1
|
Wakikawa Y, Ikoma T. Triplet pair dynamics of singlet fission in orthorhombic polycrystalline powder of rubrene as revealed by magnetoluminescence. J Chem Phys 2025; 162:124710. [PMID: 40135615 DOI: 10.1063/5.0251084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
Singlet fission, which may increase the energy conversion efficiency of solar cells, proceeds via multiple spin levels of a triplet pair. To clarify the spin-related elementary processes of the triplet pair, we measured the magnetoluminescence effect of the fluorescence of rubrene, in the form of orthorhombic polycrystalline powder, in the range of ±300 mT at room temperature. Model simulations using the density matrix method were performed to elucidate how the features of the magnetoluminescence effect depend on the triplet pair dynamics. Simulations of the observed field dependence of the magnetoluminescence effect revealed an anisotropy of 1:100 for the two-dimensional hopping of triplet excitons forming a triplet pair in the ab plane, for which the exchange interaction depends on the separation distance between the two triplet excitons. The effective lifetime of the spin-correlated triplet pair responsible for the magnetoluminescence effect is estimated to be 2.2 ns.
Collapse
Affiliation(s)
- Yusuke Wakikawa
- Shizuoka Institute of Science and Technology, 2200-2 Toyosawa, Fukuroi, Shizuoka 437-8555, Japan
| | - Tadaaki Ikoma
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata 950-2181, Japan
- Center for Coordination of Research Facilities, Institute for Research Administration, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata 950-2181, Japan
| |
Collapse
|
2
|
Kobori Y, Kokado Y, Kopp KL, Okamoto T, Fuki M. Anisotropic activations controlling doublet-quartet spin conversion of linked chromophore-radical molecular qubits in fluid. J Chem Phys 2025; 162:054505. [PMID: 39902695 DOI: 10.1063/5.0246608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 01/10/2025] [Indexed: 02/06/2025] Open
Abstract
Light-energy conversion processes causing alternations in spin multiplicity are attracting attention, but the development of quantum sensing technology applicable to fluid environment such as inside cells has been unexploited. How to achieve efficient energy conversion with controlling spin quantum coherence in a noisy condensed system is challenging. In this study, we investigate the effect of molecular motion on electron spin polarization to control quantum information of three-spin qubits in a fluid environment by using steric effects of organic molecules at room temperature. Using time-resolved electron paramagnetic resonance to observe light-induced generation and transfer of quantum entanglement, we directly observed a photoexcited quartet state generated in a radical-chromophore coupled system and clarified details of the electron spin polarization mechanism including a decoherence effect by activation of anisotropic molecular motion by the steric effects.
Collapse
Affiliation(s)
- Yasuhiro Kobori
- Molecular Photoscience Research Center, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- CREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| | - Yuya Kokado
- Faculty of Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Kevin Lars Kopp
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115 Bonn, Germany
| | - Tsubasa Okamoto
- Molecular Photoscience Research Center, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Masaaki Fuki
- Molecular Photoscience Research Center, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
3
|
Sugimori R, Okada K, Kishi R, Kitagawa Y. Stacked-ring aromaticity from the viewpoint of the effective number of π-electrons. Chem Sci 2025; 16:1707-1715. [PMID: 39759931 PMCID: PMC11694183 DOI: 10.1039/d4sc07123a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/08/2024] [Indexed: 01/07/2025] Open
Abstract
In this study, we theoretically examined the mechanism of aromaticity induced in closely stacked cofacial π-dimers of 4nπ antiaromatic molecules, which is called stacked-ring aromaticity, in terms of the effective number of π-electrons (N π) and Baird's rule. High-precision quantum chemical calculations combined with a multi-configurational wavefunction analysis revealed that double-triplet [1(T1T1)] and intermolecular charge-transfer (CT) electron configurations mix substantially in the ground state wavefunctions of cyclobutadiene and Ni(ii) norcorrole dimer models at small stacking distance (d). Since the T1 configuration gives rise to two unpaired electrons, the remaining 4n - 2 π electrons still participate in the intramolecular conjugation, which can be interpreted as the origin of the aromaticity of each monomer. Consequently, the aromaticity of each T1-like monomer was associated with Baird's rule. On the other hand, the increased weight of the CT configuration indicated the intermolecular delocalization of the formally unpaired four electrons derived from the 1(T1T1) configuration, resulting in the intermolecular bonding interaction. This interaction contributed to the energy stabilization of the closely stacked π-dimers, even though the degree of the energy gain is considered insufficient for achieving self-aggregation of the π-dimers at d ∼3 Å. Our calculations have demonstrated that we should discuss the energy stabilization mechanism separately from the tropicity and structural changes within each monomer, although they are mutually linked through the appearance of 1(T1T1) configuration.
Collapse
Affiliation(s)
- Ryota Sugimori
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
| | - Kenji Okada
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
| | - Ryohei Kishi
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
- Center for Quantum Information and Quantum Biology Division (QIQB), Osaka University Toyonaka Osaka 560-8531 Japan
- Research Center for Solar Energy Chemistry (RCSEC), Division of Quantum Photochemical Engineering, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University Suita Osaka 565-0871 Japan
| | - Yasutaka Kitagawa
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
- Center for Quantum Information and Quantum Biology Division (QIQB), Osaka University Toyonaka Osaka 560-8531 Japan
- Research Center for Solar Energy Chemistry (RCSEC), Division of Quantum Photochemical Engineering, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University Suita Osaka 565-0871 Japan
- Spintronics Research Network Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI-Spin), Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
| |
Collapse
|
4
|
Miyamoto H, Okada K, Tada K, Kishi R, Kitagawa Y. Theoretical Study on Singlet Fission Dynamics and Triplet Migration Process in Symmetric Heterotrimer Models. Molecules 2024; 29:5449. [PMID: 39598837 PMCID: PMC11597243 DOI: 10.3390/molecules29225449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/16/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Singlet fission (SF) is a photophysical process where one singlet exciton splits into two triplet excitons. To construct design guidelines for engineering directional triplet exciton migration, we investigated the SF dynamics in symmetric linear heterotrimer systems consisting of different unsubstituted or 6,13-disubstituted pentacene derivatives denoted as X/Y (X, Y: terminal and center monomer species). Time-dependent density functional theory (TDDFT) calculations clarified that the induction effects of the substituents, represented as Hammett's para-substitution coefficients σp, correlated with both the excitation energies of S1 and T1 states, in addition to the energies of the highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO). Electronic coupling calculations and quantum dynamics simulations revealed that the selectivity of spatially separated TT states for heterotrimers increased over 70%, superior to that in the homotrimer: an optimal region of the difference in σp between the substituents of X and Y for the increase in SF rate was found. The origin of the rise in SF rate is explained by considering the quantum interference effect: reduction in structural symmetry opens new interaction paths, allowing the S1-TT mixing, which contributes to accelerating the hetero-fission between the terminal and center molecules.
Collapse
Affiliation(s)
- Hajime Miyamoto
- Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Osaka, Japan
| | - Kenji Okada
- Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Osaka, Japan
| | - Kohei Tada
- Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Osaka, Japan
- Research Center for Solar Energy Chemistry (RCSEC), Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Osaka, Japan
- Center for Quantum Information and Quantum Biology (QIQB), Osaka University, Toyonaka 560-8531, Osaka, Japan
| | - Ryohei Kishi
- Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Osaka, Japan
- Research Center for Solar Energy Chemistry (RCSEC), Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Osaka, Japan
- Center for Quantum Information and Quantum Biology (QIQB), Osaka University, Toyonaka 560-8531, Osaka, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita 565-0871, Osaka, Japan
| | - Yasutaka Kitagawa
- Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Osaka, Japan
- Research Center for Solar Energy Chemistry (RCSEC), Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Osaka, Japan
- Center for Quantum Information and Quantum Biology (QIQB), Osaka University, Toyonaka 560-8531, Osaka, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita 565-0871, Osaka, Japan
- Spintronics Research Network Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI-Spin), Toyonaka 560-8531, Osaka, Japan
| |
Collapse
|
5
|
Goyal S, Reddy SR. Investigation of excited states of BODIPY derivatives and non-orthogonal dimers from the perspective of singlet fission. Phys Chem Chem Phys 2024; 26:26398-26408. [PMID: 39390812 DOI: 10.1039/d4cp02656j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
We report state of the art electronic structure calculations RICC2 and XMCQDPT of BODIPY nonorthogonal dimers to understand the photophysical processes from the intramolecular singlet fission (iSF) perspective. We have calculated singlet, triplet and quintet states at the XMCQDPT(8,8)/cc-pVDZ level of theory and diabatic singlet states at the XMCQDPT(4,4)/cc-pVDZ level of theory. In all the systems studied, charge transfer states (1(CA) and 1(AC)) couple strongly with locally excited (1(S1S0)) and multiexcitonic (1(T1T1)) states. The rates of formation of the multiexcitonic state from the locally excited state are very low on account of large activation energy (E(1(T1T1)) - E(1(S1S0))). A relaxed scan along the torsional angle revealed contrasting results for axial and orthogonal conformers. We proposed a probable mechanism for contrasting photophysical properties of dimers B[3,3] and B[2,8]. We also found that substitution of CN, NH2 and BH2 at meso, β and α positions reduces the energy gap (ΔSF = 2E(T1) - E(S1)) significantly, making iSF a competing process in triplet state generation. Intrigued by the success of the CN group at the meso position in reducing the energy gap, we also studied the azaBODIPY monomer and its derivatives using the same methodology. The iSF is slightly endoergic with ΔSF ∼ 0.2 eV in these systems and iSF may play an important role in their photophysical responses.
Collapse
Affiliation(s)
- Sophiya Goyal
- Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan 305817, India.
| | - S Rajagopala Reddy
- Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan 305817, India.
| |
Collapse
|
6
|
Ishii W, Fuki M, Bu Ali EM, Sato S, Parmar B, Yamauchi A, Mulyadi CH, Uji M, Medina Rivero S, Watanabe G, Clark J, Kobori Y, Yanai N. Macrocyclic Parallel Dimer Showing Quantum Coherence of Quintet Multiexcitons at Room Temperature. J Am Chem Soc 2024; 146:25527-25535. [PMID: 39248728 DOI: 10.1021/jacs.4c05677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Singlet fission (SF) is a promising approach in quantum information science because it can generate spin-entangled quintet triplet pairs by photoexcitation independent of temperature. However, it is still challenging to rationally achieve quantum coherence at room temperature, which requires precise control of the orientation and dynamics of triplet pairs. Here we show that the quantum coherence of quintet multiexcitons can be achieved at room temperature by arranging two pentacene chromophores in parallel and in close proximity within a macrocycle. By making dynamic covalent Schiff-base bonds between aldehyde-modified pentacene derivatives, macrocyclic parallel dimer-1 (MPD-1) can be selectively synthesized in a high yield. MPD-1 exhibits fast subpicosecond SF in polystyrene film and generates spin-polarized quintet multiexcitons. Furthermore, the coherence time T2 of the MPD-1 quintet is as long as 648 ns, even at room temperature. This macrocyclic parallel dimer strategy opens up new possibilities for future quantum applications using molecular multilevel qubits.
Collapse
Affiliation(s)
- Wataru Ishii
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masaaki Fuki
- Molecular Photoscience Research Center, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- CREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| | - Eman M Bu Ali
- Department of Physics and Astronomy, The University of Sheffield, Sheffield S3 7RH, U.K
- Department of Physics, College of Science, King Faisal University, Al-Hassa, Hofuf 31982, Saudi Arabia
| | - Shunsuke Sato
- Department of Physics, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Bhavesh Parmar
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akio Yamauchi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Catherine Helenna Mulyadi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masanori Uji
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Samara Medina Rivero
- Department of Physics and Astronomy, The University of Sheffield, Sheffield S3 7RH, U.K
- Department of Physical Chemistry, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Go Watanabe
- CREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
- Department of Physics, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
- Department of Data Science, School of Frontier Engineering, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC), 705-1 Shimoimaizumi, Ebina, Kanagawa 243-0435, Japan
| | - Jenny Clark
- Department of Physics and Astronomy, The University of Sheffield, Sheffield S3 7RH, U.K
| | - Yasuhiro Kobori
- Molecular Photoscience Research Center, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- CREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Nobuhiro Yanai
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- CREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
7
|
Tsuneda T, Taketsugu T. Singlet Fission as the Gateway to Triplet Generation in Heavy Atom-Free Organic Molecules. J Phys Chem Lett 2024; 15:6676-6684. [PMID: 38899775 DOI: 10.1021/acs.jpclett.4c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Triplet generations in heavy atom-free organic molecules are primarily revealed to proceed through singlet fissions (SFs) by investigating the contributions of SFs and intersystem crossings to the generation rates. The spin-flip long-range corrected time-dependent density functional theory calculations on 11 organic molecules known for triplet generation under photoirradiation are performed. The correlation between the descriptors for SF and the experimental singlet-to-triplet conversion rates strongly supports the predominance of SF progressions in all these molecules, corroborated by experimental observations of their triplet-triplet annihilations. Based on these findings, we propose updated conditions for SF progression: There is a high-absorption singlet state just above the triplet-triplet excitation of the chromophore dimer, or the singlet (triplet-triplet) excitation itself is responsible for photoabsorption. To the best of our knowledge, all organic molecules known for rapid triplet state generation fulfill these conditions.
Collapse
Affiliation(s)
- Takao Tsuneda
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Graduate School of System Informatics, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
8
|
Lin LC, Dill RD, Thorley KJ, Parkin SR, Anthony JE, Johnson JC, Damrauer NH. Revealing the Singlet Fission Mechanism for a Silane-Bridged Thienotetracene Dimer. J Phys Chem A 2024; 128:3982-3992. [PMID: 38717589 PMCID: PMC11129308 DOI: 10.1021/acs.jpca.4c01463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/24/2024]
Abstract
Tetraceno[2,3-b]thiophene is regarded as a strong candidate for singlet fission-based solar cell applications due to its mixed characteristics of tetracene and pentacene that balance exothermicity and triplet energy. An electronically weakly coupled tetraceno[2,3-b]thiophene dimer (Et2Si(TIPSTT)2) with a single silicon atom bridge has been synthesized, providing a new platform to investigate the singlet fission mechanism involving the two acene chromophores. We study the excited state dynamics of Et2Si(TIPSTT)2 by monitoring the evolution of multiexciton coupled triplet states, 1TT to 5TT to 3TT to T1 + S0, upon photoexcitation with transient absorption, temperature-dependent transient absorption, and transient/pulsed electron paramagnetic resonance spectroscopies. We find that the photoexcited singlet lifetime is 107 ps, with 90% evolving to form the TT state, and the complicated evolution between the multiexciton states is unraveled, which can be an important reference for future efforts toward tetraceno[2,3-b]thiophene-based singlet fission solar cells.
Collapse
Affiliation(s)
- Liang-Chun Lin
- Department
of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Ryan D. Dill
- Department
of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Karl J. Thorley
- Department
of Chemistry & Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Sean R. Parkin
- Department
of Chemistry & Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - John E. Anthony
- Department
of Chemistry & Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Justin C. Johnson
- National
Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
- Renewable
and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Niels H. Damrauer
- Department
of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Renewable
and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
9
|
Kim J, Teo HT, Hong Y, Cha H, Kim W, Chi C, Kim D. Elucidating Singlet-Fission-Born Multiexciton Dynamics via Molecular Engineering: A Dilution Principle Extended to Quintet Triplet Pair. J Am Chem Soc 2024; 146:10833-10846. [PMID: 38578848 DOI: 10.1021/jacs.4c01326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Multiexciton in singlet exciton fission represents a critical quantum state with significant implications for both solar cell applications and quantum information science. Two distinct fields of interest explore contrasting phenomena associated with the geminate triplet pair: one focusing on the persistence of long-lived correlation and the other emphasizing efficient decorrelation. Despite the pivotal nature of multiexciton processes, a comprehensive understanding of their dependence on the structural and spin properties of materials is currently lacking in experimental realizations. To address this gap in knowledge, molecular engineering was employed to modify the TIPS-tetracene structures, enabling an investigation of the structure-property relationships in spin-related multiexciton processes. In lieu of the time-resolved electron paramagnetic resonance technique, two time-resolved magneto-optical spectroscopies were implemented for quantitative analysis of spin-dependent multiexciton dynamics. The utilization of absorption and fluorescence signals as complementary optical readouts, in the presence of a magnetic field, provided crucial insights into geminate triplet pair dynamics. These insights encompassed the duration of multiexciton correlation and the involvement of the spin state in multiexciton decorrelation. Furthermore, simulations based on our kinetic models suggested a role for quintet dilution in multiexciton dynamics, surpassing the singlet dilution principle established by the Merrifield model. The integration of intricate model structures and time-resolved magneto-optical spectroscopies served to explicitly elucidate the interplay between structural and spin properties in multiexciton processes. This comprehensive approach not only contributes to the fundamental understanding of these processes but also aligns with and reinforces previous experimental studies of solid states and theoretical assessments.
Collapse
Affiliation(s)
- Juno Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| | - Hao Ting Teo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yongseok Hong
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| | - Hyojung Cha
- Department of Hydrogen and Renewable Energy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Woojae Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| | - Chunyan Chi
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Dongho Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
10
|
Okamoto T, Izawa S, Hiramoto M, Kobori Y. Efficient Spin Interconversion by Molecular Conformation Dynamics of a Triplet Pair for Photon Up-Conversion in an Amorphous Solid. J Phys Chem Lett 2024; 15:2966-2975. [PMID: 38479407 PMCID: PMC10961844 DOI: 10.1021/acs.jpclett.3c03602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/10/2024] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
Solid-state materials with improved light-to-energy conversions in organic photovoltaics and in optoelectronics are expected to be developed by realizing efficient triplet-triplet annihilation (TTA) by manipulating the spin conversion processes to the singlet state. In this study, we elucidate the spin conversion mechanism for delayed fluorescence by TTA from a microscopic view of the molecular conformations. We examine the time evolution of the electron spin polarization of the triplet-pair state (TT state) in an amorphous solid-state system exhibiting highly efficient up-conversion emission by using time-resolved electron paramagnetic resonance. We clarified that the spin-state population of the singlet TT increased through the spin interconversion from triplet and quintet TT states during exciton diffusion with random orientation dynamics between the two triplets for the modulation of the exchange interaction, achieving a high quantum yield of up-conversion emission. This understanding provides us with a guide for the development of efficient light-to-energy conversion devices utilizing TTA.
Collapse
Affiliation(s)
- Tsubasa Okamoto
- Molecular
Photoscience Research Center, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Department
of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657−8501, Japan
| | - Seiichiro Izawa
- Laboratory
for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- Precursory
Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Institute
for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Masahiro Hiramoto
- Institute
for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Yasuhiro Kobori
- Molecular
Photoscience Research Center, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Department
of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657−8501, Japan
- CREST,
JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
11
|
Hayasaka R, Sakai H, Fuki M, Okamoto T, Khan R, Higashi M, Tkachenko NV, Kobori Y, Hasobe T. The Effect of Torsional Motion on Multiexciton Formation through Intramolecular Singlet Fission in Ferrocene-Bridged Pentacene Dimers. Angew Chem Int Ed Engl 2024; 63:e202315747. [PMID: 38179830 DOI: 10.1002/anie.202315747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/06/2024]
Abstract
A series of ferrocene(Fc)-bridged pentacene(Pc)-dimers [Fc-Ph(2,n)-(Pc)2 : n=number of phenylene spacers] were synthesized to examine the tortional motion effect of Fc-terminated phenylene linkers on strongly coupled quintet multiexciton (5 TT) formation through intramolecular singlet fission (ISF). Fc-Ph(2,4)-(Pc)2 has a relatively small electronic coupling and large conformational flexibility according to spectroscopic and theoretical analyses. Fc-Ph(2,4)-(Pc)2 exhibits a high-yield 5 TT together with quantitative singlet TT (1 TT) generation through ISF. This demonstrates a much more efficient ISF than those of other less flexible Pc dimers. The activation entropy in 1 TT spin conversion of Fc-Ph(2,4)-(Pc)2 is larger than those of the other systems due to the larger conformational flexibility associated with the torsional motion of the linkers. The torsional motion of linkers in 1 TT is attributable to weakened metal-ligand bonding in the Fc due to hybridization of the hole level of Pc to Fc in 1 TT unpaired orbitals.
Collapse
Affiliation(s)
- Ryo Hayasaka
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Hayato Sakai
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Masaaki Fuki
- Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- CREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| | - Tsubasa Okamoto
- Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- CREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| | - Ramsha Khan
- Chemistry and Advanced Materials Group, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720, Tampere, Finland
| | - Masahiro Higashi
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Nikolai V Tkachenko
- Chemistry and Advanced Materials Group, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720, Tampere, Finland
| | - Yasuhiro Kobori
- Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- CREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| | - Taku Hasobe
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
12
|
Tsuneda T, Taketsugu T. Singlet fission initiating organic photosensitizations. Sci Rep 2024; 14:829. [PMID: 38191637 PMCID: PMC10774408 DOI: 10.1038/s41598-023-50860-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024] Open
Abstract
The feasibility of singlet fission (SF) in organic photosensitizers is investigated through spin-flip long-range corrected time-dependent density functional theory. This study focuses on four major organic photosensitizer molecules: benzophenone, boron-dipyrromethene, methylene blue, and rose bengal. Calculations demonstrate that all these molecules possess moderate [Formula: see text]-stacking energies and closely-lying singlet (S) and quintet (triplet-triplet, TT) excitations, satisfying the essential conditions for SF: (1) Near-degenerate low-lying S and (TT) excitations with a significant S-T energy gap, and (2) Moderate [Formula: see text]-stacking energy of chromophores, slightly higher than solvation energy, enabling dissociation for triplet-state chromophore generation. Moreover, based on the El-Sayed rule, intersystem crossing is found to simultaneously proceed at very slow rates in all these photosensitizers. This is attributed to the fact that the lowest singlet excitation of the monomers partly involves [Formula: see text] transitions alongside the main [Formula: see text] transitions. The proposed mechanisms are strongly substantiated by comparisons with experimental studies.
Collapse
Affiliation(s)
- Takao Tsuneda
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
- Graduate School of Science Technology and Innovation, Kobe University, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan
| |
Collapse
|
13
|
Yamauchi A, Tanaka K, Fuki M, Fujiwara S, Kimizuka N, Ryu T, Saigo M, Onda K, Kusumoto R, Ueno N, Sato H, Kobori Y, Miyata K, Yanai N. Room-temperature quantum coherence of entangled multiexcitons in a metal-organic framework. SCIENCE ADVANCES 2024; 10:eadi3147. [PMID: 38170775 PMCID: PMC10775993 DOI: 10.1126/sciadv.adi3147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024]
Abstract
Singlet fission can generate an exchange-coupled quintet triplet pair state 5TT, which could lead to the realization of quantum computing and quantum sensing using entangled multiple qubits even at room temperature. However, the observation of the quantum coherence of 5TT has been limited to cryogenic temperatures, and the fundamental question is what kind of material design will enable its room-temperature quantum coherence. Here, we show that the quantum coherence of singlet fission-derived 5TT in a chromophore-integrated metal-organic framework can be over hundred nanoseconds at room temperature. The suppressed motion of the chromophores in ordered domains within the metal-organic framework leads to the enough fluctuation of the exchange interaction necessary for 5TT generation but, at the same time, does not cause severe 5TT decoherence. Furthermore, the phase and amplitude of quantum beating depend on the molecular motion, opening the way to room-temperature molecular quantum computing based on multiple quantum gate control.
Collapse
Affiliation(s)
- Akio Yamauchi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kentaro Tanaka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masaaki Fuki
- Molecular Photoscience Research Center, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- CREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| | - Saiya Fujiwara
- RIKEN, RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan
| | - Nobuo Kimizuka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tomohiro Ryu
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masaki Saigo
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ken Onda
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ryota Kusumoto
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Nami Ueno
- Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada, Kobe 657-8501, Japan
| | - Harumi Sato
- Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada, Kobe 657-8501, Japan
| | - Yasuhiro Kobori
- Molecular Photoscience Research Center, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- CREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Kiyoshi Miyata
- CREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Nobuhiro Yanai
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- CREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- FOREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
14
|
Tsuneda T, Taketsugu T. Roles of Singlet Fission in the Photosensitization of Silicon Phthalocyanine. J Phys Chem Lett 2023; 14:11587-11596. [PMID: 38100084 DOI: 10.1021/acs.jpclett.3c02921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The roles of singlet fission in the triplet generation of silicon phthalocyanine (SiPc), a compound analogous to the IRDye700DX photosensitizer used in near-infrared photoimmunotherapy, are investigated by considering the energetical relation between the excitations of this compound. These excitations are obtained through spin-flip long-range corrected time-dependent density functional theory calculations. To initiate singlet fission, chromophores must meet two conditions: (1) near-degenerate low-lying singlet and quintet (triplet-triplet) excitations with a considerable energy gap of the lowest singlet and triplet excited states and (2) moderate π-stacking energy of chromophores, which is higher than but not far from the solvation energy, to facilitate the dissociation and generation of triplet-state chromophores. The present calculations demonstrate that SiPc satisfies both of these conditions after the formation of π-stacking irrespective of the presence of an axial ligand(s), suggesting that singlet fission plays a crucial role in the triplet generation process, although intersystem crossing occurs simultaneously at a very slow rate.
Collapse
Affiliation(s)
- Takao Tsuneda
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Graduate School of Science Technology and Innovation, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
15
|
Lin LC, Smith T, Ai Q, Rugg BK, Risko C, Anthony JE, Damrauer NH, Johnson JC. Multiexciton quintet state populations in a rigid pyrene-bridged parallel tetracene dimer. Chem Sci 2023; 14:11554-11565. [PMID: 37886089 PMCID: PMC10599476 DOI: 10.1039/d3sc03153e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/01/2023] [Indexed: 10/28/2023] Open
Abstract
The multiexciton quintet state, 5TT, generated as a singlet fission intermediate in pairs of molecular chromophores, is a promising candidate as a qubit or qudit in future quantum information science schemes. In this work, we synthesize a pyrene-bridged parallel tetracene dimer, TPT, with an optimized interchromophore coupling strength to prevent the dissociation of 5TT to two decorrelated triplet (T1) states, which would contaminate the spin-state mixture. Long-lived and strongly spin-polarized pure 5TT state population is observed via transient absorption spectroscopy and transient/pulsed electron paramagnetic resonance spectroscopy, and its lifetime is estimated to be >35 µs, with the dephasing time (T2) for the 5TT-based qubit measured to be 726 ns at 10 K. Direct relaxation from 1TT to the ground state does diminish the overall excited state population, but the exclusive 5TT population at large enough persistent density for pulsed echo determination of spin coherence time is consistent with recent theoretical models that predict such behavior for strict parallel chromophore alignment and large exchange coupling.
Collapse
Affiliation(s)
- Liang-Chun Lin
- Department of Chemistry, University of Colorado Boulder Boulder CO 80309 USA
| | - Tanner Smith
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky Lexington Kentucky 40506-0055 USA
| | - Qianxiang Ai
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky Lexington Kentucky 40506-0055 USA
| | - Brandon K Rugg
- National Renewable Energy Laboratory 15013 Denver West Parkway Golden Colorado 80401 USA
| | - Chad Risko
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky Lexington Kentucky 40506-0055 USA
| | - John E Anthony
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky Lexington Kentucky 40506-0055 USA
| | - Niels H Damrauer
- Department of Chemistry, University of Colorado Boulder Boulder CO 80309 USA
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder Boulder CO 80309 USA
| | - Justin C Johnson
- National Renewable Energy Laboratory 15013 Denver West Parkway Golden Colorado 80401 USA
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder Boulder CO 80309 USA
| |
Collapse
|
16
|
Wakikawa Y, Ikoma T. Radio-wave Effect on Singlet Fission in Polycrystalline Tetracene near Zero Magnetic Field. J Phys Chem Lett 2023; 14:3907-3911. [PMID: 37073997 DOI: 10.1021/acs.jpclett.3c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A triplet-triplet pair is a key intermediate in singlet fission (SF), which has the potential to overcome the theoretical limit of solar cell efficiency. Here, we report a new spectroscopy to directly detect a short-lived triplet-triplet pair via the effects of radio-wave (RF) irradiation near zero magnetic field at room temperature. The fluorescence of polycrystalline powder of tetracene is reduced by RF irradiation at zero field, which is caused by a quasi-static RF field effect on spin mixing and electron-spin resonance among zero-field-splitting sublevels of the triplet-triplet pair. The curve for the quasi-static RF field effect can be reproduced numerically from that for the observed magnetophotoluminescence (MPL) effect. The simultaneous simulation of the RF and MPL effects using the density matrix formalism estimates rate constants of 1.2 × 108 and 6.0 × 108 s-1 for the fusion and dissociation, respectively, of the triplet-triplet pair.
Collapse
Affiliation(s)
- Yusuke Wakikawa
- Shizuoka Institute of Science and Technology, 2200-2 Toyosawa, Fukuroi, Shizuoka 437-8555, Japan
| | - Tadaaki Ikoma
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata 950-2181, Japan
| |
Collapse
|
17
|
Bian F, Wu X, Yang Z, Shao S, Meng X, Qin G. Quantitative Evaluation of the Carrier Separation Performance of Heterojunction Photocatalysts: The Case of g-C 3N 4/SrTiO 3. J Phys Chem Lett 2023; 14:2927-2932. [PMID: 36930040 DOI: 10.1021/acs.jpclett.3c00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Heterojunction photocatalysts are of great interest in the energy and environmental fields, because of their potential to significantly increase the efficiency of harvesting solar energy. Advances in design have been hampered by the continued use of only qualitative analyses. Quantitative evaluation of the carrier separation performance is urgently needed for the design and application of heterojunction photocatalysts. Taking the g-C3N4/SrTiO3 heterojunction as an example, we address the conventional energy band and electronic structure issues by first-principles analysis. After interface coupling, the band edge alignment reverses from that of the respective isolated states of the heterojunction components, suggesting new ways of thinking about the catalytic mechanism of the heterojunction. More significantly, we show the carrier separation performance of heterojunction photocatalysts can be quantitatively predicted by the nonadiabatic molecular dynamics method, enabling more precisely directed research and promoting the quantified design and application of heterojunction photocatalysis, making a contribution of great scientific significance.
Collapse
Affiliation(s)
- Fang Bian
- Key Laboratory for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xinge Wu
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Zhaoying Yang
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Shuai Shao
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xiangying Meng
- College of Sciences, Northeastern University, Shenyang 110819, China
- Institute of Materials Intelligence Technology, Liaoning Academy of Materials, Shenyang 110167, China
| | - Gaowu Qin
- Key Laboratory for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- Institute of Materials Intelligence Technology, Liaoning Academy of Materials, Shenyang 110167, China
| |
Collapse
|
18
|
Orsborne SE, Gorman J, Weiss LR, Sridhar A, Panjwani NA, Divitini G, Budden P, Palecek D, Ryan ST, Rao A, Collepardo-Guevara R, El-Sagheer AH, Brown T, Behrends J, Friend RH, Auras F. Photogeneration of Spin Quintet Triplet-Triplet Excitations in DNA-Assembled Pentacene Stacks. J Am Chem Soc 2023; 145:5431-5438. [PMID: 36825550 PMCID: PMC9999418 DOI: 10.1021/jacs.2c13743] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Indexed: 02/25/2023]
Abstract
Singlet fission (SF), an exciton-doubling process observed in certain molecular semiconductors where two triplet excitons are generated from one singlet exciton, requires correctly tuned intermolecular coupling to allow separation of the two triplets to different molecular units. We explore this using DNA-encoded assembly of SF-capable pentacenes into discrete π-stacked constructs of defined size and geometry. Precise structural control is achieved via a combination of the DNA duplex formation between complementary single-stranded DNA and the local molecular geometry that directs the SF chromophores into a stable and predictable slip-stacked configuration, as confirmed by molecular dynamics (MD) modeling. Transient electron spin resonance spectroscopy revealed that within these DNA-assembled pentacene stacks, SF evolves via a bound triplet pair quintet state, which subsequently converts into free triplets. SF evolution via a long-lived quintet state sets specific requirements on intermolecular coupling, rendering the quintet spectrum and its zero-field-splitting parameters highly sensitive to intermolecular geometry. We have found that the experimental spectra and zero-field-splitting parameters are consistent with a slight systematic strain relative to the MD-optimized geometry. Thus, the transient electron spin resonance analysis is a powerful tool to test and refine the MD-derived structure models. DNA-encoded assembly of coupled semiconductor molecules allows controlled construction of electronically functional structures, but brings with it significant dynamic and polar disorders. Our findings here of efficient SF through quintet states demonstrate that these conditions still allow efficient and controlled semiconductor operation and point toward future opportunities for constructing functional optoelectronic systems.
Collapse
Affiliation(s)
- Sarah
R. E. Orsborne
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, CB3 0HE Cambridge, U.K.
| | - Jeffrey Gorman
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, CB3 0HE Cambridge, U.K.
| | - Leah R. Weiss
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United
States
| | - Akshay Sridhar
- Department
of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, 17121 Solna, Sweden
| | - Naitik A. Panjwani
- Berlin
Joint EPR Laboratory, Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Giorgio Divitini
- Department
of Materials Science & Metallurgy, University
of Cambridge, CB3 0FS Cambridge, U.K.
| | - Peter Budden
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, CB3 0HE Cambridge, U.K.
| | - David Palecek
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, CB3 0HE Cambridge, U.K.
| | - Seán T.
J. Ryan
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, CB3 0HE Cambridge, U.K.
| | - Akshay Rao
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, CB3 0HE Cambridge, U.K.
| | - Rosana Collepardo-Guevara
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, CB3 0HE Cambridge, U.K.
- Yusuf Hamied
Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Afaf H. El-Sagheer
- Department
of Chemistry, University of Oxford, OX1 3TA Oxford, U.K.
- Department
of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| | - Tom Brown
- Department
of Chemistry, University of Oxford, OX1 3TA Oxford, U.K.
| | - Jan Behrends
- Berlin
Joint EPR Laboratory, Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Richard H. Friend
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, CB3 0HE Cambridge, U.K.
| | - Florian Auras
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, CB3 0HE Cambridge, U.K.
| |
Collapse
|
19
|
Singlet fission as a polarized spin generator for dynamic nuclear polarization. Nat Commun 2023; 14:1056. [PMID: 36859419 PMCID: PMC9977948 DOI: 10.1038/s41467-023-36698-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
Singlet fission (SF), converting a singlet excited state into a spin-correlated triplet-pair state, is an effective way to generate a spin quintet state in organic materials. Although its application to photovoltaics as an exciton multiplier has been extensively studied, the use of its unique spin degree of freedom has been largely unexplored. Here, we demonstrate that the spin polarization of the quintet multiexcitons generated by SF improves the sensitivity of magnetic resonance of water molecules through dynamic nuclear polarization (DNP). We form supramolecular assemblies of a few pentacene chromophores and use SF-born quintet spins to achieve DNP of water-glycerol, the most basic biological matrix, as evidenced by the dependence of nuclear polarization enhancement on magnetic field and microwave power. Our demonstration opens a use of SF as a polarized spin generator in bio-quantum technology.
Collapse
|
20
|
Nakamura S, Sakai H, Fuki M, Ooie R, Ishiwari F, Saeki A, Tkachenko NV, Kobori Y, Hasobe T. Thermodynamic Control of Intramolecular Singlet Fission and Exciton Transport in Linear Tetracene Oligomers. Angew Chem Int Ed Engl 2023; 62:e202217704. [PMID: 36578175 DOI: 10.1002/anie.202217704] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022]
Abstract
We newly synthesized a series of homo- and hetero-tetracene (Tc) oligomers to propose a molecular design strategy for the efficient exciton transport in linear oligomers by promoting correlated triplet pair (TT) dissociation and controlling sequential exciton trapping process of individual doubled triplet excitons (T+T) by intramolecular singlet fission. First, entropic gain effects on the number of Tc units are examined by comparing Tc-homo-oligomers [(Tc)n : n=2, 4, 6]. Then, a comparison of (Tc)n and Tc-hetero-oligomer [TcF3 -(Tc)4 -TcF3 ] reveals the vibronic coupling effect for entropic gain. Observed entropic effects on the T+T formation indicated that the exciton migration is rationalized by number of possible TT states increased both by increasing the number of Tc units and by the vibronic levels at the terminal TcF3 units. Finally, we successfully observed high-yield exciton trapping process (trapped triplet yield: ΦTrT =176 %).
Collapse
Affiliation(s)
- Shunta Nakamura
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Hayato Sakai
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Masaaki Fuki
- Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Department of Chemistry, Graduate School of Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Rikuto Ooie
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Fumitaka Ishiwari
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Akinori Saeki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Nikolai V Tkachenko
- Chemistry and Advanced Materials Group, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720, Tampere, Finland
| | - Yasuhiro Kobori
- Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Department of Chemistry, Graduate School of Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Taku Hasobe
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
21
|
Tsuneda T, Taketsugu T. Singlet fission initiating triplet generations of BODIPY derivatives through [Formula: see text]-stacking: a theoretical study. Sci Rep 2022; 12:19714. [PMID: 36385479 PMCID: PMC9668823 DOI: 10.1038/s41598-022-23370-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
The role of singlet fission (SF) in the triplet-state generation mechanism of 1,3,5,7-tetramethyl-boron-dipyrromethene derivatives is revealed by exploring the cause for the solvent dependence of the generation rate. Comparing the adsorption energy calculations of solvent molecules, i.e., cyclohexane, chloroform and acetonitrile molecules, to the derivatives with the [Formula: see text]-stacking energies of these derivatives surprisingly show that the hierarchy of the solvation energies and [Formula: see text]-stacking energies strongly correlates with the experimentally-suggested solvent dependence of the triplet-state generation of these derivatives for five and more adsorbing solvent molecules. Following this finding, the excitation spectra of these derivatives in acetonitrile solvent are explored using the proprietary spin-flip long-range corrected time-dependent density functional theory. It is, consequently, confirmed that the [Formula: see text]-stacking activates the second lowest singlet excitation to trigger the spin-allowed transition to the singlet doubly-excited tetraradical (TT)[Formula: see text] state, which generates the long-lived quintet (TT)[Formula: see text] state causing the SF. However, it is also found that the [Formula: see text]-stacking also get a slow intersystem crossing active around the intersections of the lowest singlet excitations with the lowest triplet T[Formula: see text] excitations in parallel with the SF due to the charge transfer characters of the lowest singlet excitations. These results suggest that SF initiates the triplet-state generations through near-degenerate low-lying singlet and (TT) excitations with a considerable singlet-triplet energy gap after the [Formula: see text]-stacking of chromophores stronger than but not far from the solvation. Since these derivatives are organic photosensitizers, this study proposes that SF should be taken into consideration in developing novel heavy atom-free organic photosensitizers, which will contribute to a variety of research fields such as medical care, photobiology, energy science, and synthetic chemistry.
Collapse
Affiliation(s)
- Takao Tsuneda
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810 Japan
- Graduate School of Science Technology and Innovation, Kobe University, Nada-ku, Kobe, Hyogo 657-8501 Japan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810 Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021 Japan
| |
Collapse
|
22
|
Nagaoka T, Matsui Y, Fuki M, Ogaki T, Ohta E, Kobori Y, Ikeda H. Diphenyldihydropentalenediones: Wide Singlet-Triplet Energy Gap Compounds Possessing the Planarly Fixed Diene Subunit. ACS OMEGA 2022; 7:40364-40373. [PMID: 36385848 PMCID: PMC9648098 DOI: 10.1021/acsomega.2c05341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
2,2,5,5-Tetramethyl-3,6-diphenyl-2,5-dihydropentalene-1,4-dione (PD-H) and its dimethoxy (PD-OCH3) and bis(trifluoromethyl) derivatives (PD-CF3) were developed as a new class of compounds possessing a wide excited singlet-triplet energy gap. The PD derivatives would also have a high energy level of the triplet-excited state (E T) due to the planarity of the fused-diene subunit. The results of photophysical studies revealed that the energy level of the singlet-excited state (E S) and E T of PD-H are 2.88 and 1.43 eV, respectively. These values indicate that PD-H has the energy relationship, E S > 2E T, required for it to be a singlet fission (SF) material. Moreover, the introduction of electron-donating or -withdrawing groups on the benzene rings in PD-H enables fine-tuning of E S and E T. The results of transient absorption spectroscopic studies show that PD-H, PD-OCH3, and PD-CF3 in CH2Cl2 have respective T1 lifetimes of 71, 118, and 107 μs, which are long enough to utilize its triplet exciton in other optoelectronic systems. These findings suggest that the PDs are potential candidates for SF materials with high E T levels.
Collapse
Affiliation(s)
- Tomoki Nagaoka
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka599-8531, Japan
| | - Yasunori Matsui
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka599-8531, Japan
- The
Research Institute for Molecular Electronic Devices (RIMED), Osaka Metropolitan University, 1-1 Gakuen-cho,
Nakaku, Sakai, Osaka599-8531, Japan
| | - Masaaki Fuki
- Molecular
Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo657-8501, Japan
| | - Takuya Ogaki
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka599-8531, Japan
- The
Research Institute for Molecular Electronic Devices (RIMED), Osaka Metropolitan University, 1-1 Gakuen-cho,
Nakaku, Sakai, Osaka599-8531, Japan
| | - Eisuke Ohta
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka599-8531, Japan
| | - Yasuhiro Kobori
- Molecular
Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo657-8501, Japan
- Graduate
School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo657-8501, Japan
| | - Hiroshi Ikeda
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka599-8531, Japan
- The
Research Institute for Molecular Electronic Devices (RIMED), Osaka Metropolitan University, 1-1 Gakuen-cho,
Nakaku, Sakai, Osaka599-8531, Japan
| |
Collapse
|
23
|
Parallel triplet formation pathways in a singlet fission material. Nat Commun 2022; 13:5244. [PMID: 36068233 PMCID: PMC9448805 DOI: 10.1038/s41467-022-32844-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/18/2022] [Indexed: 11/08/2022] Open
Abstract
Harvesting long-lived free triplets in high yields by utilizing organic singlet fission materials can be the cornerstone for increasing photovoltaic efficiencies potentially. However, except for polyacenes, which are the most studied systems in the singlet fission field, spin-entangled correlated triplet pairs and free triplets born through singlet fission are relatively poorly characterized. By utilizing transient absorption and photoluminescence spectroscopy in supramolecular aggregate thin films consisting of Hamilton-receptor-substituted diketopyrrolopyrrole derivatives, we show that photoexcitation gives rise to the formation of spin-0 correlated triplet pair 1(TT) from the lower Frenkel exciton state. The existence of 1(TT) is proved through faint Herzberg-Teller emission that is enabled by vibronic coupling and correlated with an artifact-free triplet-state photoinduced absorption in the near-infrared. Surprisingly, transient electron paramagnetic resonance reveals that long-lived triplets are produced through classical intersystem crossing instead of 1(TT) dissociation, with the two pathways in competition. Moreover, comparison of the triplet-formation dynamics in J-like and H-like thin films with the same energetics reveals that spin-orbit coupling mediated intersystem crossing persists in both. However, 1(TT) only forms in the J-like film, pinpointing the huge impact of intermolecular coupling geometry on singlet fission dynamics.
Collapse
|
24
|
Jacobberger RM, Qiu Y, Williams ML, Krzyaniak MD, Wasielewski MR. Using Molecular Design to Enhance the Coherence Time of Quintet Multiexcitons Generated by Singlet Fission in Single Crystals. J Am Chem Soc 2022; 144:2276-2283. [PMID: 35099963 DOI: 10.1021/jacs.1c12414] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multiexciton quintet states, 5(TT), photogenerated in organic semiconductors using singlet fission (SF), consist of four quantum entangled spins, promising to enable new applications in quantum information science. However, the factors that determine the spin coherence of these states remain underexplored. Here, we engineer the packing of tetracene molecules within single crystals of 5,12-bis(tricyclohexylsilylethynyl)tetracene (TCHS-tetracene) to demonstrate a 5(TT) state that exhibits promising spin qubit properties, including a coherence time, T2, = 3 μs at 10 K, a population lifetime, Tpop, = 130 μs at 5 K, and stability even at room temperature. The single-crystal platform also enables global alignment of the spins and, consequently, individual addressability of the spin-sublevel transitions. Decoherence mechanisms, including exciton diffusion, electronic dipolar coupling, and nuclear hyperfine interactions, are elucidated, providing design principles for increasing T2 and the operational temperature of 5(TT). By dynamically decoupling 5(TT) from the surrounding spin bath, T2 = 10 μs is achieved. These results demonstrate the viability of harnessing singlet fission to initiate multiple electron spins in a well-defined quantum state for next-generation molecular-based quantum technologies.
Collapse
Affiliation(s)
- Robert M Jacobberger
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3313, United States
| | - Yunfan Qiu
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3313, United States
| | - Malik L Williams
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3313, United States
| | - Matthew D Krzyaniak
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3313, United States
| | - Michael R Wasielewski
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3313, United States
| |
Collapse
|
25
|
Bossanyi DG, Sasaki Y, Wang S, Chekulaev D, Kimizuka N, Yanai N, Clark J. Spin Statistics for Triplet-Triplet Annihilation Upconversion: Exchange Coupling, Intermolecular Orientation, and Reverse Intersystem Crossing. JACS AU 2021; 1:2188-2201. [PMID: 34977890 PMCID: PMC8715495 DOI: 10.1021/jacsau.1c00322] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Indexed: 06/14/2023]
Abstract
Triplet-triplet annihilation upconversion (TTA-UC) has great potential to significantly improve the light harvesting capabilities of photovoltaic cells and is also sought after for biomedical applications. Many factors combine to influence the overall efficiency of TTA-UC, the most fundamental of which is the spin statistical factor, η, that gives the probability that a bright singlet state is formed from a pair of annihilating triplet states. The value of η is also critical in determining the contribution of TTA to the overall efficiency of organic light-emitting diodes. Using solid rubrene as a model system, we reiterate why experimentally measured magnetic field effects prove that annihilating triplets first form weakly exchange-coupled triplet-pair states. This is contrary to conventional discussions of TTA-UC that implicitly assume strong exchange coupling, and we show that it has profound implications for the spin statistical factor η. For example, variations in intermolecular orientation tune η from to through spin mixing of the triplet-pair wave functions. Because the fate of spin-1 triplet-pair states is particularly crucial in determining η, we investigate it in rubrene using pump-push-probe spectroscopy and find additional evidence for the recently reported high-level reverse intersystem crossing channel. We incorporate all of these factors into an updated model framework with which to understand the spin statistics of TTA-UC and use it to rationalize the differences in reported values of η among different common annihilator systems. We suggest that harnessing high-level reverse intersystem crossing channels in new annihilator molecules may be a highly promising strategy to exceed any spin statistical limit.
Collapse
Affiliation(s)
- David G. Bossanyi
- Department
of Physics and Astronomy, The University
of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, U.K.
| | - Yoichi Sasaki
- Department
of Chemistry and Biochemistry, Graduate School of Engineering, Center
for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shuangqing Wang
- Department
of Physics and Astronomy, The University
of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, U.K.
| | - Dimitri Chekulaev
- Department
of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K.
| | - Nobuo Kimizuka
- Department
of Chemistry and Biochemistry, Graduate School of Engineering, Center
for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Nobuhiro Yanai
- Department
of Chemistry and Biochemistry, Graduate School of Engineering, Center
for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jenny Clark
- Department
of Physics and Astronomy, The University
of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, U.K.
| |
Collapse
|
26
|
Walia R, Deng Z, Yang J. Towards multistate multimode landscapes in singlet fission of pentacene: the dual role of charge-transfer states. Chem Sci 2021; 12:12928-12938. [PMID: 34745523 PMCID: PMC8514007 DOI: 10.1039/d1sc01703a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/30/2021] [Indexed: 12/03/2022] Open
Abstract
Singlet fission duplicates triplet excitons for improving light harvesting efficiency. The presence of the interaction between electronic and nuclear degrees of freedom complicates the interpretation of correlated triplet pairs. We report a quantum chemistry study on the significance and subtleties of multistate and multimode pathways in forming triplet pair states of the pentacene dimer through a six-state vibronic-coupling Hamiltonian derived from many-electron adiabatic wavefunctions of an ab initio density matrix renormalization group. The resulting spin values of the singlet manifolds on each pentacene center are computed, and the varying spin nature can be distinguished clearly with respect to dimer stacking and vibronic progression. Our monomer spin assignments reveal the coexistence of both lower-lying weak and higher-lying strong charge transfer states which interact vibronically with the triplet pair state, providing important implications for its generation and separation occurring in vibronic regions. This work conveys the importance of the many-electron process requiring close low-lying singlet manifolds to determine the subtle fission details, and represents an important step for understanding vibronically resolved spin states and conversions underlying efficient singlet fission.
Collapse
Affiliation(s)
- Rajat Walia
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Zexiang Deng
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Jun Yang
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| |
Collapse
|
27
|
Hamada M, Iwata T, Fuki M, Kandori H, Weber S, Kobori Y. Orientations and water dynamics of photoinduced secondary charge-separated states for magnetoreception by cryptochrome. Commun Chem 2021; 4:141. [PMID: 36697801 PMCID: PMC9814139 DOI: 10.1038/s42004-021-00573-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/02/2021] [Indexed: 01/28/2023] Open
Abstract
In the biological magnetic compass, blue-light photoreceptor protein of cryptochrome is thought to conduct the sensing of the Earth's magnetic field by photoinduced sequential long-range charge-separation (CS) through a cascade of tryptophan residues, WA(H), WB(H) and WC(H). Mechanism of generating the weak-field sensitive radical pair (RP) is poorly understood because geometries, electronic couplings and their modulations by molecular motion have not been investigated in the secondary CS states generated prior to the terminal RP states. In this study, water dynamics control of the electronic coupling is revealed to be a key concept for sensing the direction of weak magnetic field. Geometry and exchange coupling (singlet-triplet energy gap: 2J) of photoinduced secondary CS states composed of flavin adenine dinucleotide radical anion (FAD-•) and radical cation WB(H)+• in the cryptochrome DASH from Xenopus laevis were clarified by time-resolved electron paramagnetic resonance. We found a time-dependent energetic disorder in 2J and was interpreted by a trap CS state capturing one reorientated water molecule at 120 K. Enhanced electron-tunneling by water-libration was revealed for the terminal charge-separation event at elevated temperature. This highlights importance of optimizing the electronic coupling for regulation of the anisotropic RP yield on the possible magnetic compass senses.
Collapse
Affiliation(s)
- Misato Hamada
- grid.31432.370000 0001 1092 3077Department of Chemistry, Graduate School of Science, Kobe University, 1‒1 Rokkodai‒cho, Nada‒ku, Kobe, 657‒8501 Japan
| | - Tatsuya Iwata
- grid.265050.40000 0000 9290 9879Department of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274‒8510 Japan
| | - Masaaki Fuki
- grid.31432.370000 0001 1092 3077Department of Chemistry, Graduate School of Science, Kobe University, 1‒1 Rokkodai‒cho, Nada‒ku, Kobe, 657‒8501 Japan ,grid.31432.370000 0001 1092 3077Molecular Photoscience Research Center, Kobe University, 1‒1 Rokkodai‒cho, Nada‒ku, Kobe, 657‒8501 Japan
| | - Hideki Kandori
- grid.47716.330000 0001 0656 7591Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555 Japan ,grid.47716.330000 0001 0656 7591OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555 Japan
| | - Stefan Weber
- grid.5963.9Institute of Physical Chemistry, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Yasuhiro Kobori
- grid.31432.370000 0001 1092 3077Department of Chemistry, Graduate School of Science, Kobe University, 1‒1 Rokkodai‒cho, Nada‒ku, Kobe, 657‒8501 Japan ,grid.31432.370000 0001 1092 3077Molecular Photoscience Research Center, Kobe University, 1‒1 Rokkodai‒cho, Nada‒ku, Kobe, 657‒8501 Japan
| |
Collapse
|
28
|
Nakamura S, Sakai H, Fuki M, Kobori Y, Tkachenko NV, Hasobe T. Enthalpy-Entropy Compensation Effect for Triplet Pair Dissociation of Intramolecular Singlet Fission in Phenylene Spacer-Bridged Hexacene Dimers. J Phys Chem Lett 2021; 12:6457-6463. [PMID: 34236876 DOI: 10.1021/acs.jpclett.1c01430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hexacene (Hc) is highly promising for singlet fission (SF). However, the number of SFs in Hc is extremely limited. As far as Hc dimers in solution are concerned, there is no report on the observation of the dissociation process from a correlated triplet pair (TT) to an individual one. The emphasis in this study is on the first observation of the quantitative TT generation together with the orientation-dependent photophysical discussions for TT dissociation using para- and meta-phenyl-bridged Hc dimers. Moreover, the activation enthalpies of Hc dimers in TT dissociation are smaller than those of pentacene (Pc) dimers, whereas the relative entropic contributions for Gibbs free energy of activation are much larger than the enthalpic ones in both Hc and Pc dimers. This implies that the vibrational motions are responsible for the intramolecular conformation changes associated with the TT dissociation. Consequently, "enthalpy-entropy compensation" has a large impact on the rate constants and quantum yields.
Collapse
Affiliation(s)
- Shunta Nakamura
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Hayato Sakai
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Masaaki Fuki
- Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Yasuhiro Kobori
- Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Nikolai V Tkachenko
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, 33101 Tampere, Finland
| | - Taku Hasobe
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
29
|
Kato K, Teki Y. Photogenerated carrier dynamics of TIPS-pentacene films as studied by photocurrent and electrically detected magnetic resonance. Phys Chem Chem Phys 2021; 23:6361-6369. [PMID: 33439177 DOI: 10.1039/d0cp05125j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The carrier generation process and spin dynamics through photoexcitation in the vacuum vapour deposition film of 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-Pn) were investigated by temperature dependence measurements of photocurrent and electrically detected magnetic resonance (EDMR). The EDMR signal was constructed from two components and showed a maximum at approximately 200 K. The temperature dependence was analysed using quantum mechanical simulation, assuming the carrier dynamics of the weakly coupled electron-hole pair (e-h pair). In addition, the analytical formula of photocurrent generation and EDMR signal intensity were also derived based on classical rate equations and used to understand the carrier dynamics. Through phase-shift analysis in quadrature detection of the EDMR signals, one of the two components was well analysed by using a narrow Lorentzian shape, and the other was by using a broad Gaussian.
Collapse
Affiliation(s)
- Ken Kato
- Division of Molecular Materials Science, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.
| | | |
Collapse
|
30
|
Abstract
Singlet fission (SF) is a photophysical downconversion pathway, in which a singlet excitation transforms into two triplet excited states. As such, it constitutes an exciton multiplication generation process, which is currently at the focal point for future integration into solar energy conversion devices. Beyond this, various other exciting applications were proposed, including quantum cryptography or organic light emitting diodes. Also, the mechanistic understanding evolved rapidly during the last year. Unfortunately, the number of suitable SF-chromophores is still limited. This is per se problematic, considering the wide range of envisaged applicability. With that in mind, we emphasize uncommon SF-scaffolds and outline requirements as well as strategies to expand the chromophore pool of SF-materials.
Collapse
Affiliation(s)
- Tobias Ullrich
- Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Department für Chemie und Pharmazie, Egerlandstr. 1-3, 91058 Erlangen, Germany.
| | | | | |
Collapse
|
31
|
Tonami T, Sugimori R, Sakai R, Tokuyama K, Miyamoto H, Nakano M. Theoretical study on the effect of applying an external static electric field on the singlet fission dynamics of pentacene dimer models. Phys Chem Chem Phys 2021; 23:11624-11634. [PMID: 33955433 DOI: 10.1039/d1cp00880c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigate the effect of applying an external static electric field on the singlet fission (SF) dynamics of pentacene dimer models using quantum chemical calculations and exciton dynamics simulations. It is found that the excitation energies of anion-cation (AC) and cation-anion (CA) pair exciton states in the SF process are significantly stabilized and destabilized, respectively, by applying an external static electric field (F) in the intermolecular direction. As a result, this change of excitation energies is found to accelerate the SF dynamics in pentacene dimer models. In particular, in the tilted- and parallel-type pentacene dimer models, SF rates at F = 0.001 a.u. are predicted to be about 2.3 and 3.0 times as large as those at F = 0.0 a.u. while keeping the TT yields large. The present result contributes to paving the way for novel physical and chemical controls, that is, an external static electric field application and donor/acceptor substitution on SF molecules, of SF dynamics.
Collapse
Affiliation(s)
- Takayoshi Tonami
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| | - Ryota Sugimori
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| | - Ryota Sakai
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| | - Kazuaki Tokuyama
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| | - Hajime Miyamoto
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| | - Masayoshi Nakano
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan. and Center for Spintronics Research Network (CSRN), Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan and Center for Quantum Information and Quantum Biology (QIQB), International Advanced Research Institute (IARI), Osaka University, Toyonaka, Osaka 560-8531, Japan and Innovative Catalysis Science Division (ICS), Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Toyonaka, Osaka 560-8531, Japan and Research Center for Solar Energy Chemistry (RCSEC), Division of Quantum Photochemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
32
|
Yoshino K, Sakai H, Shoji Y, Kajitani T, Anetai H, Akutagawa T, Fukushima T, Tkachenko NV, Hasobe T. Room-Temperature Pentacene Fluids: Oligoethylene Glycol Substituent-Controlled Morphologies and Singlet Fission. J Phys Chem B 2020; 124:11910-11918. [PMID: 33336576 DOI: 10.1021/acs.jpcb.0c09754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We report the first synthesis of solvent-free pentacene fluids at room temperature together with observation of singlet fission (SF). Three pentacenes with different number of ethylene glycol (EG) side chains (n) were employed (denoted as (EG)n-Pc-(EG)n: n = 2, 3, and 4). The morphologies of these pentacenes largely depend on the lengths of EG chains (n). (EG)3-Pc-(EG)3 and (EG)4-Pc-(EG)4 indicate fluid compounds at room temperature, whereas (EG)2-Pc-(EG)2 is a solid compound. Microscopic clustering with short-range interactions between pentacene chromophores was confirmed in X-ray diffraction profiles of solvent-free fluids. Such a structural trend is an important origin of SF and consistent with the steady-state spectroscopic results. To one's surprise, femtosecond transient absorption spectroscopy demonstrated that SF occurred in thin films prepared from solvent-free fluids of (EG)3-Pc-(EG)3 and (EG)4-Pc-(EG)4 in spite of such excessive EG chains.
Collapse
Affiliation(s)
- Keisuke Yoshino
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Hayato Sakai
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Yoshiaki Shoji
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Takashi Kajitani
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan.,Materials Analysis Division, Open Facility Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Hayato Anetai
- Graduate School of Engineering, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Tomoyuki Akutagawa
- Graduate School of Engineering, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.,Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Nikolai V Tkachenko
- Chemistry and Advanced Materials Group, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, Tampere FI33720, Finland
| | - Taku Hasobe
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| |
Collapse
|
33
|
Cruz CD, Chronister EL, Bardeen CJ. Using temperature dependent fluorescence to evaluate singlet fission pathways in tetracene single crystals. J Chem Phys 2020; 153:234504. [PMID: 33353314 DOI: 10.1063/5.0031458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The temperature-dependent fluorescence spectrum, decay rate, and spin quantum beats are examined in single tetracene crystals to gain insight into the mechanism of singlet fission. Over the temperature range of 250 K-500 K, the vibronic lineshape of the emission indicates that the singlet exciton becomes localized at 400 K. The fission process is insensitive to this localization and exhibits Arrhenius behavior with an activation energy of 550 ± 50 cm-1. The damping rate of the triplet pair spin quantum beats in the delayed fluorescence also exhibits an Arrhenius temperature dependence with an activation energy of 165 ± 70 cm-1. All the data for T > 250 K are consistent with direct production of a spatially separated 1(T⋯T) state via a thermally activated process, analogous to spontaneous parametric downconversion of photons. For temperatures in the range of 20 K-250 K, the singlet exciton continues to undergo a rapid decay on the order of 200 ps, leaving a red-shifted emission that decays on the order of 100 ns. At very long times (≈1 µs), a delayed fluorescence component corresponding to the original S1 state can still be resolved, unlike in polycrystalline films. A kinetic analysis shows that the redshifted emission seen at lower temperatures cannot be an intermediate in the triplet production. When considered in the context of other results, our data suggest that the production of triplets in tetracene for temperatures below 250 K is a complex process that is sensitive to the presence of structural defects.
Collapse
Affiliation(s)
- Chad D Cruz
- Department of Chemistry, University of California Riverside, Riverside, California 92521, USA
| | - Eric L Chronister
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA
| | - Christopher J Bardeen
- Department of Chemistry, University of California Riverside, Riverside, California 92521, USA
| |
Collapse
|
34
|
Ribson RD, Choi G, Hadt RG, Agapie T. Controlling Singlet Fission with Coordination Chemistry-Induced Assembly of Dipyridyl Pyrrole Bipentacenes. ACS CENTRAL SCIENCE 2020; 6:2088-2096. [PMID: 33274285 PMCID: PMC7706079 DOI: 10.1021/acscentsci.0c01044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Indexed: 05/28/2023]
Abstract
Singlet fission has the potential to surpass current efficiency limits in next-generation photovoltaics and to find use in quantum information science. Despite the demonstration of singlet fission in various materials, there is still a great need for fundamental design principles that allow for tuning of photophysical parameters, including the rate of fission and triplet lifetimes. Here, we describe the synthesis and photophysical characterization of a novel bipentacene dipyridyl pyrrole (HDPP-Pent) and its Li- and K-coordinated derivatives. HDPP-Pent undergoes singlet fission at roughly 50% efficiency (τSF = 730 ps), whereas coordination in the Li complex induces significant structural changes to generate a dimer, resulting in a 7-fold rate increase (τSF = 100 ps) and more efficient singlet fission with virtually no sacrifice in triplet lifetime. We thus illustrate novel design principles to produce favorable singlet fission properties, wherein through-space control can be achieved via coordination chemistry-induced multipentacene assembly.
Collapse
Affiliation(s)
- Ryan D. Ribson
- Division of Chemistry and
Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Gyeongshin Choi
- Division of Chemistry and
Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Ryan G. Hadt
- Division of Chemistry and
Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and
Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
35
|
Wollscheid N, Lustres JLP, Brosius V, Motzkus M, Bunz UHF, Buckup T. Diffusion-Controlled Singlet Fission in a Chlorinated Phenazinothiadiazole by Broadband Femtosecond Transient Absorption. J Phys Chem B 2020; 124:10186-10194. [PMID: 33118824 DOI: 10.1021/acs.jpcb.0c05056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Singlet fission (SF) is a process by which one excited singlet state yields two triplet states upon close interaction with a ground-state chromophore of the same kind. This photoreaction was first observed in solid state and has important implications in organic photovoltaics. Singlet fission was also reported in concentrated solutions, where the need for diffusion of the reaction partners slows the dynamics. This helps to single out reaction stages and to identify the involved species. In this work, ultrafast transient absorption spectroscopy and time-correlated single photon counting are applied to the concentration-dependent (from 10-1 to 102 mM) photodynamics of a tetrachlorinated phenazinothiadiazole in toluene. Time-resolved emission shows a monoexponential decay, which is constant across the emission band. The corresponding decay rate depends linearly on the concentration of the phenazinothiadiazole. Femtosecond transient absorption demonstrates that a concentration-dependent singlet-to-triplet conversion hides behind the emission decay which is diffusion controlled. Contrary to previous reports on SF in pentacenes and tetracenes, no indication of intermediate states has been found. Efficient, direct and barrierless SF is concluded. The strong enhancement of the triplet yield at increasingly higher concentrations of the thiadiazole indicates very efficient singlet fission with a triplet yield up to 189 ± 5%.
Collapse
Affiliation(s)
- Nikolaus Wollscheid
- Physikalisch-Chemisches Institut, Ruprecht-Karls Universität, D-69120 Heidelberg, Germany.,Centre for Advanced Materials, Ruprecht-Karls Universität, D-69120 Heidelberg, Germany
| | - Jose Luis Pérez Lustres
- Physikalisch-Chemisches Institut, Ruprecht-Karls Universität, D-69120 Heidelberg, Germany.,Centre for Advanced Materials, Ruprecht-Karls Universität, D-69120 Heidelberg, Germany
| | - Victor Brosius
- Centre for Advanced Materials, Ruprecht-Karls Universität, D-69120 Heidelberg, Germany.,Organisch-Chemisches Institut, Ruprecht-Karls Universität, D-69120 Heidelberg, Germany
| | - Marcus Motzkus
- Physikalisch-Chemisches Institut, Ruprecht-Karls Universität, D-69120 Heidelberg, Germany.,Centre for Advanced Materials, Ruprecht-Karls Universität, D-69120 Heidelberg, Germany
| | - Uwe H F Bunz
- Centre for Advanced Materials, Ruprecht-Karls Universität, D-69120 Heidelberg, Germany.,Organisch-Chemisches Institut, Ruprecht-Karls Universität, D-69120 Heidelberg, Germany
| | - Tiago Buckup
- Physikalisch-Chemisches Institut, Ruprecht-Karls Universität, D-69120 Heidelberg, Germany.,Centre for Advanced Materials, Ruprecht-Karls Universität, D-69120 Heidelberg, Germany
| |
Collapse
|
36
|
Smyser KE, Eaves JD. Singlet fission for quantum information and quantum computing: the parallel JDE model. Sci Rep 2020; 10:18480. [PMID: 33116218 PMCID: PMC7595132 DOI: 10.1038/s41598-020-75459-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/22/2020] [Indexed: 11/09/2022] Open
Abstract
Singlet fission is a photoconversion process that generates a doubly excited, maximally spin entangled pair state. This state has applications to quantum information and computing that are only beginning to be realized. In this article, we construct and analyze a spin-exciton hamiltonian to describe the dynamics of the two-triplet state. We find the selection rules that connect the doubly excited, spin-singlet state to the manifold of quintet states and comment on the mechanism and conditions for the transition into formally independent triplets. For adjacent dimers that are oriented and immobilized in an inert host, singlet fission can be strongly state-selective. We make predictions for electron paramagnetic resonance experiments and analyze experimental data from recent literature. Our results give conditions for which magnetic resonance pulses can drive transitions between optically polarized magnetic sublevels of the two-exciton states, making it possible to realize quantum gates at room temperature in these systems.
Collapse
Affiliation(s)
- Kori E Smyser
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Joel D Eaves
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA.
| |
Collapse
|
37
|
Kobori Y, Fuki M, Nakamura S, Hasobe T. Geometries and Terahertz Motions Driving Quintet Multiexcitons and Ultimate Triplet–Triplet Dissociations via the Intramolecular Singlet Fissions. J Phys Chem B 2020; 124:9411-9419. [DOI: 10.1021/acs.jpcb.0c07984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yasuhiro Kobori
- Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Masaaki Fuki
- Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Shunta Nakamura
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, 223-8522, Japan
| | - Taku Hasobe
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, 223-8522, Japan
| |
Collapse
|
38
|
Yunusova KM, Bayliss SL, Chanelière T, Derkach V, Anthony JE, Chepelianskii AD, Weiss LR. Spin Fine Structure Reveals Biexciton Geometry in an Organic Semiconductor. PHYSICAL REVIEW LETTERS 2020; 125:097402. [PMID: 32915607 DOI: 10.1103/physrevlett.125.097402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
In organic semiconductors, biexcitons are key intermediates in carrier multiplication and exciton annihilation. Their local geometry governs their electronic properties and yet has been challenging to determine. Here, we access the structure of the recently discovered S=2 quintet biexciton state in an organic semiconductor using broadband optically detected magnetic resonance. We correlate the experimentally extracted spin structure with the molecular crystal geometry to identify the specific molecular pairings on which biexciton states reside.
Collapse
Affiliation(s)
- K M Yunusova
- LPS, University Paris-Sud, CNRS, UMR 8502, F-91405 Orsay, France
| | - S L Bayliss
- LPS, University Paris-Sud, CNRS, UMR 8502, F-91405 Orsay, France
| | - T Chanelière
- Laboratoire Aimé Cotton, CNRS, University Paris-Sud, ENS-Cachan, Université Paris-Saclay, 91405 Orsay, France
- University Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - V Derkach
- O. Ya. Usikov Institute for Radiophysics and Electronics of NAS of Ukraine 12, Academika Proskury Street, Kharkov 61085, Ukraine
| | - J E Anthony
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | | | - L R Weiss
- Cavendish Laboratory, J. J. Thomson Avenue, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
39
|
The Effect of Magnetic Fields on Singlet Fission in Organic Semiconductors: its Understanding and Applications. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|