1
|
Indurmuddam RR, Huang PC, Hong BC, Chien SY. Visible-Light-Photocatalyzed Self-Cyclopropanation Reactions of Dibenzoylmethanes for the Synthesis of Cyclopropanes. Org Lett 2024; 26:5752-5757. [PMID: 38949643 DOI: 10.1021/acs.orglett.4c01875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
A new self-cyclopropanation of 1,3-diphenylpropane-1,3-dione, leading to tetrasubstituted cyclopropane containing three contiguous stereogenic centers with high stereoselectivity, has been achieved through violet-light-emitting diode-irradiated photocatalysis, featuring both cycloaddition and a distinctive rearrangement. Diverging from conventional cyclopropanation pathways, this reaction yields a tetrasubstituted cyclopropane through unprecedented rearrangement and cascade reactions.
Collapse
Affiliation(s)
| | - Pei-Chi Huang
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621, Taiwan ROC
| | - Bor-Cherng Hong
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621, Taiwan ROC
| | - Su-Ying Chien
- Instrumentation Center, National Taiwan University, Taipei 106, Taiwan ROC
| |
Collapse
|
2
|
Hayashi M, Burtoloso ACB. Synthesis of gem-Difluorinated Keto-Sulfoxides from Sulfoxonium Ylides. Chemistry 2024; 30:e202400108. [PMID: 38318729 DOI: 10.1002/chem.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/07/2024]
Abstract
Organic molecules containing fluorine and sulfur atoms represent a large percentage of approved pharmaceuticals. Those with combination of both S and F atoms in their structure such as Xtandi, approved in 2012 for prostate cancer, indicates the importance of synthetic methods that accommodates both atoms in an organic moiety. In this study, a novel aspect of sulfoxonium ylide reactivity was explored, unveiling a streamlined and mild synthesis method for gem-difluorinated keto-sulfoxides. Our protocol offers a direct and practical approach to prepare these compounds in 14-80 % chemical yields, that were represented by 21 examples. NMR studies and Hammett correlations gave strong evidence about the mechanism of this transformation.
Collapse
Affiliation(s)
- Marcio Hayashi
- Department of Physical Chemistry, São Carlos Institute of Chemistry, University of São Paulo CEP, SP-13563-120, São Carlos, Brazil
| | - Antonio C B Burtoloso
- Department of Physical Chemistry, São Carlos Institute of Chemistry, University of São Paulo CEP, SP-13563-120, São Carlos, Brazil
| |
Collapse
|
3
|
Hampton AS, Hodgson DRW, McDougald G, Wang L, Sandford G. Synthesis of 2,2-difluoro-1,3-diketone and 2,2-difluoro-1,3-ketoester derivatives using fluorine gas. Beilstein J Org Chem 2024; 20:460-469. [PMID: 38440170 PMCID: PMC10910478 DOI: 10.3762/bjoc.20.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/15/2024] [Indexed: 03/06/2024] Open
Abstract
Solutions of 1,3-diketones and 1,3-ketoester derivatives react with fluorine to give the corresponding 2,2-difluoro-1,3-dicarbonyl derivatives in the presence of quinuclidine. Quinuclidine reacts with fluorine in situ to generate a fluoride ion that facilitates limiting enolization processes, and an electrophilic N-F fluorinating agent that is reactive towards neutral enol species.
Collapse
Affiliation(s)
- Alexander S Hampton
- Durham University, Department of Chemistry, Lower Mountjoy, South Road, Durham, DH1 3LE, UK
| | - David R W Hodgson
- Durham University, Department of Chemistry, Lower Mountjoy, South Road, Durham, DH1 3LE, UK
| | - Graham McDougald
- Syngenta, Huddersfield Manufacturing Centre, PO Box A38, Huddersfield, West Yorkshire, HD2 1FF, UK
| | - Linhua Wang
- Syngenta USA, 410 Swing Road, Greensboro, North Carolina, NC 27409, USA
| | - Graham Sandford
- Durham University, Department of Chemistry, Lower Mountjoy, South Road, Durham, DH1 3LE, UK
| |
Collapse
|
4
|
Bērziņa L, Mieriņa I. Antiradical and Antioxidant Activity of Compounds Containing 1,3-Dicarbonyl Moiety: An Overview. Molecules 2023; 28:6203. [PMID: 37687032 PMCID: PMC10488980 DOI: 10.3390/molecules28176203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Free radicals and oxidants may cause various damages both to the lifeworld and different products. A typical solution for the prophylaxis of oxidation-caused conditions is the usage of various antioxidants. Among them, various classes are found-polyphenols, conjugated polyalkenes, and some sulfur and nitrogen derivatives. Regarding the active site in the molecules, a widely discussed group of compounds are 1,3-dicarbonyl compounds. Among them are natural (e.g., curcumin and pulvinic acids) and synthetic (e.g., 4-hydroxy coumarins, substituted Meldrum's acids) compounds. Herein, information about various compounds containing the 1,3-dicarbonyl moiety is covered, and their antiradical and antioxidant activity, depending on the structure, is discussed.
Collapse
Affiliation(s)
| | - Inese Mieriņa
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1048 Riga, Latvia;
| |
Collapse
|
5
|
Li M, Ding H, Yan N, Wang P, Song N, Sun Q, Li TT. Synthesis of Reverse Glycosyl Fluorides via Organophotocatalytic Decarboxylative Fluorination of Uronic Acids. Org Chem Front 2022. [DOI: 10.1039/d2qo00133k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient protocol for organophotocatalytic synthesis of reverse glycosyl fluorides (RGFs) is established relying on 9-mesityl-10-methyl-acridinium (Mes-Acr+)-mediated oxidative decarboxylative fluorination of uronic acids. Both pentofuranoid and hexopyranoid uronic acids are...
Collapse
|
6
|
Umemoto T, Yang Y, Hammond GB. Development of N-F fluorinating agents and their fluorinations: Historical perspective. Beilstein J Org Chem 2021; 17:1752-1813. [PMID: 34386101 PMCID: PMC8329385 DOI: 10.3762/bjoc.17.123] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
This review deals with the historical development of all N-F fluorinating agents developed so far. The unique properties of fluorine make fluorinated organic compounds attractive in many research areas and therefore fluorinating agents are important. N-F agents have proven useful by virtue of their easy handling. This reagent class includes many types of N-F compounds: perfluoro-N-fluoropiperidine, N-fluoro-2-pyridone, N-fluoro-N-alkylarenesulfonamides, N-fluoropyridinium salts and derivatives, N-fluoroquinuclidium salts, N-fluoro-trifluoromethanesulfonimide, N-fluoro-sultams, N-fluoro-benzothiazole dioxides, N-fluoro-lactams, N-fluoro-o-benzenedisulfonimide, N-fluoro-benzenesulfonimide, 1-alkyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane salts, N-fluoropyridinium-2-sulfonate derivatives, 1-fluoro-4-hydroxy-1,4-diazoniabicyclo[2.2.2]octane salts, N-fluorodinitroimidazole, N-fluoro-trichloro-1,3,5-triazinium salt, N-F ethano-Tröger’s base derivatives, N-fluoro-methanesulfonimide, N-fluoro-N-arylarenesulfonamides, bisN-F salts such as N,N’-difluorobipyridinium salts and N,N’-difluoro-1,4-diazoniabicyclo[2.2.2]octane salts, and their many derivatives and analogs, including chiral N-F reagents such as optically active N-fluoro-sultam derivatives, N-fluoro-alkaloid derivatives, DABCO-based N-F derivatives, and N-F binaphthyldisulfonimides. The synthesis and reactions of these reagents are described chronologically and the review also discusses the relative fluorination power of each reagent and their mechanisms chronicling developments from a historical perspective.
Collapse
Affiliation(s)
- Teruo Umemoto
- Department Chemistry, University of Louisville, Lousiville, Kentucky 40292, USA
| | - Yuhao Yang
- Department Chemistry, University of Louisville, Lousiville, Kentucky 40292, USA
| | - Gerald B Hammond
- Department Chemistry, University of Louisville, Lousiville, Kentucky 40292, USA
| |
Collapse
|
7
|
Li Z, Liu Y, Zhang Y, Duan W, Wang Y, Zhang M, Deng H, Song L. Concise Synthesis of Trifluoromethylated Spiro [indoline-3,4’-pyrazolo [3,4-b]pyridine] Derivatives via One-pot MCRs. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Adachi A, Aikawa K, Ishibashi Y, Nozaki K, Okazoe T. Bench-Stable Electrophilic Fluorinating Reagents for Highly Selective Mono- and Difluorination of Silyl Enol Ethers. Chemistry 2021; 27:11919-11925. [PMID: 34009678 DOI: 10.1002/chem.202101499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Indexed: 11/10/2022]
Abstract
Efficient methods for the synthesis of fluorinated compounds have been intensively studied, recently. Development of practical fluorinating reagents is indispensable for this purpose. Herein, bench-stable electrophilic fluorinating reagents were synthesized as N-fluorobenzenesulfonimide (NFSI) substitutes. Reagents obtained by replacing one of the NFSI sulfonyl groups with an acyl group led to the highly selective monofluorination of silyl enol ethers with suppression of undesired overreaction, that is, difluorination. On the other hand, reagents bearing electron-withdrawing substituents at NFSI benzenesulfonyl groups efficiently facilitated the difluorination of silyl enol ethers under base-free conditions. Thus, both mono- and difluorinated target materials were prepared from the same substrate.
Collapse
Affiliation(s)
- Akiya Adachi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kohsuke Aikawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yuichiro Ishibashi
- Yokohama Technical Center, AGC Inc., 1-1 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takashi Okazoe
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8656, Japan.,Yokohama Technical Center, AGC Inc., 1-1 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| |
Collapse
|
9
|
Rozatian N, Hodgson DRW. Reactivities of electrophilic N-F fluorinating reagents. Chem Commun (Camb) 2021; 57:683-712. [PMID: 33367354 DOI: 10.1039/d0cc06339h] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Electrophilic fluorination represents one of the most direct and useful methods available for the selective introduction of fluorine into organic compounds. Electrophilic fluorinating reagents of the N-F class have revolutionised the incorporation of fluorine atoms into both pharmaceutically- and agrochemically-important substrates. Since the earliest N-F reagents were commercialised in the 1990s, their reactivities have been investigated using qualitative and, more recently, quantitative methods. This review discusses the different experimental approaches employed to determine reactivities of N-F reagents, focussing on the kinetics studies reported in recent years. We make critical evaluations of the experimental approaches against each other, theoretical approaches, and their applicability towards practical problems. The opportunities for achieving more efficient synthetic electrophilic fluorination processes through kinetic understanding are highlighted.
Collapse
Affiliation(s)
- Neshat Rozatian
- Chemistry Department, Durham University, South Road, Durham, UKDH1 3LE.
| | - David R W Hodgson
- Chemistry Department, Durham University, South Road, Durham, UKDH1 3LE.
| |
Collapse
|
10
|
Rozatian N, Harsanyi A, Murray BJ, Hampton AS, Chin EJ, Cook AS, Hodgson DRW, Sandford G. Kinetics of Electrophilic Fluorination of Steroids and Epimerisation of Fluorosteroids. Chemistry 2020; 26:12027-12035. [PMID: 32267575 PMCID: PMC7540021 DOI: 10.1002/chem.202001120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Indexed: 11/16/2022]
Abstract
Fluorinated steroids, which are synthesised by electrophilic fluorination, form a significant proportion of marketed pharmaceuticals. To gain quantitative information on fluorination at the 6-position of steroids, kinetics studies were conducted on enol ester derivatives of progesterone, testosterone, cholestenone and hydrocortisone with a series of electrophilic N-F reagents. The stereoselectivities of fluorination reactions of progesterone enol acetate and the kinetic effects of additives, including methanol and water, were investigated. The kinetics of epimerisation of 6β-fluoroprogesterone to the more pharmacologically active 6α-fluoroprogesterone isomer in HCl/acetic acid solutions are detailed.
Collapse
Affiliation(s)
- Neshat Rozatian
- Chemistry DepartmentDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Antal Harsanyi
- Chemistry DepartmentDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Ben J. Murray
- Chemistry DepartmentDurham UniversitySouth RoadDurhamDH1 3LEUK
| | | | - Emily J. Chin
- Chemistry DepartmentDurham UniversitySouth RoadDurhamDH1 3LEUK
| | | | | | - Graham Sandford
- Chemistry DepartmentDurham UniversitySouth RoadDurhamDH1 3LEUK
| |
Collapse
|