Chemical Biology
- Rutgers University
- Piscataway
- USA
| |
Collapse
|