1
|
Xu G, Guan P, Deng L, Wang C, Ma D, Meng Y, Fang Z, Duan J, Guo K. Dialkylation of 1,3-Dienes with Aldehydes and Cyclopropanols toward Homoallylic Alcohols by Dual Photoredox and Chromium Catalysis. Org Lett 2025; 27:4682-4687. [PMID: 40289577 DOI: 10.1021/acs.orglett.5c00975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
A visible-light-induced three-component coupling of aldehydes, 1,3-dienes, and cyclopropyl alcohols using dual photoredox and chromium catalysis is herein described. This efficient protocol achieves the dialkylation of 1,3-dienes toward 1,4-disubstituted homoallylic alcohols in moderate to good yields with excellent regioselectivity, featuring mild reaction conditions, good functional group tolerance, and gram-scale synthesis. Mechanistic study suggests that photoinduced sequential ring opening of cyclopropyl alcohol and radical and nucleophilic cascade addition are involved in the catalytic cycle.
Collapse
Affiliation(s)
- Gaochen Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Pei Guan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Longyu Deng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Caipeng Wang
- Shandong Yanggu Huatai Chemical Company, Ltd., Liaocheng 252300, China
| | - Delong Ma
- Shandong Yanggu Huatai Chemical Company, Ltd., Liaocheng 252300, China
| | - Yan Meng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jindian Duan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
2
|
Gao C, Tang K, Yang X, Gao S, Zheng Q, Chen X, Liu J. Cu-Catalyzed Diastereo- and Enantioselective Synthesis of Borylated Cyclopropanes with Three Contiguous Stereocenters. J Am Chem Soc 2025; 147:3360-3370. [PMID: 39818822 DOI: 10.1021/jacs.4c14158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Direct synthesis of enantioenriched scaffolds with multiple adjacent stereocenters remains an important yet challenging task. Herein, we describe a highly diastereo- and enantioselective Cu-catalyzed alkylboration of cyclopropenes, with less reactive alkyl iodides as electrophiles, for the efficient synthesis of tetra-substituted borylated cyclopropanes bearing three consecutive stereocenters. This protocol features mild conditions, a broad substrate scope, and good functional group tolerance, affording an array of chiral borylated cyclopropanes in good to high yields with excellent diastereo- and enantioselectivities. Detailed mechanistic experiments and kinetic studies were conducted to elucidate the reaction pathway and the rate-determining step of the reaction. DFT calculations revealed that the π···π stacking interaction between the phenyl groups on the substrate and the phosphorus ligand, along with the smaller distortion in the CuL-Bpin part, contributed to the high diastereo- and enantioselectivities. The synthetic utility of the protocol was showcased by the facile synthesis of some valuable chiral cyclopropanes with multiple chiral centers.
Collapse
Affiliation(s)
- Chao Gao
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Kai Tang
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Xi Yang
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Shen Gao
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Qingshu Zheng
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Xiangyang Chen
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Jiawang Liu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| |
Collapse
|
3
|
Mirabi B, Li S, Ching J, Lenz M, Popovic SM, Lautens M. Stereodivergency in Copper-Catalyzed Borylative Difunctionalizations: The Impact of Boron Coordination. Angew Chem Int Ed Engl 2024; 63:e202411156. [PMID: 39136344 DOI: 10.1002/anie.202411156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Indexed: 09/25/2024]
Abstract
A reagent-controlled diastereodivergent copper-catalyzed borylative difunctionalization is reported. The formation of Lewis adducts that guide selectivity is commonly invoked in organic reaction mechanisms. Using density functional theory calculations, we identified BpinBdan as a sterically similar and less Lewis acidic alternative to B2pin2. Using a newly developed borylative aldol domino reaction as the proof-of-concept, we demonstrate a change in stereochemical outcome by a simple change of borylating reagent-B2pin2 affords the diastereomer associated with coordination control while BpinBdan overturns this mode of binding. We show that this strategy can be generalized to other scaffolds and, more importantly, that BpinBdan does not alter the diastereomeric outcome of the reaction when coordination is not involved. BpinBdan can be viewed as a mechanistic probe for coordination in future copper-catalyzed borylation reactions.
Collapse
Affiliation(s)
- Bijan Mirabi
- Davenport Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S 3H6, Canada
| | - Shangyu Li
- Davenport Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S 3H6, Canada
| | - Justin Ching
- Davenport Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S 3H6, Canada
| | - Madina Lenz
- Davenport Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S 3H6, Canada
| | - Simon M Popovic
- Davenport Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S 3H6, Canada
| | - Mark Lautens
- Davenport Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
4
|
Huang Y, Li X, Mai BK, Tonogai EJ, Smith AJ, Hergenrother PJ, Liu P, Hoveyda AH. A catalytic process enables efficient and programmable access to precisely altered indole alkaloid scaffolds. Nat Chem 2024; 16:1003-1014. [PMID: 38374457 PMCID: PMC11328697 DOI: 10.1038/s41557-024-01455-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 01/18/2024] [Indexed: 02/21/2024]
Abstract
A compound's overall contour impacts its ability to elicit biological response, rendering access to distinctly shaped molecules desirable. A natural product's framework can be modified, but only if it is abundant and contains suitably modifiable functional groups. Here we introduce a programmable strategy for concise synthesis of precisely altered scaffolds of scarce bridged polycyclic alkaloids. Central to our approach is a scalable catalytic multi-component process that delivers diastereo- and enantiomerically enriched tertiary homoallylic alcohols bearing differentiable alkenyl moieties. We used one product to launch progressively divergent syntheses of a naturally occurring alkaloid and its precisely expanded, contracted and/or distorted framework analogues (average number of steps/scaffold of seven). In vitro testing showed that a skeleton expanded by one methylene in two regions is cytotoxic against four types of cancer cell line. Mechanistic and computational studies offer an account for several unanticipated selectivity trends.
Collapse
Affiliation(s)
- Youming Huang
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, Strasbourg, France
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Xinghan Li
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, Strasbourg, France
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emily J Tonogai
- Department of Chemistry, Carl Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Amanda J Smith
- Department of Chemistry, Carl Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Paul J Hergenrother
- Department of Chemistry, Carl Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois, Urbana, IL, USA.
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Amir H Hoveyda
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, Strasbourg, France.
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA.
| |
Collapse
|
5
|
Corrigendum: Copper(I)-Catalyzed Asymmetric Allylation of Ketones with 2-Aza-1,4-Dienes. Angew Chem Int Ed Engl 2024; 63:e202319011. [PMID: 38224218 DOI: 10.1002/anie.202319011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
|
6
|
Pan ZZ, Li JH, Tian H, Yin L. Copper(I)-Catalyzed Asymmetric Allylation of Ketones with 2-Aza-1,4-Dienes. Angew Chem Int Ed Engl 2024; 63:e202315293. [PMID: 37955332 DOI: 10.1002/anie.202315293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/14/2023]
Abstract
Catalytic asymmetric allylation of ketones under proton-transfer conditions is a challenging issue due to the limited pronucleophiles and the electrophilic inertness of ketones. Herein, a copper(I)-catalyzed asymmetric allylation of ketones with 2-aza-1,4-dienes (N-allyl-1,1-diphenylmethanimines) is disclosed, which affords a series of functionalized homoallyl tertiary alcohols in high to excellent enantioselectivity. Interestingly, N-allyl-1,1-diphenylmethanimines work as synthetic equivalents of propanals. Upon the acidic workup, a formal asymmetric β-addition of propanals to ketones is achieved. An investigation on KIE effect indicates that the deprotonation of N-allyl-1,1-diphenylmethanimines is the rate-determining step, which generates nucleophilic allyl copper(I) species. Finally, the synthetic utility of the present method is demonstrated by the asymmetric synthesis of (R)-boivinianin A and (R)-gossonorol.
Collapse
Affiliation(s)
- Zhi-Zhou Pan
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jia-Heng Li
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Hu Tian
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Liang Yin
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
7
|
Li Z, Wang Y, Liu D, Ning L, Pu M, Lin L, Feng X. Chiral N, N'-Dioxide Ligands Tune Diastereoselectivity in Mg(II)-Catalyzed Asymmetric Ring-Opening Desymmetrization of Azetidiniums. Org Lett 2023; 25:7612-7616. [PMID: 37842957 DOI: 10.1021/acs.orglett.3c02728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
A diastereodivergent asymmetric desymmetrization of azetidinium salts with benzothiazoleamides as carbon nucleophiles through a chiral N,N'-dioxide/Mg(II) complex-promoted ring-opening reaction is realized by tuning ligands. Both syn- and anti-chiral δ-amino acid derivatives bearing benzothiazole structure were obtained in moderate to good yields and dr and ee values. DFT calculations indicated that the diastereodivergency stems from the different size of the chiral pocket formed by variable substructures of the ligands, leading to the opposite attack direction of the nucleophiles.
Collapse
Affiliation(s)
- Zhaojing Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yan Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Deyang Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lichao Ning
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Maoping Pu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
8
|
Gao S, Liu J, Troya D, Chen M. Copper-Catalyzed Asymmetric Acylboration of 1,3-Butadienylboronate with Acyl Fluorides. Angew Chem Int Ed Engl 2023; 62:e202304796. [PMID: 37712934 PMCID: PMC11144059 DOI: 10.1002/anie.202304796] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Indexed: 09/16/2023]
Abstract
We report herein a Cu-catalyzed regio-, diastereo- and enantioselective acylboration of 1,3-butadienylboronate with acyl fluorides. Under the developed conditions, the reactions provide (Z)-β,γ-unsaturated ketones bearing an α-tertiary stereocenter with high Z-selectivity and excellent enantioselectivities. While direct access to highly enantioenriched E-isomers was not successful, we showed that such molecules can be synthesized with excellent E-selectivity and optical purities via Pd-catalyzed alkene isomerization from the corresponding Z-isomers. The orthogonal chemical reactivities of the functional groups embedded in the ketone products allow for diverse chemoselective transformations, which provides a valuable platform for further derivatization.
Collapse
Affiliation(s)
- Shang Gao
- Department of Chemistry and Biochemistry, Auburn University, 36849 Auburn, AL (USA); Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 210009 Nanjing, (China)
| | - Jiaming Liu
- Department of Chemistry and Biochemistry, Auburn University, 36849 Auburn, AL (USA)
| | - Diego Troya
- Department of Chemistry, Virginia Tech, 24061 Blacksburg, VA (USA)
| | - Ming Chen
- Department of Chemistry and Biochemistry, Auburn University, 36849 Auburn, AL (USA)
| |
Collapse
|
9
|
Moser D, Schmidt TA, Sparr C. Diastereodivergent Catalysis. JACS AU 2023; 3:2612-2630. [PMID: 37885579 PMCID: PMC10598570 DOI: 10.1021/jacsau.3c00216] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 10/28/2023]
Abstract
Alongside enantioselective catalysis, synthetic chemists are often confronted by the challenge of achieving catalyst control over the relative configuration to stereodivergently access desired diastereomers. Typically, these approaches iteratively or simultaneously control multiple stereogenic units for which dual catalytic methods comprising sequential, relay, and synergistic catalysis emerged as particularly efficient strategies. In this Perspective, the benefits and challenges of catalyst-controlled diastereodivergence in the construction of carbon stereocenters are discussed on the basis of illustrative examples. The concepts are then transferred to diastereodivergent catalysis for atropisomeric systems with twofold and higher-order stereogenicity as well as diastereodivergent catalyst control over E- and Z-configured alkenes.
Collapse
Affiliation(s)
| | | | - Christof Sparr
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
10
|
Ghosh S, Mukherjee S. Ligand-Controlled Diastereodivergency in Propargylic Alkylation of Vinylogous Aza-Enamines: Construction of 1,3-Stereocenters. Org Lett 2023; 25:7304-7309. [PMID: 37782956 DOI: 10.1021/acs.orglett.3c02614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The first diastereodivergent propargylic alkylation reaction is developed. This Cu(I)-catalyzed formal decarboxylative [4+2] cycloaddition between ethynyl benzoxazinanone and vinylogous aza-enamine delivers each diastereomer of tetrahydroquinoline derivatives, bearing 1,3-stereocenters, using either i-Pr-Pybox or BINAP as the ligand under otherwise identical reaction conditions. This is the first application of vinylogous aza-enamines in a transition metal-catalyzed transformation and the first example of the creation of 1,3-stereocenters in a propargylic substitution reaction.
Collapse
Affiliation(s)
- Suman Ghosh
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Santanu Mukherjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
11
|
Liu J, Gao S, Miliordos E, Chen M. Asymmetric Syntheses of ( Z)- or ( E)-β,γ-Unsaturated Ketones via Silane-Controlled Enantiodivergent Catalysis. J Am Chem Soc 2023; 145:19542-19553. [PMID: 37639380 PMCID: PMC11144060 DOI: 10.1021/jacs.3c02595] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Cu-catalyzed highly stereoselective and enantiodivergent syntheses of (Z)- or (E)-β,γ-unsaturated ketones from 1,3-butadienyl silanes are developed. The nature of the silyl group of the dienes has a significant impact on the stereo- and enantioselectivity of the reactions. Under the developed catalytic systems, the reactions of acyl fluorides with phenyldiemthylsilyl-substituted 1,3-diene gave (Z)-β,γ-unsaturated ketones bearing an α-tertiary stereogenic center with excellent enantioselectivities and high Z-selectivities, where the reactions with triisopropylsilyl-substituted 1,3-butadiene formed (E)-β,γ-unsaturated ketones with high optical purities and excellent E-selectivities. The products generated from the reactions contain three functional groups with orthogonal chemical reactivities, which can undergo a variety of transformations to afford synthetically valuable intermediates.
Collapse
Affiliation(s)
- Jiaming Liu
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Shang Gao
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Ming Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
12
|
Ma JT, Zhang T, Yao BY, Xiao LJ, Zhou QL. Diastereodivergent and Enantioselective Synthesis of Homoallylic Alcohols via Nickel-Catalyzed Borylative Coupling of 1,3-Dienes with Aldehydes. J Am Chem Soc 2023; 145:19195-19201. [PMID: 37616490 DOI: 10.1021/jacs.3c07697] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
We present the first enantioselective nickel-catalyzed borylative coupling of 1,3-dienes with aldehydes, providing an efficient route to highly valuable homoallylic alcohols in a single step. The reaction involves the 1,4-carboboration of dienes, leading to the formation of C-C and C-B bonds accompanied by the construction of two continuous stereogenic centers. Enabled by a chiral spiro phosphine-oxazoline nickel complex, this transformation yields products with exceptional diastereoselectivity, E-selectivity, and enantioselectivity. The diastereoselectivity of the reaction can be controlled by employing either (Z)-1,3-dienes or (E)-1,3-dienes.
Collapse
Affiliation(s)
- Jin-Tao Ma
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Tianze Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Bo-Ying Yao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Li-Jun Xiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
13
|
Marcum JS, Meek SJ. Efficient Enantio-, Diastereo, E/ Z-, and Site-Selective Nickel-Catalyzed Fragment Couplings of Aldehydes, Dienes, and Organoborons. J Am Chem Soc 2022; 144:19231-19237. [PMID: 36195082 DOI: 10.1021/jacs.2c08742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The enantioselective synthesis of bis-homoallylic alcohols through nickel-catalyzed three-component fragment couplings of simple aldehydes, dienes, and aryl organoborons is disclosed. The reactions proceed through diene dicarbofunctionalization that concurrently forms two C-C bonds and two stereogenic centers. The transformations are promoted by a 5.0 mol % loading of a readily accessible chiral phosphine-nickel complex and afford products with high stereoselectivity.
Collapse
Affiliation(s)
- Justin S Marcum
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Simon J Meek
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
14
|
Fujihara T. Cu-Catalyzed Transformations of 1,3-Dienes: Use of Allyl Copper Intermediates in Functionalization. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Deng XH, Jiang JX, Jiang Q, Yang T, Chen B, He L, Chu WD, He CY, Liu QZ. CuH-Catalyzed Enantioselective Reductive Coupling of 1,3-Dienes and Trifluoromethyl Ketoimines or α-Iminoacetates. Org Lett 2022; 24:4586-4591. [PMID: 35714047 DOI: 10.1021/acs.orglett.2c01683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The intermolecular addition of allylic copper species generated from diene and copper hydride remains elusive. Herein copper hydride catalyzed asymmetric cross reductive coupling of conjugated dienes and ketoimines including trifluoromethyl ketoimines and α-iminoacetates was first achieved using chiral Ph-BPE as the ligand, providing rapid access to structurally and optically enriched homoallylic amines containing two vicinal stereogenic centers with up to 95% yield, 99% ee, and 11:1 diastereoselectivities.
Collapse
Affiliation(s)
- Xue-Hua Deng
- Chemical Synthesis and Pollution Control Key Laboratory of Si-chuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Jia-Xi Jiang
- Chemical Synthesis and Pollution Control Key Laboratory of Si-chuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Qin Jiang
- Chemical Synthesis and Pollution Control Key Laboratory of Si-chuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Ting Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Si-chuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Bo Chen
- Chemical Synthesis and Pollution Control Key Laboratory of Si-chuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Long He
- College of Chemistry and Materials Engineering, Guiyang University, Guiyang 550005, China
| | - Wen-Dao Chu
- Chemical Synthesis and Pollution Control Key Laboratory of Si-chuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Cheng-Yu He
- Chemical Synthesis and Pollution Control Key Laboratory of Si-chuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Quan-Zhong Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Si-chuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| |
Collapse
|
16
|
Xu R, Rohde LN, Diver ST. Regioselective Cu-Catalyzed Hydroboration of 1,3-Disubstituted-1,3-Dienes: Functionalization of Conjugated Dienes Readily Accessible through Ene–Yne Metathesis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ruoshui Xu
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260-3000, United States
| | - Laurence N. Rohde
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260-3000, United States
| | - Steven T. Diver
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260-3000, United States
| |
Collapse
|
17
|
Stafford NP, Cheng MJ, Dinh DN, Verboom KL, Krische MJ. Chiral α-Stereogenic Oxetanols and Azetidinols via Alcohol-Mediated Reductive Coupling of Allylic Acetates: Enantiotopic π-Facial Selection in Symmetric Ketone Addition. ACS Catal 2022; 12:6172-6179. [PMID: 37063244 PMCID: PMC10104534 DOI: 10.1021/acscatal.2c01647] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Iridium-tol-BINAP-catalyzed reductive coupling of allylic acetates with oxetanones and azetidinones mediated by 2-propanol provides chiral α-stereogenic oxetanols and azetidinols. As illustrated in 50 examples, complex, nitrogen-rich substituents that incorporate the top 10 N-heterocycles found in FDA-approved drugs are tolerated. In addition to 2-propanol-mediated reductive couplings, oxetanols and azetidinols may serve dually as reductant and ketone proelectrophiles in redox-neutral C-C couplings via hydrogen auto-transfer, as demonstrated by the conversion of dihydro-1a and dihydro-1b to adducts 3a and 4a, respectively. The present method delivers hitherto inaccessible chiral oxetanols and azetidinols, which are important bioisosteres.
Collapse
Affiliation(s)
- Nicholas P. Stafford
- Department of Chemistry, University of Texas at Austin, 105 E 24th Street, Austin, Texas 78712, United States
| | - Melinda J. Cheng
- Department of Chemistry, University of Texas at Austin, 105 E 24th Street, Austin, Texas 78712, United States
| | - Duong Nguyen Dinh
- Department of Chemistry, University of Texas at Austin, 105 E 24th Street, Austin, Texas 78712, United States
| | - Katherine L. Verboom
- Department of Chemistry, University of Texas at Austin, 105 E 24th Street, Austin, Texas 78712, United States
| | - Michael J. Krische
- Department of Chemistry, University of Texas at Austin, 105 E 24th Street, Austin, Texas 78712, United States
| |
Collapse
|
18
|
Zhu JX, Chen ZC, Du W, Chen YC. Asymmetric Auto-Tandem Palladium Catalysis for 2,4-Dienyl Carbonates: Ligand-Controlled Divergent Synthesis. Angew Chem Int Ed Engl 2022; 61:e202200880. [PMID: 35156289 DOI: 10.1002/anie.202200880] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 01/16/2023]
Abstract
Developing new asymmetric auto-tandem catalysis processes, especially in a divergent manner, is highly attractive but extremely challenging. Presented herein is a palladium-catalyzed auto-tandem reaction between 2,4-dienyl carbonates and o-TsNH arylimines or trifluoroacetophenones that proceeds through a consecutive N-allylation, vinylogous addition, π-σ-π isomerization, and another N-allylation sequence. Importantly, switchable diastereodivergent synthesis could be achieved by tuning the chiral bisphosphine ligands, which led to the construction of a broad spectrum of fused tetrahydroquinoline architectures with moderate to excellent enantioselectivity. Ligand control even enabled effective access to regiodivergent azetidine or chemodivergent β-H elimination with fair enantioselectivity, further showing the versatility of the current auto-tandem catalysis.
Collapse
Affiliation(s)
- Jian-Xiang Zhu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhi-Chao Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.,College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
19
|
Wu FP, Wu XF. Catalyst-controlled selective borocarbonylation of benzylidenecyclopropanes: regiodivergent synthesis of γ-vinylboryl ketones and β-cyclopropylboryl ketones. Chem Sci 2022; 13:4321-4326. [PMID: 35509466 PMCID: PMC9006926 DOI: 10.1039/d2sc00840h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
Regioselective catalytic multi-functionalization reactions enable the rapid synthesis of complexed products from the same precursors. In this communication, we present a method for the regiodivergent borocarbonylation of benzylidenecyclopropanes with aryl iodides. Various γ-vinylboryl ketones and β-cyclopropylboryl ketones were produced in moderate to good yields with excellent regioselectivity from the same substrates. The choice of the catalyst is key for the regioselectivity control: γ-vinylboryl ketones were produced selectively with IPrCuCl and Pd(dppp)Cl2 as the catalytic system, while the corresponding β-cyclopropylboryl ketones were obtained in high regioselectivity with Cu(dppp)Cl, [Pd(η3-cinnamyl)Cl]2 and xantphos as the catalytic system. Moreover, γ-vinylboryl ketones and β-cyclopropylboryl ketones were successfully transformed into several other value-added products. A novel procedure for regiodivergent borocarbonylation of benzylidenecyclopropanes has been developed. A variety of valuable γ-vinylboryl ketones and β-cyclopropylboryl ketones can be obtained selectively in excellent yields.![]()
Collapse
Affiliation(s)
- Fu-Peng Wu
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany .,Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 116023 Dalian Liaoning China
| |
Collapse
|
20
|
Li BJ, Sun X. Acyclic Quaternary Carbon Stereocenters through Transition-Metal-Catalyzed Enantioselective Functionalization of Unsaturated Hydrocarbons. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0040-1719899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractAcyclic quaternary carbon stereocenters occur frequently in natural products, bioactive molecules, and pharmaceutical compounds. Construction of a carbon stereogenic center attached to four different carbons with defined spatial arrangement is a daunting challenge in asymmetric catalysis. Significant efforts have been directed towards the stereoselective construction of such acyclic quaternary carbon stereocenters. In particular, catalytic generation of acyclic quaternary carbon stereocenters through functionalization of unsaturated hydrocarbons is an extremely attractive approach because unsaturated hydrocarbons are easily accessible both in industry and in organic synthesis. In this short review, we summarize the recent advances achieved in this research area, with the aim to inspire future development.1 Introduction2 Acyclic Quaternary Carbon Stereocenters through Functionalization of Allenes3 Acyclic Quaternary Carbon Stereocenters through Functionalization of Dienes4 Acyclic Quaternary Carbon Stereocenters through Functionalization of Mono-alkenes5 Acyclic Quaternary Carbon Stereocenters through Functionalization of Alkynes6 Summary and Outlook
Collapse
|
21
|
Zhu J, Chen Z, Du W, Chen Y. Asymmetric Auto‐Tandem Palladium Catalysis for 2,4‐Dienyl Carbonates: Ligand‐Controlled Divergent Synthesis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jian‐Xiang Zhu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Zhi‐Chao Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Ying‐Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
- College of Pharmacy Third Military Medical University Chongqing 400038 China
| |
Collapse
|
22
|
Sustainable radical approaches for cross electrophile coupling to synthesize trifluoromethyl- and allyl-substituted tert-alcohols. iScience 2021; 24:103388. [PMID: 34841228 PMCID: PMC8605352 DOI: 10.1016/j.isci.2021.103388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/14/2021] [Accepted: 10/27/2021] [Indexed: 10/27/2022] Open
Abstract
Trifluoromethylated molecules have gained privileged recognition among the medicinal and pharmaceutical chemists. Sustainable photoredox- and electrochemical processes were employed to facilitate the relatively less explored radical cross-electrophile coupling to access trifluoromethyl- and allyl-substituted tert-alcohols. Reactions proceed through trifluoromethyl ketyl radical and allyl radical intermediates, which undergo challenging radical-radical cross-coupling. The developed transformations are mild and chemo-selective to give cross-coupled products and deliver a wide range of valuable trifluoromethyl- and allyl-containing tertiary alcohols. Both processes can also be applied for the synthesis of amine variant containing trifluoromethyl and allyl moiety, which is considered as amide bioisostere.
Collapse
|
23
|
Bose SK, Mao L, Kuehn L, Radius U, Nekvinda J, Santos WL, Westcott SA, Steel PG, Marder TB. First-Row d-Block Element-Catalyzed Carbon-Boron Bond Formation and Related Processes. Chem Rev 2021; 121:13238-13341. [PMID: 34618418 DOI: 10.1021/acs.chemrev.1c00255] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Organoboron reagents represent a unique class of compounds because of their utility in modern synthetic organic chemistry, often affording unprecedented reactivity. The transformation of the carbon-boron bond into a carbon-X (X = C, N, and O) bond in a stereocontrolled fashion has become invaluable in medicinal chemistry, agrochemistry, and natural products chemistry as well as materials science. Over the past decade, first-row d-block transition metals have become increasingly widely used as catalysts for the formation of a carbon-boron bond, a transformation traditionally catalyzed by expensive precious metals. This recent focus on alternative transition metals has enabled growth in fundamental methods in organoboron chemistry. This review surveys the current state-of-the-art in the use of first-row d-block element-based catalysts for the formation of carbon-boron bonds.
Collapse
Affiliation(s)
- Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India
| | - Lujia Mao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, 571199 Haikou, Hainan, P. R. China
| | - Laura Kuehn
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jan Nekvinda
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Stephen A Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Patrick G Steel
- Department of Chemistry, University of Durham, Science Laboratories South Road, Durham DH1 3LE, U.K
| | - Todd B Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
24
|
Yoon WS, Han JT, Yun J. Divergent Access to Benzocycles through Copper‐Catalyzed Borylative Cyclizations. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wan Seok Yoon
- Department of Chemistry and Institute of Basic Science Sungkyunkwan University Suwon 16419 Korea
| | - Jung Tae Han
- Department of Chemistry and Institute of Basic Science Sungkyunkwan University Suwon 16419 Korea
| | - Jaesook Yun
- Department of Chemistry and Institute of Basic Science Sungkyunkwan University Suwon 16419 Korea
| |
Collapse
|
25
|
Wu J, Wu H, Li X, Liu X, Zhao Q, Huang G, Zhang C. Copper-Catalyzed Highly Selective Protoboration of CF 3 -Containing 1,3-Dienes. Angew Chem Int Ed Engl 2021; 60:20376-20382. [PMID: 34146388 DOI: 10.1002/anie.202105896] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/02/2021] [Indexed: 12/15/2022]
Abstract
The copper-catalyzed highly selective protoboration of CF3 -containing conjugated diene with proton source and B2 Pin2 has been developed. This chemistry could suppress the well-known defluorination and provide borated reagents with an intact CF3 -group. Further studies indicated that the functional group tolerance of this chemistry is very well, and the products could be used as versatile precursors for different types of transformations. Importantly, using chiral diphosphine ligand, we have developed the first example for using such starting material to synthesis allylic boron-reagents which bearing a CF3 -containing chiral center. Notably, the reaction mechanism was intensively studied by DFT calculations, which could reveal the reason that defluorination was inhibited.
Collapse
Affiliation(s)
- Juanjuan Wu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Hongli Wu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Xinzhi Li
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Xinyu Liu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Qian Zhao
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Genping Huang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Chun Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
26
|
Wu J, Wu H, Li X, Liu X, Zhao Q, Huang G, Zhang C. Copper‐Catalyzed Highly Selective Protoboration of CF
3
‐Containing 1,3‐Dienes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Juanjuan Wu
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Hongli Wu
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Xinzhi Li
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Xinyu Liu
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Qian Zhao
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Genping Huang
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Chun Zhang
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| |
Collapse
|
27
|
Zhou P, Shao X, Malcolmson SJ. A Diastereodivergent and Enantioselective Approach to syn- and anti-Diamines: Development of 2-Azatrienes for Cu-Catalyzed Reductive Couplings with Imines That Furnish Allylic Amines. J Am Chem Soc 2021; 143:13999-14008. [PMID: 34424694 DOI: 10.1021/jacs.1c07707] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We introduce a new reagent class, 2-azatrienes, as a platform for catalytic enantioselective synthesis of allylic amines. Herein, we demonstrate their promise by a diastereodivergent synthesis of syn- and anti-1,2-diamines through their Cu-bis(phosphine)-catalyzed reductive couplings with imines. With Ph-BPE as the supporting ligand, anti-diamines are obtained (up to 91% yield, >20:1 dr, and >99:1 er), and with the rarely utilized t-Bu-BDPP, syn-diamines are generated (up to 76% yield, 1:>20 dr, and 97:3 er).
Collapse
Affiliation(s)
- Pengfei Zhou
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Xinxin Shao
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 310036, P. R. China
| | - Steven J Malcolmson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
28
|
Zhang C, Hu W, Morken JP. α-Boryl Organometallic Reagents in Catalytic Asymmetric Synthesis. ACS Catal 2021; 11:10660-10680. [PMID: 35591862 DOI: 10.1021/acscatal.1c02496] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent years have witnessed an increase in the popularity of α-boryl organometallic reagents as versatile nucleophiles in asymmetric synthesis. These compounds have been adopted in chemo- and stereoselective coupling reactions with a number of different electrophiles. The resulting enantioenriched boronic esters can be applied in stereospecific carbon-carbon or carbon-heteroatom bond construction reactions, enabling a two-step strategy for the construction of complex structures with high efficiency and functional group compatibility. Due to these reasons, tremendous effort has been devoted to the preparation of enantiomerically enriched α-boryl organometallic reagents and to the development of stereoselective reactions of related racemic or prochiral materials. In this review, we describe the enantio- or diastereoselective reactions that involve α-boryl organometallic reagents as starting materials or products and we showcase their synthetic utility.
Collapse
Affiliation(s)
- Chenlong Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Weipeng Hu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - James P. Morken
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
29
|
Parsutkar MM, RajanBabu TV. α- and β-Functionalized Ketones from 1,3-Dienes and Aldehydes: Control of Regio- and Enantioselectivity in Hydroacylation of 1,3-Dienes. J Am Chem Soc 2021; 143:12825-12835. [PMID: 34351138 PMCID: PMC8554466 DOI: 10.1021/jacs.1c06245] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ketones are among the most widely used intermediates in organic synthesis, and their synthesis from inexpensive feedstocks could be quite impactful. Regio- and enantioselective hydroacylation reactions of dienes provide facile entry into useful ketone-bearing chiral motifs with an additional latent functionality (alkene) suitable for further elaboration. Three classes of dienes, 2- or 4-monosubstituted and 2,4-disubstituted 1,3-dienes, undergo cobalt(I)-catalyzed regio- and enantioselective hydroacylation, giving products with high enantiomeric ratios (er). These reactions are highly dependent on the ligands, and we have identified the most useful ligands and reaction conditions for each class of dienes. 2-Substituted and 2,4-disubstituted dienes predominantly undergo 1,2-addition, whereas 4-substituted terminal dienes give highly enantioselective 4,1- or 4,3-hydroacylation depending on the aldehyde, aliphatic aldehydes giving 4,1-addition and aromatic aldehydes giving 4,3-addition. Included among the substrates are feedstock dienes, isoprene (US$1.4/kg) and myrcene (US$129/kg), and several common aldehydes. We propose an oxidative dimerization mechanism that involves a Co(I)/Co(III) redox cycle that appears to be initiated by a cationic Co(I) intermediate. Studies of reactions using isolated neutral and cationic Co(I) complexes confirm the critical role of the cationic intermediates in these reactions. Enantioselective 1,2-hydroacylation of 2-trimethylsiloxy-1,3-diene reveals a hitherto undisclosed route to chiral siloxy-protected aldols. Finally, facile syntheses of the anti-inflammatory drug (S)-Flobufen (2 steps, 92% yield, >99:1 er) and the food additive (S)-Dihydrotagetone (1 step, 83% yield; 96:4 er) from isoprene illustrate the power of this method for the preparation of commercially relevant compounds.
Collapse
Affiliation(s)
- Mahesh M Parsutkar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - T V RajanBabu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
30
|
Jiang WS, Ji DW, Zhang WS, Zhang G, Min XT, Hu YC, Jiang XL, Chen QA. Orthogonal Regulation of Nucleophilic and Electrophilic Sites in Pd-Catalyzed Regiodivergent Couplings between Indazoles and Isoprene. Angew Chem Int Ed Engl 2021; 60:8321-8328. [PMID: 33463001 DOI: 10.1002/anie.202100137] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Indexed: 12/29/2022]
Abstract
Depending on the reactant property and reaction mechanism, one major regioisomer can be favored in a reaction that involves multiple active sites. Herein, an orthogonal regulation of nucleophilic and electrophilic sites in the regiodivergent hydroamination of isoprene with indazoles is demonstrated. Under Pd-hydride catalysis, the 1,2- or 4,3-insertion pathway with respect to the electrophilic sites on isoprene could be controlled by the choice of ligands. In terms of the nucleophilic sites on indazoles, the reaction occurs at either the N1 - or N2 -position of indazoles is governed by the acid co-catalysts. Preliminary experimental studies have been performed to rationalize the mechanism and regioselectivity. This study not only contributes a practical tool for selective functionalization of isoprene, but also provides a guide to manipulate the regioselectivity for the N-functionalization of indazoles.
Collapse
Affiliation(s)
- Wen-Shuang Jiang
- Department of Medicinal Chemistry, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.,Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Wei-Song Zhang
- Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Gong Zhang
- Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xiang-Ting Min
- Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yan-Cheng Hu
- Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xu-Liang Jiang
- Department of Medicinal Chemistry, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| |
Collapse
|
31
|
Li H, Long J, Li Y, Wang W, Pang H, Yin G. Nickel‐Catalyzed Regioselective Arylboration of Conjugated Dienes. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Haoyang Li
- The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei province China
| | - Jiao Long
- The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei province China
| | - Yuqiang Li
- The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei province China
| | - Wang Wang
- The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei province China
| | - Hailiang Pang
- The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei province China
| | - Guoyin Yin
- The Institute for Advanced Studies Wuhan University 299 Bayi Road Wuhan Hubei province China
| |
Collapse
|
32
|
Jiang W, Ji D, Zhang W, Zhang G, Min X, Hu Y, Jiang X, Chen Q. Orthogonal Regulation of Nucleophilic and Electrophilic Sites in Pd‐Catalyzed Regiodivergent Couplings between Indazoles and Isoprene. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100137] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wen‐Shuang Jiang
- Department of Medicinal Chemistry Shenyang Pharmaceutical University 103 Wenhua Road Shenyang 110016 China
- Dalian Institute of Chemical Physics University of Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Ding‐Wei Ji
- Dalian Institute of Chemical Physics University of Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Wei‐Song Zhang
- Dalian Institute of Chemical Physics University of Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Gong Zhang
- Dalian Institute of Chemical Physics University of Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Xiang‐Ting Min
- Dalian Institute of Chemical Physics University of Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yan‐Cheng Hu
- Dalian Institute of Chemical Physics University of Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Xu‐Liang Jiang
- Department of Medicinal Chemistry Shenyang Pharmaceutical University 103 Wenhua Road Shenyang 110016 China
| | - Qing‐An Chen
- Dalian Institute of Chemical Physics University of Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| |
Collapse
|
33
|
Li YQ, Chen G, Shi SL. Regio- and Trans-Selective Ni-Catalyzed Coupling of Butadiene, Carbonyls, and Arylboronic Acids to Homoallylic Alcohols under Base-Free Conditions. Org Lett 2021; 23:2571-2577. [PMID: 33661655 DOI: 10.1021/acs.orglett.1c00488] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We herein report a Ni-catalyzed three-component coupling of 1,3-butadiene, carbonyl compounds, and arylboronic acids as a general synthetic approach to 1,4-disubstituted homoallylic alcohols, an important class of compounds, which have previously not been straightforward to access. The reaction occurs efficiently using a Ni(cod)2 catalyst without any external base and ligand at ambient temperature and allows a highly regioselective and trans-selective 1,4-dicarbofunctionalization of feedstock butadiene in a single operation. This simple and practical protocol could apply to a comprehensive scope of substrates. The neutral conditions show extraordinary tolerance for even highly base-sensitive functional groups.
Collapse
Affiliation(s)
- Yu-Qing Li
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Guang Chen
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shi-Liang Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
34
|
Ashraf MA, Tambe SD, Cho EJ. Diastereoselective Reductive Cyclization of
Allene‐Tethered
Ketoamines via
Copper‐Catalyzed
Cascade Carboboronation and Protodeborylation. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Muhammad Awais Ashraf
- Department of Chemistry Chung‐Ang University 84 Heukseok‐ro, Dongjak‐gu, Seoul 06974 Republic of Korea
| | - Shrikant D. Tambe
- Department of Chemistry Chung‐Ang University 84 Heukseok‐ro, Dongjak‐gu, Seoul 06974 Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry Chung‐Ang University 84 Heukseok‐ro, Dongjak‐gu, Seoul 06974 Republic of Korea
| |
Collapse
|
35
|
Kanti Das K, Manna S, Panda S. Transition metal catalyzed asymmetric multicomponent reactions of unsaturated compounds using organoboron reagents. Chem Commun (Camb) 2021; 57:441-459. [PMID: 33350405 DOI: 10.1039/d0cc06460b] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Asymmetric multicomponent reactions allow stitching several functional groups in an enantioselective and atom economical manner. The introduction of boron-based reagents as a multicomponent coupling partner has its own merits. In addition to being non-toxic and highly stable, organoboron compounds can be easily converted to other functional groups in a stereoselective manner. In the last decade several transition metal catalyzed asymmetric multicomponent strategies have been evolved using boron based reagents. This review will discuss the merits and scope of multicomponent strategies based on their difference in the reaction mechanism and transition metals involved.
Collapse
Affiliation(s)
- Kanak Kanti Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | | | | |
Collapse
|
36
|
Wu FP, Wu XF. Ligand-Controlled Copper-Catalyzed Regiodivergent Carbonylative Synthesis of α-Amino Ketones and α-Boryl Amides from Imines and Alkyl Iodides. Angew Chem Int Ed Engl 2021; 60:695-700. [PMID: 32991025 DOI: 10.1002/anie.202012251] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/22/2020] [Indexed: 12/16/2022]
Abstract
Regioselective transformation is among the long-standing challenges in organic synthesis. In this communication, a copper-catalyzed selectivity controlled regiodivergent borocarbonylation of imines with alkyl iodides has been developed. Various α-amino ketones and α-boryl amides were produced in moderate to good yields from the same substrates. The choice of the ligand is key for the regioselectivity control: α-amino ketones were produced selectively in good yields with (p-CF3 C6 H4 )3 P as the ligand, whereas the corresponding α-boryl amides were obtained with high regioselectivities when using Me IMes as the ligand.
Collapse
Affiliation(s)
- Fu-Peng Wu
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany.,Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
| |
Collapse
|
37
|
Zhang P, Zou C, Zhao Q, Zhang C. Nickel-catalyzed alkenylboration of alkenylarenes to access homoallylic boronic esters. Org Chem Front 2021. [DOI: 10.1039/d1qo00100k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A practical nickel-catalyzed alkenylboration of alkenylarenes with excellent chemo- and regio-selectivity has been developed.
Collapse
Affiliation(s)
- Penglin Zhang
- Institute of Molecular Plus
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- School of Sciences
- Tianjin University
| | - Chenchen Zou
- Institute of Molecular Plus
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- School of Sciences
- Tianjin University
| | - Qian Zhao
- Institute of Molecular Plus
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- School of Sciences
- Tianjin University
| | - Chun Zhang
- Institute of Molecular Plus
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- School of Sciences
- Tianjin University
| |
Collapse
|
38
|
Wheatley E, Zanghi JM, Meek SJ. Diastereo-, Enantio-, and anti-Selective Formation of Secondary Alcohol and Quaternary Carbon Stereocenters by Cu-Catalyzed Additions of B-Substituted Allyl Nucleophiles to Carbonyls. Org Lett 2020; 22:9269-9275. [PMID: 33206543 DOI: 10.1021/acs.orglett.0c03495] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A general method for the synthesis of secondary homoallylic alcohols containing α-quaternary carbon stereogenic centers in high diastereo- and enantioselectivity (up to >20:1 dr and >99:1 er) is disclosed. Transformations employ readily accessible aldehydes, allylic diboronates, and a chiral copper catalyst and proceed by γ-addition of in situ generated enantioenriched boron-stabilized allylic copper nucleophiles. The catalytic protocol is general for a wide variety of aldehydes as well as a variety of 1,1-allylic diboronic esters. Hammett studies disclose that diastereoselectivity of the reaction is correlated to the electronic nature of the aldehyde, with dr increasing as aldehydes become more electron poor.
Collapse
Affiliation(s)
- Emilie Wheatley
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Joseph M Zanghi
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Simon J Meek
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
39
|
Wu F, Wu X. Ligand‐Controlled Copper‐Catalyzed Regiodivergent Carbonylative Synthesis of α‐Amino Ketones and α‐Boryl Amides from Imines and Alkyl Iodides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fu‐Peng Wu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Xiao‐Feng Wu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Germany
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian Liaoning China
| |
Collapse
|
40
|
del Pozo J, Zhang S, Romiti F, Xu S, Conger RP, Hoveyda AH. Streamlined Catalytic Enantioselective Synthesis of α-Substituted β,γ-Unsaturated Ketones and Either of the Corresponding Tertiary Homoallylic Alcohol Diastereomers. J Am Chem Soc 2020; 142:18200-18212. [PMID: 33016068 PMCID: PMC7775104 DOI: 10.1021/jacs.0c08732] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A widely applicable, practical, and scalable strategy for efficient and enantioselective synthesis of β,γ-unsaturated ketones that contain an α-stereogenic center is disclosed. Accordingly, aryl, heteroaryl, alkynyl, alkenyl, allyl, or alkyl ketones that contain an α-stereogenic carbon with an alkyl, an aryl, a benzyloxy, or a siloxy moiety can be generated from readily available starting materials and by the use of commercially available chiral ligands in 52-96% yield and 93:7 to >99:1 enantiomeric ratio. To develop the new method, conditions were identified so that high enantioselectivity would be attained and the resulting α-substituted NH-ketimines, wherein there is strong C═N → B(pin) coordination, would not epimerize before conversion to the derived ketone by hydrolysis. It is demonstrated that the ketone products can be converted to an assortment of homoallylic tertiary alcohols in 70-96% yield and 92:8 to >98:2 dr-in either diastereomeric form-by reactions with alkyl-, aryl-, heteroaryl-, allyl-, vinyl-, alkynyl-, or propargyl-metal reagents. The utility of the approach is highlighted through transformations that furnish other desirable derivatives and a concise synthesis route affording more than a gram of a major fragment of anti-HIV agents rubriflordilactones A and B and a specific stereoisomeric analogue.
Collapse
Affiliation(s)
- Juan del Pozo
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Shaochen Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Filippo Romiti
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000 Strasbourg, France
| | - Shibo Xu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Ryan P. Conger
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Amir H. Hoveyda
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000 Strasbourg, France
| |
Collapse
|
41
|
Acharyya RK, Kim S, Park Y, Han JT, Yun J. Asymmetric Synthesis of 1,2-Dihydronaphthalene-1-ols via Copper-Catalyzed Intramolecular Reductive Cyclization. Org Lett 2020; 22:7897-7902. [PMID: 32991187 DOI: 10.1021/acs.orglett.0c02829] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We describe a copper-catalyzed intramolecular reductive cyclization of easily accessible benz-tethered 1,3-dienes containing a ketone moiety. This process provided biologically active 1,2-dihydronaphthalene-1-ol derivatives in good yields with excellent enantio- and diastereoselectivity. Mechanistic investigations using density functional theory revealed that (Z)- and (E)-allylcopper intermediates formed in situ from the diene and copper catalyst undergo isomerization and selective intramolecular allylation of the (E)-allylcopper form of the major product through a six-membered boatlike transition state. The resulting products were further transformed to fully saturated naphthalene-1-ols by reactions of the olefin moiety.
Collapse
Affiliation(s)
| | - Soyoung Kim
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Yeji Park
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Jung Tae Han
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Jaesook Yun
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
42
|
Whyte A, Torelli A, Mirabi B, Zhang A, Lautens M. Copper-Catalyzed Borylative Difunctionalization of π-Systems. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02758] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Andrew Whyte
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Alexa Torelli
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Bijan Mirabi
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Anji Zhang
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mark Lautens
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
43
|
Xue W, Oestreich M. Beyond Carbon: Enantioselective and Enantiospecific Reactions with Catalytically Generated Boryl- and Silylcopper Intermediates. ACS CENTRAL SCIENCE 2020; 6:1070-1081. [PMID: 32724842 PMCID: PMC7379128 DOI: 10.1021/acscentsci.0c00738] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Catalytic asymmetric C-C bond formation with alkylcopper intermediates as carbon nucleophiles is now textbook chemistry. Related chemistry with boron and silicon nucleophiles where the boryl- and accordingly silylcopper intermediates are catalytically regenerated from bench-stable pronucleophiles had been underdeveloped for years or did not even exist until recently. Over the past decade, asymmetric copper catalysis employing those main-group elements as nucleophiles rapidly transformed into a huge field in its own right with an impressive breadth of enantioselective C-B and C-Si bond-forming reactions, respectively. Its current state of the art does not have to shy away from comparison with that of boron's and silicon's common neighbor in the periodic table, carbon. This Outlook is not meant to be a detailed summary of those manifold advances. It rather aims at providing a brief conceptual summary of what forms the basis of the latest exciting progress, especially in the area of three-component reactions and cross-coupling reactions.
Collapse
Affiliation(s)
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
44
|
Colomer I, Ureña M, Viso A, Fernández de la Pradilla R. Sulfinyl-Mediated Stereoselective Functionalization of Acyclic Conjugated Dienes. Chemistry 2020; 26:4620-4632. [PMID: 31994765 DOI: 10.1002/chem.201905742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 01/16/2023]
Abstract
The chemo- and stereocontrolled functionalization of conjugated sulfinyl dienes in a cascade process that involves a conjugate addition, diastereoselective protonation and a [2,3]-sigmatropic rearrangement is reported. Enantioenriched 1,4-diol and 1,4-aminoalcohol derivatives are obtained in a very straightforward manner. Further functionalization of these structures, including highly stereoselective epoxidation, dihydroxylation and the stereodivergent synthesis of several polyols in a controlled fashion is described.
Collapse
Affiliation(s)
- Ignacio Colomer
- Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
| | - Mercedes Ureña
- Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
| | - Alma Viso
- Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
| | | |
Collapse
|
45
|
Zanghi JM, Meek SJ. Cu‐Catalyzed Diastereo‐ and Enantioselective Reactions of γ,γ‐Disubstituted Allyldiboron Compounds with Ketones. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Joseph M. Zanghi
- Department of Chemistry The University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| | - Simon J. Meek
- Department of Chemistry The University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| |
Collapse
|
46
|
Zanghi JM, Meek SJ. Cu-Catalyzed Diastereo- and Enantioselective Reactions of γ,γ-Disubstituted Allyldiboron Compounds with Ketones. Angew Chem Int Ed Engl 2020; 59:8451-8455. [PMID: 32101637 DOI: 10.1002/anie.202000675] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Indexed: 12/14/2022]
Abstract
A catalytic diastereo- and enantioselective method for the preparation of complex tertiary homoallylic alcohols containing a vicinal quaternary carbon stereogenic center and a versatile alkenylboronic ester is disclosed. Transformations are promoted by 5 mol % of a readily available copper catalyst bearing a bulky monodentate phosphoramidite ligand, which is essential for attaining both high dr and er. Reactions proceed with a wide variety of ketones and allylic 1,1-diboronate reagents, which enables the efficient preparation of diverse array of molecular scaffolds.
Collapse
Affiliation(s)
- Joseph M Zanghi
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Simon J Meek
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
47
|
Zhang P, Zhou Z, Zhang R, Zhao Q, Zhang C. Cu-Catalyzed highly regioselective 1,2-hydrocarboxylation of 1,3-dienes with CO 2. Chem Commun (Camb) 2020; 56:11469-11472. [PMID: 32856640 DOI: 10.1039/d0cc05056c] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A practical copper-catalyzed highly regioselective 1,2-hydrocarboxylation of terminal 1,3-diene with carbon dioxide has been developed. Under mild reaction conditions, this chemistry afforded 2-benzyl-β,γ-unsaturated acid derivatives as products, which are a kind of important unit for bio-active molecules and versatile precursors for organic synthesis, with good functional group tolerance. The key intermediate in this transformation is illustrated by control experiments.
Collapse
Affiliation(s)
- Penglin Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Sciences, Tianjin University, Weijin Rd. 92, Tianjin 300072, China.
| | | | | | | | | |
Collapse
|
48
|
Perry GJP, Jia T, Procter DJ. Copper-Catalyzed Functionalization of 1,3-Dienes: Hydrofunctionalization, Borofunctionalization, and Difunctionalization. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04767] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gregory J. P. Perry
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Tao Jia
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, People’s Republic of China
| | - David J. Procter
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| |
Collapse
|
49
|
Chen XW, Zhu L, Gui YY, Jing K, Jiang YX, Bo ZY, Lan Y, Li J, Yu DG. Highly Selective and Catalytic Generation of Acyclic Quaternary Carbon Stereocenters via Functionalization of 1,3-Dienes with CO 2. J Am Chem Soc 2019; 141:18825-18835. [PMID: 31703165 DOI: 10.1021/jacs.9b09721] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The catalytic asymmetric functionalization of readily available 1,3-dienes is highly important, but current examples are mostly limited to the construction of tertiary chiral centers. The asymmetric generation of acyclic products containing all-carbon quaternary stereocenters from substituted 1,3-dienes represents a more challenging, but highly desirable, synthetic process for which there are very few examples. Herein, we report the highly selective copper-catalyzed generation of chiral all-carbon acyclic quaternary stereocenters via functionalization of 1,3-dienes with CO2. A variety of readily available 1,1-disubstituted 1,3-dienes, as well as a 1,3,5-triene, undergo reductive hydroxymethylation with high chemo-, regio-, E/Z-, and enantioselectivities. The reported method features good functional group tolerance, is readily scaled up to at least 5 mmol of starting diene, and generates chiral products that are useful building blocks for further derivatization. Systemic mechanistic investigations using density functional theory calculations were performed and provided the first theoretical investigation for an asymmetric transformation involving CO2. These computational results indicate that the 1,2-hydrocupration of 1,3-diene proceeds with high π-facial selectivity to generate an (S)-allylcopper intermediate, which further induces the chirality of the quaternary carbon center in the final product. The 1,4-addition of an internal allylcopper complex, which differs from previous reports involving terminal allylmetallic intermediates, to CO2 kinetically determines the E/Z- and regioselectivity. The rapid reduction of a copper carboxylate intermediate to the corresponding silyl-ether in the presence of Me(MeO)2SiH provides the exergonic impetus and leads to chemoselective hydroxymethylation rather than carboxylation. These results provide new insights for guiding further development of asymmetric C-C bond formations with CO2.
Collapse
Affiliation(s)
- Xiao-Wang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , P. R. China
| | - Lei Zhu
- School of Chemistry and Chemical Engineering , Chongqing University , Chongqing 400030 , P. R. China
| | - Yong-Yuan Gui
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , P. R. China.,College of Chemistry and Materials Science , Sichuan Normal University , Chengdu 610068 , P. R. China
| | - Ke Jing
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , P. R. China
| | - Yuan-Xu Jiang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , P. R. China
| | - Zhi-Yu Bo
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , P. R. China
| | - Yu Lan
- School of Chemistry and Chemical Engineering , Chongqing University , Chongqing 400030 , P. R. China.,College of Chemistry, and Institute of Green Catalysis , Zhengzhou University , Zhengzhou 450001 , P. R. China
| | - Jing Li
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , P. R. China.,Beijing National Laboratory for Molecular Sciences , Beijing 100190 , P. R. China
| |
Collapse
|
50
|
Li D, Park Y, Yoon W, Yun H, Yun J. Asymmetric Synthesis of 1-Benzazepine Derivatives via Copper-Catalyzed Intramolecular Reductive Cyclization. Org Lett 2019; 21:9699-9703. [PMID: 31696719 DOI: 10.1021/acs.orglett.9b03853] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An asymmetric construction of enantioenriched 2,3-substituted-1-benzazepine derivatives containing a cyclic tertiary amine moiety was developed by copper-catalyzed reductive intramolecular cyclization of (E)-dienyl arenes with a tethered ketimine. This protocol involves tandem chemo-, regio-, and enantioselective hydrocupration and asymmetric cyclization in the presence of a chiral bisphosphine-copper catalyst. Under mild conditions, a broad range of 1-benzazepine derivatives was obtained in good to high yields with high degrees of diastereoselectivity and enantioselectivity.
Collapse
Affiliation(s)
- DingXi Li
- Department of Chemistry and Institute of Basic Science , Sungkyunkwan University , Suwon 16419 , Korea
| | - Yeji Park
- Department of Chemistry and Institute of Basic Science , Sungkyunkwan University , Suwon 16419 , Korea
| | - Woojin Yoon
- Department of Energy Systems Research and Department of Chemistry , Ajou University , Suwon 16499 , Korea
| | - Hoseop Yun
- Department of Energy Systems Research and Department of Chemistry , Ajou University , Suwon 16499 , Korea
| | - Jaesook Yun
- Department of Chemistry and Institute of Basic Science , Sungkyunkwan University , Suwon 16419 , Korea
| |
Collapse
|