1
|
Li ZQ, Meng L, Chen Z, Zhong YW. Endowing single-crystal polymers with circularly polarized luminescence. Nat Commun 2025; 16:234. [PMID: 39747830 PMCID: PMC11696868 DOI: 10.1038/s41467-024-55181-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025] Open
Abstract
The preparation of single-crystal polymers with circularly polarized luminesce (CPL) remains a challenging task in chemistry and materials science. Herein, we present the single-crystal-to-single-crystal topochemical photopolymerization of a chiral organic salt to achieve this goal. The in-situ reaction of 1,4-bis((E)-2-(pyridin-4-yl)vinyl)benzene (1) with chiral (+)- or (-)-camphorsulfonic acid (CSA) gives the monomer crystal 1[( + )/( - )-CSA]2 showing yellow CPL with a high luminescent dissymmetry factor |glum| of 0.035 and emission quantum yield Φ of 49.7%. Upon photo-induced topochemical [2 + 2] polymerization, single-crystal polyionic polymers of poly-1[( + )/( - )-CSA]2 are obtained. The single-crystal-to-single-crystal (SCSC) photopolymerization is revealed by in situ powder X-ray diffraction, single-crystal X-ray, optical microscopy, infrared, circular dichroism, and CPL spectroscopic analyzes. Interestingly, the photopolymer crystals show blue and handedness-inverted CPL with |glum| of 0.011 (Φ = 14.2%), with respect to the yellow CPL of the monomer crystal. Furthermore, patterned circularly-polarized photonic heterojunctions with alternate blue and yellow CPL sub-blocks are prepared by a mask-assisted photopolymerization method. Our findings provide a vision for fabricating high-performance CPL-active crystalline polymer materials, paving the way for the further development of photo-response chiral systems.
Collapse
Affiliation(s)
- Zhong-Qiu Li
- Key Laboratory for Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- Beijing National Laboratory for Molecular Sciences, Beijing, China
- CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Meng
- Key Laboratory for Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemistry and Life Resources, Renmin University of China, 59# Zhongguancun Street, Haidian District, Beijing, China
| | - Zili Chen
- School of Chemistry and Life Resources, Renmin University of China, 59# Zhongguancun Street, Haidian District, Beijing, China
| | - Yu-Wu Zhong
- Key Laboratory for Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- Beijing National Laboratory for Molecular Sciences, Beijing, China.
- CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Pan X, Lan L, Zhang H. Flexible organic crystals with multi-stimuli-responsive CPL for broadband multicolor optical waveguides. Chem Sci 2024:d4sc05005c. [PMID: 39371458 PMCID: PMC11447684 DOI: 10.1039/d4sc05005c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024] Open
Abstract
Flexible organic crystals, capable of transmitting light and responding to various external stimuli, are emerging as a new frontier in optoelectronic materials. They hold immense potential for applications in molecular machines, sensors, displays, and intelligent devices. Here, we report on flexible organic crystals based on single-component enantiomeric organic compounds, demonstrating multi-stimuli-responsive circularly polarized light (CPL). These crystals exhibit remarkable elasticity, responsiveness to light and acid vapors, and tunable circularly polarized optical signals. Upon exposure to acid vapors, the fluorescence of the crystals shifts from initial yellow emission to green emission, attributable to the protonation-induced inhibition of excited-state intramolecular proton transfer. Under UV irradiation, the fluorescence emission undergoes a red-shift, resulting from the molecular transformation from an enol configuration to a ketone configuration. Notably, both processes are reversible and can be restored under daylight. The integration of reversible fluorescence changes under light and acid vapors stimuli, CPL signals, and flexible optical waveguides within a single crystal paves the way for the application of organic crystals as all-organic chiral functional materials.
Collapse
Affiliation(s)
- Xiuhong Pan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Qianjin Street Changchun 130012 P. R. China
| | - Linfeng Lan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Qianjin Street Changchun 130012 P. R. China
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
3
|
Shi A, Wang H, Yang G, Gu C, Xiang C, Qian L, Lam JWY, Zhang T, Tang BZ. Multiple Chirality Switching of a Dye-Grafted Helical Polymer Film Driven by Acid & Base. Angew Chem Int Ed Engl 2024; 63:e202409782. [PMID: 38888844 DOI: 10.1002/anie.202409782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/20/2024]
Abstract
A stimuli-responsive multiple chirality switching material, which can regulate opposed chiral absorption characteristics, has great application value in the fields of optical modulation, information storage and encryption, etc. However, due to the rareness of effective functional systems and the complexity of material structures, developing this type of material remains an insurmountable challenge. Herein, a smart polymer film with multiple chirality inversion properties was fabricated efficiently based on a newly-designed acid & base-sensitive dye-grafted helical polymer. Benefited from the cooperative effects of various weak interactions (hydrogen bonds, electrostatic interaction, etc.) under the aggregated state, this polymer film exhibited a promising acid & base-driven multiple chirality inversion property containing record switchable chiral states (up to five while the solution showed three-state switching) and good reversibility. The creative exploration of such a multiple chirality switching material can not only promote the application progress of current chiroptical regulation technology, but also provide a significant guidance for the design and synthesis of future smart chiroptical switching materials and devices.
Collapse
Affiliation(s)
- Aiyan Shi
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Smart Materials for Architecture Research Lab Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315300, P. R. China
| | - Haoran Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, 999077, Hong Kong, P. R. China
| | - Guojian Yang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Smart Materials for Architecture Research Lab Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, P. R. China
| | - Chang Gu
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315300, P. R. China
| | - Chaoyu Xiang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315300, P. R. China
| | - Lei Qian
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315300, P. R. China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, 999077, Hong Kong, P. R. China
| | - Ting Zhang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315300, P. R. China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, 999077, Hong Kong, P. R. China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), 518172, P. R. China
| |
Collapse
|
4
|
Li S, Wang J, Tian M, Meng X, Wang J, Guo J. A Halogen-Bonded Fluorescent Molecular Photoswitch: Transition from 3D Cubic Lattice to 1D Helical Superstructure for Polarization Inversion of Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2024; 63:e202405615. [PMID: 38856204 DOI: 10.1002/anie.202405615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/11/2024]
Abstract
The fabrication of materials that can switch between circularly polarized luminescence (CPL) signals is both essential and challenging. Here, two new halogen-bonded fluorescent molecular photoswitches, namely, HB-switch 1 and HB-switch 2, containing α-cyano-substituted diarylethene compounds with different end groups were developed. Upon exposure to specific UV or visible light wavelengths, they exhibited controllable and reversible Z/E photoisomerization. When these switches were integrated into blue-phase liquid crystals (BPLCs), the temperature range of BP significantly expanded. Notably, the BP system incorporating HB-switch 1 exclusively achieved reversible polarization inversion of CPL signals under irradiation with specific UV/Visible light and during cooling/heating. The photo/thermal dual-response behavior of the CPL signals can be attributed to the phase transition from a high-symmetry 3D BP Icubic lattice to a low-symmetry 1D helical superstructure induced by the Z/E photoisomerization of HB-switch 1 and temperature changes. This study underscores the significance of employing halogen-bond assembly strategies to design materials with switchable CPL signals, opening new possibilities for CPL-active systems.
Collapse
Affiliation(s)
- Shan Li
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jingjing Wang
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Meng Tian
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xianyu Meng
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jingxia Wang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jinbao Guo
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
5
|
Hong KI, Cho K, Park H, Park J, Jang WD. Excited-State Dynamics of a Bright Fluorescent Dye with Precise Control of Emission Color Using Acid-Base Equilibrium, Intramolecular Charge Transfer, and Host-Guest Chemistry. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45788-45797. [PMID: 39160677 DOI: 10.1021/acsami.4c13228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
A fluorescent dye, a dithiophene-conjugated benzothiazole derivative (DTBz), was prepared to have high fluorescence emission quantum yields (ΦF) across various organic solvents. Its emission color modulation, from bright blue to deep red, was achieved through intramolecular charge transfer (ICT), acid-base equilibrium, and host-guest chemistry. Although it exhibits a weak solvatochromic effect, DTBz exhibited a bright fluorescence emission around 480 nm upon excitation at 390 nm in most solvents. In polar solvents, such as MeOH (methanol), EtOH (ethanol), DMF (N,N-dimethylforamide), and DMSO (dimethyl sulfoxide), an additional ICT emission band emerged around 640 nm, notably intense in DMSO, resulting in a bright greenish-white emission (ΦF = 0.67). The addition of 1,8-diazabicyclo[5,4.0]undec-7-ene (DBU) altered emission characteristics, reducing emission from the local excited (LE) state and enhancing ICT state emission. The degree of emission spectral change saturation with DBU addition varied with the solvent nature. Polar solvents with high dielectric constants, like DMSO and DMF, saw a complete disappearance of LE state emission with 5 equiv of DBU, resulting in a deep red emission (ΦFs of 0.53 and 0.48, respectively). Femtosecond transient absorption spectroscopy and time-resolved photoluminescence measurements elucidated the excited-state dynamics, revealing a long-lived excited state (τ-H = 10.3 ns) at a lower energy emission (640 nm), identified as DTBz-*, supported by transient absorption spectra analysis. Further analysis, including time-resolved fluorescence decay measurements and time-dependent density-functional theory (TD-DFT) calculations, underscored the role of deprotonation of DTBz's hydroxyl group in promoting the ICT process. The CIE coordination plot demonstrated wide linear emission color changes upon successive DBU additions in all solvents, while emission color precision was achieved through host-guest chemistry. Emission changes induced by DBU were reverted to the original state upon beta-cyclodextrin (β-CD) addition, with the 1H NMR study revealing the competition between acid-base equilibrium and host-guest complex formation as the cause of emission color change.
Collapse
Affiliation(s)
- Kyeong-Im Hong
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kayoung Cho
- Department of Chemistry and Nanoscience, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Hyunjun Park
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - JaeHong Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Woo-Dong Jang
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
6
|
Chen JF, Gao QX, Yao H, Shi B, Zhang YM, Wei TB, Lin Q. Recent advances in circularly polarized luminescence of planar chiral organic compounds. Chem Commun (Camb) 2024; 60:6728-6740. [PMID: 38884278 DOI: 10.1039/d4cc01698j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Circularly polarized luminescence (CPL), as an important chiroptical phenomenon, can not only directly characterize excited-state structural information about chiroptical materials but also has great application prospects in 3D optical displays, information storage, biological probes, CPL lasers and so forth. Recently, chiral organic small molecules with CPL have attracted a lot of research interest because of their excellent luminescence efficiency, clear molecular structures, unique flexibility and easy functionalization. Planar chiral organic compounds make up an important class of chiral organic small molecular materials and often have rigid macrocyclic skeletons, which have important research value in the field of chiral supramolecular chemistry (e.g., chiral self-assembly and chiral host-guest chemistry). Therefore, research into planar chiral organic compounds has become a hotspot for CPL. It is time to summarize the recent developments in CPL-active compounds based on planar chirality. In this feature article, we summarize various types of CPL-active compounds based on planar chirality. Meanwhile, we overview recent research in the field of planar chiral CPL-active compounds in terms of optoelectronic devices, asymmetric catalysis, and chiroptical sensing. Finally, we discuss their future research prospects in the field of CPL-active materials. We hope that this review will be helpful to research work related to planar chiral luminescent materials and promote the development of chiral macrocyclic chemistry.
Collapse
Affiliation(s)
- Jin-Fa Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Qing-Xiu Gao
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Bingbing Shi
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| |
Collapse
|
7
|
Yu JX, Duan BH, Chen Z, Liu N, Wu ZQ. Polymers with Circularly Polarized Luminescent Properties: Design, Synthesis, and Prospects. Chempluschem 2024; 89:e202300481. [PMID: 37955194 DOI: 10.1002/cplu.202300481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/14/2023]
Abstract
Chiral materials with circularly polarized luminescence (CPL) have garnered significant attention owing to their distinctive luminescent properties and wide array of applications. CPL enables the selective emission of left and right circularly polarized light. The fluorescence quantum yield and dissymmetry factor play pivotal roles in the generation of CPL. Helical polymers exhibit immense promise as CPL materials due to their inherent chirality, structural versatility, modifiability, and capacity to incorporate diverse chromophores. This Review provides a brief review of the synthesis of CPL materials based on helical polymers. The CPL can be realized by aggregation-induced CPL of non-emissive helical polymers, and helices bearing chromophores on the pendants and on the chain end. Furthermore, future challenges and potential applications of CPL materials are summarized and discussed.
Collapse
Affiliation(s)
- Jia-Xin Yu
- College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Bing-Hui Duan
- College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Zheng Chen
- College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Na Liu
- The School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin, 130021, P.R. China
| | - Zong-Quan Wu
- College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| |
Collapse
|
8
|
Jang J, Koo J, Oh M, Wi Y, Yu D, Hyeong J, Jang E, Ko H, Rim M, Jeong KU. Self-Assembled and Polymerized Hierarchical Nanostructure Films of Cyanostilbene-Based Reactive AIEgens for Smart Chemosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307885. [PMID: 38161253 DOI: 10.1002/smll.202307885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/24/2023] [Indexed: 01/03/2024]
Abstract
For the development of acid-responsive advanced fluorescent films with a 2D nanostructure, a pyridyl cyanostilbene-based AIEgen (PCRM) is newly synthesized. The synthesized PCRM exhibits aggregation-induced emission (AIE) and responds reversibly to acid and base stimuli. To fabricate the nanoporous polymer-stabilized film, PCRM and 4-(octyloxy)benzoic acid (8OB) are complexed in a 1:1 ratio through hydrogen bonding. The PCRM-8OB complex with a smectic mesophase is uniaxially oriented at first and photopolymerized with a crosslinker. By subsequently removing 8OB in an alkaline solution, nanopores are generated in the self-assembled and polymerized hierarchical 2D nanostructure film. The prepared nanoporous fluorescent films exhibit not only the reversible response to acid and base stimuli but also mechanical and chemical robustness. Since the nanoporous fluorescent films have different sensitivities to trifluoroacetic acid (TFA) depending on the molecular orientation in the film, advanced acid vapor sensors that can display the risk level according to the concentration of TFA are demonstrated. Reactive AIEgens-based hierarchical nanostructure films with nanopores fabricated by a subsequent process of self-assembly, polymerization, and etching can open a new door for the development of advanced chemosensors.
Collapse
Affiliation(s)
- Junhwa Jang
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jahyeon Koo
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Mintaek Oh
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Youngjae Wi
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Dongmin Yu
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jaeseok Hyeong
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Eunji Jang
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hyeyoon Ko
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Minwoo Rim
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Kwang-Un Jeong
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| |
Collapse
|
9
|
Huang Y, Ning L, Zhang X, Zhou Q, Gong Q, Zhang Q. Stimuli-fluorochromic smart organic materials. Chem Soc Rev 2024; 53:1090-1166. [PMID: 38193263 DOI: 10.1039/d2cs00976e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Smart materials based on stimuli-fluorochromic π-conjugated solids (SFCSs) have aroused significant interest due to their versatile and exciting properties, leading to advanced applications. In this review, we highlight the recent developments in SFCS-based smart materials, expanding beyond organometallic compounds and light-responsive organic luminescent materials, with a discussion on the design strategies, exciting properties and stimuli-fluorochromic mechanisms along with their potential applications in the exciting fields of encryption, sensors, data storage, display, green printing, etc. The review comprehensively covers single-component and multi-component SFCSs as well as their stimuli-fluorochromic behaviors under external stimuli. We also provide insights into current achievements, limitations, and major challenges as well as future opportunities, aiming to inspire further investigation in this field in the near future. We expect this review to inspire more innovative research on SFCSs and their advanced applications so as to promote further development of smart materials and devices.
Collapse
Affiliation(s)
- Yinjuan Huang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Lijian Ning
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xiaomin Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Qian Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Qiuyu Gong
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qichun Zhang
- Department Materials Science and Engineering, Department of Chemistry & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China.
| |
Collapse
|
10
|
Weng GG, Xu K, Hou T, Huang XD, Qin MF, Bao SS, Zheng LM. Enhancing the Circularly Polarized Luminescence of Europium Coordination Polymers by Doping a Chromophore Ligand into Superhelices. Inorg Chem 2023; 62:21044-21052. [PMID: 38051505 DOI: 10.1021/acs.inorgchem.3c02806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Lanthanide-based molecular materials showing efficient circularly polarized luminescence (CPL) activity with a high quantum yield are attractive due to their potential applications in data storage, optical sensors, and 3D displays. Herein we present an innovative method to achieve enhanced CPL activity and a high quantum yield by doping a chromophore ligand into a coordination polymer superhelix. A series of homochiral europium(III) phosphonates with a helical morphology were prepared with the molecular formula S-, R-[Eu(cyampH)3-3n(nempH)3n]·3H2O (S/R-Eu-n, n = 0-5%). The doping of chromophore ligand S- or R-nempH2 into superhelices of S/R-Eu-0% not only turned on the CPL activity with the dissymmetry factor |glum| on the order of 10-3 but also increased the quantum yield by about 14-fold. This work may shed light on the development of efficient CPL-active lanthanide-based coordination polymers for applications.
Collapse
Affiliation(s)
- Guo-Guo Weng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- Key Laboratory of Jiangxi University for Functional Materials Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, P. R. China
| | - Kui Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Ting Hou
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Xin-Da Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Ming-Feng Qin
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| |
Collapse
|
11
|
Yuan W, Chen L, Yuan C, Zhang Z, Chen X, Zhang X, Guo J, Qian C, Zhao Z, Zhao Y. Cooperative supramolecular polymerization of styrylpyrenes for color-dependent circularly polarized luminescence and photocycloaddition. Nat Commun 2023; 14:8022. [PMID: 38049414 PMCID: PMC10696047 DOI: 10.1038/s41467-023-43830-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023] Open
Abstract
Developing facile and efficient methods to obtain circularly polarized luminescence (CPL) materials with a large luminescence dissymmetry factor (glum) and fluorescence quantum yield (ΦY) is attractive but still challenging. Herein, supramolecular polymerization of styrylpyrenes (R/S-PEB) is utilized to attain this aim, which can self-assemble into helical nanoribbons. Benefiting from the dominant CH-π interactions between the chromophores, the supramolecular solution of S-PEB shows remarkable blue-color CPL property (glum: 0.011, ΦY: 69%). From supramolecular solution to gel, the emission color (blue to yellow-green) and handedness of CPL (glum: -0.011 to +0.005) are concurrently manipulated, while the corresponding supramolecular chirality maintains unchanged, representing the rare example of color-dependent CPL materials. Thanks to the supramolecular confine effect, the [2 + 2] cycloaddition reaction rate of the supramolecular solution is 10.5 times higher than that of the monomeric solution. In contrast, no cycloaddition reaction occurs for the gel and assembled solid samples. Our findings provide a vision for fabricating multi-modal and high-performance CPL-active materials, paving the way for the development of advanced photo-responsive chiral systems.
Collapse
Affiliation(s)
- Wei Yuan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Letian Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Chuting Yuan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zidan Zhang
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Xiaokai Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xiaodong Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jingjing Guo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Cheng Qian
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| |
Collapse
|
12
|
Gu Z, Ma W, Feng J, Liu Z, Xu B, Tian W. Enhancement of Circularly Polarized Luminescence from Pulsating Nanotubules. Macromol Rapid Commun 2023; 44:e2300428. [PMID: 37675646 DOI: 10.1002/marc.202300428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Enhancing the dissymmetry factor (glum ) is a crucial issue in developing circularly polarized luminescence (CPL) materials. Herein, based on supramolecular self-assembly of diethyl l-glutamate-cyanodiarylethene (L-GC) in mixed solution of EtOH-H2 O with different water fraction, enhanced circularly polarized emission from pulsating nanotubules is realized. In the mixture of ethanol and water (30/70, v/v), L-GC self-assembles into roll-up-type dense nanotubes and shows l-CPL. Remarkably, by increasing the water fraction to 80% and 90%, the diameter of the roll-up nanotubes increases and the dissymmetry factor of the nanotubes is significantly enhanced from 6.9 × 10-3 (dense nanotubes) to 3.7 × 10-2 (loose nanotubes) because of the enhanced intermolecular interactions and more ordered supramolecular stacking when increasing the water fraction. An efficient way is provided here to realize the increase of the dissymmetry factor by only changing the composition of solvents.
Collapse
Affiliation(s)
- Zijian Gu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Wenyue Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jun Feng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhaoyang Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Wenjing Tian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
13
|
Mazzeo G, Fusè M, Evidente A, Abbate S, Longhi G. Circularly polarized luminescence of natural products lycorine and narciclasine: role of excited-state intramolecular proton-transfer and test of pH sensitivity. Phys Chem Chem Phys 2023; 25:22700-22710. [PMID: 37605892 DOI: 10.1039/d3cp02600k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Circularly polarized luminescence (CPL) is increasingly gaining interest not only for its applicative potentialities but also for providing an understanding of the excited state properties of chiral molecules. However, applications of CPL are mainly in the field of materials science: special organic molecules and polymers, metal (lanthanide) complexes, and organic dyes are actively and intensely studied. So far natural compounds have not been investigated much. We fill the gap here by measuring circular dichroism (CD) and CPL of lycorine and narciclasine, the most abundant known alkaloid and isocarbostyril from Amaryllidaceae, which exhibit a large spectrum of biological activities and are promising anticancer compounds. Dual fluorescence detection in narciclasine led us to unveil an occurring excited-state intramolecular proton transfer (ESIPT) process, this mechanism well accounts for the Stokes shift and CPL spectra observed in narciclasine. The same molecule is interesting also as a pH chiroptical switch. Both in absorption and emission, lycorine and narciclasine are also studied computationally via density functional theory (DFT) calculations further shedding light on their properties.
Collapse
Affiliation(s)
- Giuseppe Mazzeo
- Department of Molecular and Translational Medicine, Università di Brescia, Viale Europa,11, 25123 Brescia, Italy.
| | - Marco Fusè
- Department of Molecular and Translational Medicine, Università di Brescia, Viale Europa,11, 25123 Brescia, Italy.
| | - Antonio Evidente
- Department of Chemical Science Università di Napoli Federico II, Via Cintia, 21, 80126, Napoli, Italy
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70185 Bari, Italy
| | - Sergio Abbate
- Department of Molecular and Translational Medicine, Università di Brescia, Viale Europa,11, 25123 Brescia, Italy.
- National Institute of Optics-CNR, Brescia Research Unit, via Branze 45, 25123, Brescia, Italy
| | - Giovanna Longhi
- Department of Molecular and Translational Medicine, Università di Brescia, Viale Europa,11, 25123 Brescia, Italy.
- National Institute of Optics-CNR, Brescia Research Unit, via Branze 45, 25123, Brescia, Italy
| |
Collapse
|
14
|
Jiang Q, Ruan H, Wang T, Zhang Y, Qiu Y, Wang H, Liao Y, Xie X. Extending Conjugation of Linear Cyanostilbene Derivatives via a Pyridine Moiety for Multi-Stimuli-Responsive Fluorescence Organogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37498220 DOI: 10.1021/acs.langmuir.3c01089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
In the design of effective gelators with aggregation-induced emission behavior, amide and cholesterol moieties are generally used to provide multiple driving forces for gelation. In this work, a series of linear cyanostilbene gelators with a pyridine moiety and different lengths of the alkoxyl group, i.e., CSpy-Cn, have been synthesized through nucleophilic substitution and Knoevenagel reaction. The direct connection of pyridine extends the conjugation of the cyanostilbene moiety, while the alkoxyl group can regulate the solubility of the compounds so that the compounds can serve as gelators for common solvents such as acetonitrile, dimethyl sulfoxide, and ethanol at ultra-low concentrations. At the same time, the cyanostilbene group makes the compounds undergo photoisomerization and emit fluorescence under UV light, while the pyridine group can serve as an acid-base responsive group due to easy protonation. The gels can respond to temperature, light, and organic acid/base. The fluorescence intensity and color can reversibly change during the gel-sol transitions. Finally, a thin film based on the CSpy-C8 xerogel has been prepared and utilized as a multi-stimuli-responsive fluorescence display for information storage and anti-counterfeiting.
Collapse
Affiliation(s)
- Qian Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huan Ruan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tian Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuping Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuan Qiu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yonggui Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- National Anti-Counterfeit Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaolin Xie
- National Anti-Counterfeit Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
15
|
Gu Z, Ma W, Feng J, Liu Z, Xu B, Tian W. Circularly Polarized Luminescence Switching Driven by Precisely Tuned Supramolecular Interactions: From Hydrogen Bonding to π-π Interaction. J Phys Chem Lett 2023:6437-6443. [PMID: 37433030 DOI: 10.1021/acs.jpclett.3c01328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
It is highly challenging to achieve circularly polarized luminescence (CPL) switching by precisely tuning supramolecular interactions and unveiling the mechanism of supramolecular chirality inversion. Herein, we demonstrated CPL switching based on diethyl l-glutamate-9-cyanophenanthrene (LGCP) and diethyl l-glutamate-pyrene (LGP) via the precise regulation of supramolecular interactions. LGCP assembly driven by hydrogen bonding showed right CPL, while LGP assembly driven by π-π interaction led to left CPL. Remarkably, significant CPL switching was observed from the assemblies of LGCP/octafluoronaphthalene (OFN), attributed to the alteration of the dominating interaction from weak hydrogen bonding to rather strong π-π interaction, while the assemblies of LGP/OFN exhibited minimum CPL variation because the dominating π-π interaction within the assembly of LGP/OFN illustrated quite limited variations upon arene-perfluoroarene interaction. This work provides a feasible strategy toward the efficient modulation of the chiroptical properties of multiple component supramolecular systems, meanwhile offering possibilities for the mechanism exploration of the chirality inversion of supramolecular assemblies.
Collapse
Affiliation(s)
- Zijian Gu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin 130012, China
| | - Wenyue Ma
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin 130012, China
| | - Jun Feng
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin 130012, China
| | - Zhaoyang Liu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin 130012, China
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin 130012, China
| | - Wenjing Tian
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin 130012, China
| |
Collapse
|
16
|
Chai CY, Han XB, Liu CD, Fan CC, Liang BD, Zhang W. Circularly Polarized Luminescence in Zero-Dimensional Antimony Halides: Structural Distortion Controlled Luminescence Thermometer. J Phys Chem Lett 2023; 14:4063-4070. [PMID: 37094225 DOI: 10.1021/acs.jpclett.3c00693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Materials emitting circularly polarized luminescence (CPL) have been intensively studied for their promising applications in various fields. However, developing tunable and responsive CPL materials in a wide wavelength range remains a great challenge. Here, a pair of chiral (R,R/S,S-DCDA)3Sb2Cl12 (DCDA = dimethyl-1,2-cyclohexanediamine divalent cation) shows efficient broadband yellow emission with a photoluminescence (PL) quantum yield of 27.6% with a CPL asymmetry factor of 3 × 10-3. The associated chiroptical activity is attributed to the efficient chiral transfer as well as the self-trapped exciton emission originating from the large distortion of the inorganic blocks. Notably, (R,R/S,S-DCDA)3Sb2Cl12 exhibits a large red-shift emission exceeding 100 nm upon lowering temperature. An excellent linear correlation of the PL wavelength on temperature indicates that the compounds can be used as PL thermometers, which originates from a temperature-dependent linear structural distortion of the [SbCl6] emitter. This work inspires the potential utilization of CPL-emitting materials as responsive light sources.
Collapse
Affiliation(s)
- Chao-Yang Chai
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xiang-Bin Han
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Cheng-Dong Liu
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chang-Chun Fan
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Bei-Dou Liang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Wen Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
17
|
Chen JF, Gao QX, Liu L, Chen P, Wei TB. A pillar[5]arene-based planar chiral charge-transfer dye with enhanced circularly polarized luminescence and multiple responsive chiroptical changes. Chem Sci 2023; 14:987-993. [PMID: 36755718 PMCID: PMC9890741 DOI: 10.1039/d2sc06000k] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/02/2023] [Indexed: 01/04/2023] Open
Abstract
The fabrication of circularly polarized luminescent (CPL) organic dyes based on macrocyclic architecture has become an importantly studied topic in recent years because it is of great importance to both chiral science and supramolecular chemistry, where pillar[n]arenes are emerging as a promising class of planar chiral macrocyclic hosts for CPL. We herein synthesized an unusual planar chiral charge-transfer dye (P5BB) by covalent coupling of triarylborane (Ar3B) as an electron acceptor to parent pillar[5]arene as an electron donor. The intramolecular charge transfer (ICT) nature of P5BB not only caused a thermally responsive emission but also boosted the luminescence dissymmetry factor (g lum). Interestingly, the specific binding of fluoride ions changed the photophysical properties of P5BB, including absorption, fluorescence, circular dichroism (CD), and CPL, which could be exploited as an optical probe for multi-channel detection of fluoride ions. Furthermore, the chiroptical changes were observed upon addition of 1,4-dibromobutane as an achiral guest.
Collapse
Affiliation(s)
- Jin-Fa Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou Gansu 730070 P. R. China +86 9317973191 +86 9317973191
| | - Qing-Xiu Gao
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou Gansu 730070 P. R. China +86 9317973191 +86 9317973191
| | - Lijie Liu
- College of Science, Henan Agricultural University Zhengzhou Henan 450002 P. R. China
| | - Pangkuan Chen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China Beijing 102488 P. R. China
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou Gansu 730070 P. R. China +86 9317973191 +86 9317973191
| |
Collapse
|
18
|
Gao A, Wang Q, Wu H, Zhao JW, Cao X. Research progress on AIE cyanostilbene-based self-assembly gels: Design, regulation and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Zhang J, Bo S, Wang R, Fang J, Wang XG, Bai Y, Ma Z, Liang Y, Zhang M, Yu Q, Cai M, Zhou F, Liu W. Supramolecular Polymer Gel Lubricant with Excellent Mechanical Stability and Tribological Performances. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45934-45944. [PMID: 36166403 DOI: 10.1021/acsami.2c14306] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lubricants performing better in machinery systems would lead to the remarkable reduction of environmental pollution problems and the significant improvement of fuel economy. A new family of supramolecular polymer gel lubricants with urea groups has been successfully prepared via self-assembling noncovalent bonds. These newly designed supramolecular polymer gels were well characterized with field-emission scanning electron microscopy, proton nuclear magnetic resonance, attenuated total reflection-Fourier transform infrared spectroscopy, a rheometer, oscillating reciprocating friction, and a wear tester. Compared to low molecular weight supramolecular gels, the covalent and noncovalent bonds cooperated in the supramolecular polymer gel based on macromolecules. Hence, the mechanical properties and viscoelasticity of gel lubricants are greater than those of the low molecular weight supramolecular gels. Furthermore, owing to the longer chain length of polymer gelators, the thickness of the adsorbed film formed on the surface lubricated by macromolecules is thicker than that on the surface lubricated by low molecular weight supramolecular gels, which positively correlates with the lubricating property, making supramolecular polymer gels based on macromolecules better than low molecular weight supramolecular gels. Excitingly, the supramolecular polymer gels based on macromolecules exhibit more excellent thermal reversibility, creep recovery, and thixotropic properties, which not only achieve the lubricating property but also lead to the remarkable reduction of environmental pollution problems due to oil creeping.
Collapse
Affiliation(s)
- Jiaying Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shangshang Bo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
| | - Rui Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
| | - Junhui Fang
- Hangzhou Hikvision Digital Technology Co., Ltd, Hangzhou 310051, China
| | - Xin-Gang Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yanyan Bai
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhengfeng Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
- Baiyin Zhongke Innovation Research Institute of Green Materials, Baiyin 730900 China
| | - Yijing Liang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ming Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
| | - Qiangliang Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
| | - Meirong Cai
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264006, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
20
|
Garci A, Abid S, David AHG, Codesal MD, Đorđević L, Young RM, Sai H, Le Bras L, Perrier A, Ovalle M, Brown PJ, Stern CL, Campaña AG, Stupp SI, Wasielewski MR, Blanco V, Stoddart JF. Aggregation-Induced Emission and Circularly Polarized Luminescence Duality in Tetracationic Binaphthyl-Based Cyclophanes. Angew Chem Int Ed Engl 2022; 61:e202208679. [PMID: 35904930 PMCID: PMC9804443 DOI: 10.1002/anie.202208679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 01/05/2023]
Abstract
Here, we report an approach to the synthesis of highly charged enantiopure cyclophanes by the insertion of axially chiral enantiomeric binaphthyl fluorophores into the constitutions of pyridinium-based macrocycles. Remarkably, these fluorescent tetracationic cyclophanes exhibit a significant AIE compared to their neutral optically active binaphthyl precursors. A combination of theoretical calculations and time-resolved spectroscopy reveal that the AIE originates from limited torsional vibrations associated with the axes of chirality present in the chiral enantiomeric binaphthyl units and the fine-tuning of their electronic landscape when incorporated within the cyclophane structure. Furthermore, these highly charged enantiopure cyclophanes display CPL responses both in solution and in the aggregated state. This unique duality of AIE and CPL in these tetracationic cyclophanes is destined to be of major importance in future development of photonic devices and bio-applications.
Collapse
Affiliation(s)
- Amine Garci
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Seifallah Abid
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Arthur H. G. David
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Marcos D. Codesal
- Departamento de Química OrgánicaFacultad de CienciasUnidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ)Universidad de Granada (UGR)Avda. Fuente Nueva S/N18071GranadaSpain
| | - Luka Đorđević
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
- Center for Bio-inspired Energy ScienceNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Ryan M. Young
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
- Institute for Sustainability and Energy at NorthwesternNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Hiroaki Sai
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
- Simpson Querrey Institute for BioNanotechnologyNorthwestern University303 E. Superior StreetChicagoIL 60611USA
- Department of Materials Science and EngineeringNorthwestern University2220 Campus DriveEvanstonIL 60208USA
| | - Laura Le Bras
- Laboratoire Chrono-environnement (UMR 6249)Université de Bourgogne Franche-Comté16 route de Gray25030BesançonFrance
| | - Aurélie Perrier
- Chimie Paris TechPSL Research UniversityCNRSInstitute of Chemistry for Life and Health Sciences (i-CLeHS)UMR 806075005ParisFrance
- Université Paris Cité75006ParisFrance
| | - Marco Ovalle
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Paige J. Brown
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
- Institute for Sustainability and Energy at NorthwesternNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Charlotte L. Stern
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Araceli G. Campaña
- Departamento de Química OrgánicaFacultad de CienciasUnidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ)Universidad de Granada (UGR)Avda. Fuente Nueva S/N18071GranadaSpain
| | - Samuel I. Stupp
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
- Center for Bio-inspired Energy ScienceNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
- Simpson Querrey Institute for BioNanotechnologyNorthwestern University303 E. Superior StreetChicagoIL 60611USA
- Department of Materials Science and EngineeringNorthwestern University2220 Campus DriveEvanstonIL 60208USA
- Department of Biomedical EngineeringNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
- Department of MedicineNorthwestern University676N St. Clair StreetChicagoIL 60611USA
| | - Michael R. Wasielewski
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
- Institute for Sustainability and Energy at NorthwesternNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Victor Blanco
- Departamento de Química OrgánicaFacultad de CienciasUnidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ)Universidad de Granada (UGR)Avda. Fuente Nueva S/N18071GranadaSpain
| | - J. Fraser Stoddart
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
- School of ChemistryUniversity of New South WalesSydneyNSW 2052Australia
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhou310027China
- ZJU-Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
| |
Collapse
|
21
|
Liu Y, Zhang P, Zhang L, Wang Y, Li J, Liu Y, Ji L, Yu H. Controlled helicity inversion, selective enantiomer release, and methanol recognition in azobenzene gel. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
22
|
Li J, Peng X, Hou C, Shi S, Ma J, Qi Q, Lai W. Discriminating Chiral Supramolecular Motions by Circularly Polarized Luminescence. Chemistry 2022; 28:e202202336. [DOI: 10.1002/chem.202202336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Junfeng Li
- State Key Laboratory of Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Xuelei Peng
- State Key Laboratory of Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Chenxi Hou
- State Key Laboratory of Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Shunan Shi
- State Key Laboratory of Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Jiamian Ma
- State Key Laboratory of Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Qi Qi
- School of Chemistry and Chemical Engineering Southeast University No.2 SEU Road Nanjing 211189 China
| | - Wen‐Yong Lai
- State Key Laboratory of Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
- Frontiers Science Center for Flexible Electronics (FSCFE) MIIT Key Laboratory of Flexible Electronics (KLoFE) Northwestern Polytechnical University Xi'an 710072 China
| |
Collapse
|
23
|
Garci A, Abid S, David AHG, Codesal MD, Đorđević L, Young RM, sai H, le_bras L, pineau AP, ovalle M, brown P, Stern CL, Campaña AG, Stupp SI, Wasielewski MR, blancos V, Stoddart F. Aggregation Induced Emission and Circularly Polarized Luminescence Duality in Tetracationic Binaphthyl‐Based Cyclophanes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Amine Garci
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Seifallah Abid
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Arthur H. G. David
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Marcos D Codesal
- Universidad de Granada Departamento de Química Orgánica Avda. Fuente Nueva S/N 18071 Granada SPAIN
| | - Luka Đorđević
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Ryan M Young
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - hiroaki sai
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - laura le_bras
- Université de Franche-Comté: Universite de Franche-Comte Department of Chemistry 16 route de Gray, 25030 Besançon FRANCE
| | - aurelie perrier pineau
- Chimie ParisTech - PSL: Ecole nationale superieure de chimie de Paris Department of Chemistry FRANCE
| | - marco ovalle
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - paige brown
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Charlotte L Stern
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | | | - Samuel I Stupp
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - Michael R Wasielewski
- Northwestern University Department of Chemistry Department of Chemistry UNITED STATES
| | - victor blancos
- Universidad de Granada Departamento de Química Orgánica SPAIN
| | - Fraser Stoddart
- Northwestern University Department of Chemistry 2145 Sheridan Road 60208-3113 EVANSTON UNITED STATES
| |
Collapse
|
24
|
Wang H, Chen Z, Yuan Y, Zhang H. The preparation and properties of circularly polarized luminescent liquid crystal physical gels with self-supporting performance. SOFT MATTER 2022; 18:5483-5491. [PMID: 35838375 DOI: 10.1039/d2sm00705c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In recent years, great progress has been made in the preparation methods and performance regulation of host-guest doped CPL liquid crystal materials. However, there still exist some basic problems to be solved, such as complex packaging and unstable CPL properties. With the consideration of the above problems, in this study, we introduced gelators into the host-guest doped CPL liquid crystal materials to prepare CPL liquid crystal physical gels. The gelators can be assembled to form a nanofiber physical gel network, which limits the movement of the liquid crystals and enhances the stability of the CPL properties. Meanwhile, liquid crystal physical gels show self-supporting ability and the gel-sol phase transition temperature can reach 136 °C. The amplification of the glum value is achieved by self-assembly of chiral liquid crystals, and the glum value can reach -0.31. The phase structure changes with electric field and temperature, and the CPL properties can be regulated by changing the temperature and electric field. With the increasing applied voltage or the temperature, the glum value decreases. Therefore, we have successfully prepared a new type of CPL liquid crystal physical gels with self-supporting performance, stimulus response performance and large glum values.
Collapse
Affiliation(s)
- Hanrong Wang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China.
| | - Zhong Chen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Instrumentation and Service Center for Molecular Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.
| | - Yongjie Yuan
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China.
| | - Hailiang Zhang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China.
| |
Collapse
|
25
|
Lin S, Zeng S, Li Z, Fan Q, Guo J. Turn-On Mode Circularly Polarized Luminescence in Self-Organized Cholesteric Superstructure for Active Photonic Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30362-30370. [PMID: 35758230 DOI: 10.1021/acsami.2c05678] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing circularly polarized luminescence (CPL)-active materials with a large luminescence dissymmetry factor (glum) or stimulus responses has evoked a lot of interest in the past few years; however, the light-controllable "on/off" CPL still remains a challenge. Here, a novel diarylethene-based chiral fluorescent photoswitch featuring "turn-on" CPL characteristic is developed, designated as (S,S)-switch 6, which can undergo reversible photocyclization/cycloreversion upon irradiation with UV and visible light. (S,S)-Switch 6 shows completely reversible "off-on-off"-responsive CPL behavior in solution. By doping (S,S)-switch 6 into nematic liquid crystals (LCs), the consequent luminescent cholesteric LCs (CLCs) exhibit a larger glum value enhanced 2 orders of magnitude when irradiated with UV light, which can be attributed to the highly ordered helical arrangement of CLCs. The potentials of this turn-on type CPL material for anticounterfeiting and information encryption are illustrated. Furthermore, the visualization of circularly polarized (CP) fluorescent patterns can be successfully achieved by constructing the double-layer CPL system consisting of a CP luminescent layer and a polymer cholesteric reflective layer. The proposed concept establishes a light-controlled off-on-off CPL platform that is of tremendous potential for applications in multi-informational data storage and encryption devices.
Collapse
Affiliation(s)
- Siyang Lin
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuangshuang Zeng
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ziyuan Li
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qingyan Fan
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jinbao Guo
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
26
|
Ma M, Wang B, Hao A, Xing P. Efficient chirality transfer from chiral amines to oligo( p-phenylenevinylene)s to fabricate chiroptical materials. NANOSCALE 2022; 14:8163-8171. [PMID: 35621085 DOI: 10.1039/d2nr00789d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Oligo(p-phenylenevinylene) (OPV)-based luminophores show versatile luminescence properties based on their structural and packing arrangements, and however have seldomly been utilized in fabricating chiroptical materials. Here, we report a co-assembly strategy to introduce hydrophilic chiral amines into OPV-appended carboxylic acids via salt-bridge type hydrogen bonds. The coassembly in aqueous media allows for efficient chirality transfer with chiroptical activities. The participation of chiral amines altered the aromatic stacking from H- to J-type, which greatly enhanced the luminescence of the OPV compounds and facilitated the emergence of Cotton effects as well as circularly polarized luminescence. This work demonstrates the successful coassembly of OPV luminophores into chiral assemblies with tunable optical activity, showing potential for chiroptical application in optical chirality sensing.
Collapse
Affiliation(s)
- Mingfang Ma
- Laboratory of New Antitumor Drug Molecular Design & Synthesis of Jining Medical University, College of Basic Medicine, Jining Medical University, Jining 272067, P. R. China.
| | - Bo Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
| |
Collapse
|
27
|
Wang Y, Wu H, Hu W, Stoddart JF. Color-Tunable Supramolecular Luminescent Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105405. [PMID: 34676928 DOI: 10.1002/adma.202105405] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Constructing multicolor photoluminescent materials with tunable properties is an attractive research objective on account of their abundant applications in materials science and biomedical engineering. By comparison with covalent synthesis, supramolecular chemistry has provided a more competitive and promising strategy for the production of organic materials and the regulation of their photophysical properties. By taking advantage of dynamic and reversible noncovalent bonding interactions, supramolecular strategies can, not only simplify the design and fabrication of organic materials, but can also endow them with dynamic reversibility and stimuli responsiveness, making it much easier to adjust the superstructures and properties of the materials. Occasionally, it is possible to introduce emergent properties into these materials, which are absent in their precursor compounds, broadening their potential applications. In an attempt to highlight the state-of-the-art noncovalent strategies available for the construction of smart luminescent materials, an overview of color-tunable materials is presented in this Review, with the emphasis being placed on the examples drawn from host-guest complexes, supramolecular assemblies and crystalline materials. The noncovalent synthesis of room-temperature phosphorescent materials and the modulation of their luminescent properties are also described. Finally, future directions and scientific challenges in the emergent field of color-tunable supramolecular emissive materials are discussed.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Huang Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| |
Collapse
|
28
|
Reddy KL, Mathew JP, Maniappan S, Tom C, Shiby E, Pujala RK, Kumar J. Mandelic acid appended chiral gels as efficient templates for multicolour circularly polarized luminescence. NANOSCALE 2022; 14:4946-4956. [PMID: 35166292 DOI: 10.1039/d1nr08506a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mandelic acid is a medicinally important chiral molecule that is widely used as a vital component in antibiotics, antiseptics and cosmetics. While the medicinal properties of mandelic acid are well known, its aggregation and gelation characteristics, which are crucial to finding applications as cosmetics and ointments, are least explored. We have designed and synthesized a pair of mandelic acid derivatives and investigated their aggregation properties in binary solvent mixtures. The compounds undergo self-assembly through various noncovalent interactions, leading to the formation of robust chiral gels. Strong birefringence could be visualised from the individual structures constituting the gel. The large rod-like chiral structures are utilized as efficient templates for the assembly of ultra-small luminescent achiral carbon nanodots. The transfer of optical activity from the chiral host matrix to the fluorescent guest nanoparticles resulted in the generation of circularly polarized luminescence signals from the hybrid nanocomposites. The use of blue, green and red-emitting nanodots led to the fabrication of multicolour chiral light-emitting materials capable of covering the entire visible range. Considering the numerous medicinal benefits offered by mandelic acid and carbon nanodots, the materials constituting the nanocomposites, the distinct dimensions presented in the current work open new avenues for chiral light emitting materials to be used in biomedical research.
Collapse
Affiliation(s)
- Kumbam Lingeshwar Reddy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh-517507, India.
| | - Jikson Pulparayil Mathew
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh-517507, India.
| | - Sonia Maniappan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh-517507, India.
| | - Catherine Tom
- Department of Physics, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh-517507, India
| | - Elizabeth Shiby
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh-517507, India.
| | - Ravi Kumar Pujala
- Department of Physics, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh-517507, India
| | - Jatish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh-517507, India.
| |
Collapse
|
29
|
Chen X, Zhang S, Chen X, Li Q. Tunable Circularly Polarized Luminescent Supramolecular Systems: Approaches and Applications. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202100256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xu‐Man Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China
| | - Shu Zhang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China
| | - Xiao Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program Kent State University Kent OH 44242 USA
| |
Collapse
|
30
|
Liu C, Yang JC, Lam JWY, Feng HT, Tang BZ. Chiral assembly of organic luminogens with aggregation-induced emission. Chem Sci 2022; 13:611-632. [PMID: 35173927 PMCID: PMC8771491 DOI: 10.1039/d1sc02305e] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022] Open
Abstract
Chirality is important to chemistry, biology and optoelectronic materials. The study on chirality has lasted for more than 170 years since its discovery. Recently, chiral materials with aggregation-induced emission (AIE) have attracted increasing interest because of their fascinating photophysical properties. In this review, we discussed the recent development of chiral materials with AIE properties, including their molecular structures, self-assembly and functions. Generally, the most effective strategy to design a chiral AIE luminogen (AIEgen) is to attach a chiral scaffold to an AIE-active fluorophore through covalent bonds. Moreover, some propeller-like or shell-like AIEgens without chiral units exhibit latent chirality upon mirror image symmetry breaking. The chirality of achiral AIEgens can also be induced by some optically active molecules through non-covalent interactions. The introduction of an AIE unit into chiral materials can enhance the efficiency of their circularly polarized luminescence (CPL) in the solid state and the dissymmetric factors of their helical architectures formed through self-assembly. Thus, highly efficient circularly polarized organic light-emitting diodes (CPOLEDs) with AIE characteristics are developed and show great potential in 3D displays. Chiral AIEgens are also widely utilized as "turn on" sensors for rapid enantioselective determination of chiral reagents. It is anticipated that the present review can entice readers to realize the importance of chirality and attract much more chemists to contribute their efforts to chirality and AIE study.
Collapse
Affiliation(s)
- Chenchen Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study and Department of Chemical and Biomedical Engineering, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Jun-Cheng Yang
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences Baoji 721013 China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study and Department of Chemical and Biomedical Engineering, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Hai-Tao Feng
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences Baoji 721013 China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study and Department of Chemical and Biomedical Engineering, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- State Key Laboratory of Luminescent Materials and Devices, SCUT-HKUST Joint Research Institute, Center for Aggregation-Induced Emission China
- AIE Institute Guangzhou Development District Guangzhou 510530 China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
- Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials China
| |
Collapse
|
31
|
Xu L, Zhang M, Zhu X, Xue C, Wang HX, Liu M. Solvent-Modulated Chiral Self-Assembly: Selective Formation of Helical Nanotubes, Nanotwists, and Energy Transfer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1765-1773. [PMID: 34965725 DOI: 10.1021/acsami.1c20969] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As the medium for self-assembly processes, solvents strongly influence the supramolecular assemblies via specific solute-solvent interactions, which may result in effective modulation of properties, self-assembled nanostructures, and functions through varying the solvent. Here, two kinds of pyridine-cyanostilbene functionalized chiral amphiphiles (l/d-PyPhG and l-PyG) were designed, and their self-assembly behaviors in different solvents were investigated. It was found that both amphiphiles formed gels in dimethyl sulfoxide (DMSO) and self-assembled into right-handed nanotwists, while they formed suspensions in ethanol consisting of left-handed nanotubes. Although the molecular chirality in the compounds remained unchanged in the two solvents, the nanoassemblies showed opposite handedness at the nanoscale together with opposite circular dichroism (CD) and circularly polarized luminescence (CPL) signals. Furthermore, when the amphiphiles were co-assembled with an achiral dye, it was found that efficient energy transfer took place in the systems composed of nanotubes rather than those composed of nanotwists. Therefore, by assembling molecules with the same molecular chirality in different solvents, a selective formation of helical nanotubes or nanotwists and the regulation of handedness as well as energy transfer efficiency were achieved.
Collapse
Affiliation(s)
- Lifei Xu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mingming Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chenlu Xue
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Han-Xiao Wang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
32
|
Wei L, Ma X, Xu Y. A Double Layer Laminated Film of Cellulose Nanocrystals and Dye Displaying Vibrant Circularly Polarized Light. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1436-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Wei X, Li B, Yang Z, Zhong R, Wang Y, Chen Y, Ding Z, Men G, Yang Z, Zhang H, Yang B, Xu W, Jiang S. Programmable photoresponsive materials based on a single molecule via distinct topochemical reactions. Chem Sci 2021; 12:15588-15595. [PMID: 35003588 PMCID: PMC8654046 DOI: 10.1039/d1sc04053g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/11/2021] [Indexed: 11/21/2022] Open
Abstract
Engineering the preorganization of photoactive units remains a big challenge in solid-state photochemistry research. It is of not only theoretical importance in the construction of topochemical reactions but also technological significance in the fabrication of advanced materials. Here, a cyanostilbene derivative, (Z)-2-(3,5-bis(trifluoromethyl)phenyl)-3-(naphthalen-2-yl) acrylonitrile (BNA), was crystallized into two polymorphs under different conditions. The two crystals, BNA-α and BNA-β, have totally different intra-π-dimer and inter-π-dimer hierarchical architectures on the basis of a very simple monomer, which provides them with distinct reactivities, functions and photoresponsive properties. Firstly, two different types of solid-state [2 + 2] photocycloaddition reaction: (i) a typical olefin-olefin cycloaddition reaction within the symmetric π-dimers of BNA-α and (ii) an unusual olefin-aromatic ring cycloaddition reaction within the offset π-dimers of BNA-β have been observed, respectively. Secondly, the crystal of BNA-α can be bent to 90° without any fracture, exhibiting outstanding flexibility upon UV irradiation, while the reversible photocycloaddition/thermal cleavage process (below 100 °C) accompanied by unique fluorescence changes can be achieved in the crystal of BNA-β. Finally, micro-scale photoactuators and light-writable anti-counterfeiting materials have been successfully fabricated. This work paves a simple way to construct smart materials through a bottom-up way that is realized by manipulating hierarchical architectures in the solid state.
Collapse
Affiliation(s)
- Xiao Wei
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Zhiqiang Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Ronglin Zhong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Yufei Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Yanan Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Zeyang Ding
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Guangwen Men
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Zairan Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Houyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Shimei Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
34
|
Gong ZL, Zhu X, Zhou Z, Zhang SW, Yang D, Zhao B, Zhang YP, Deng J, Cheng Y, Zheng YX, Zang SQ, Kuang H, Duan P, Yuan M, Chen CF, Zhao YS, Zhong YW, Tang BZ, Liu M. Frontiers in circularly polarized luminescence: molecular design, self-assembly, nanomaterials, and applications. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1146-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Ji L, Liu Y, Li Z, Ouyang G, Liu M. Solvent-regulated chiral exciton coupling and CPL sign inversion of an amphiphilic glutamide-cyanostilbene. Chem Commun (Camb) 2021; 57:11314-11317. [PMID: 34635884 DOI: 10.1039/d1cc04471k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The chiral exciton couplings within a Y-shaped amphiphilic glutamide-cyanostilbene (GCS) could be significantly biased by solvent polarity and hydration effects, which led to sign inversion of both the circular dichroism and circularly polarized luminescence of the GCS assemblies.
Collapse
Affiliation(s)
- Lukang Ji
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China.,Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yiran Liu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Zujian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Guanghui Ouyang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
36
|
Hu R, Zhang G, Qin A, Tang BZ. Aggregation-induced emission (AIE): emerging technology based on aggregate science. PURE APPL CHEM 2021. [DOI: 10.1515/pac-2021-0503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
Functional materials serve as the basic elements for the evolution of technology. Aggregation-induced emission (AIE), as one of the top 10 emerging technologies in chemistry, is a scientific concept coined by Tang, et al. in 2001 and refers to a photophysical phenomenon with enhanced emission at the aggregate level compared to molecular states. AIE-active materials generally present new properties and performance that are absent in the molecular state, providing endless possibilities for the development of technological applications. Tremendous achievements based on AIE research have been made in theoretical exploration, material development and practical applications. In this review, AIE-active materials with triggered luminescence of circularly polarized luminescence, aggregation-induced delayed fluorescence, room-temperature phosphorescence, and clusterization-triggered emission at the aggregate level are introduced. Moreover, high-tech applications in optoelectronic devices, responsive systems, sensing and monitoring, and imaging and therapy are briefly summarized and discussed. It is expected that this review will serve as a source of inspiration for innovation in AIE research and aggregate science.
Collapse
Affiliation(s)
- Rong Hu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology , Guangzhou 510640 , China
| | - Guiquan Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology , Guangzhou 510640 , China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology , Guangzhou 510640 , China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology , Guangzhou 510640 , China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong , Shenzhen 518172 , China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong , China
| |
Collapse
|
37
|
Guo J, Li Y, Zhang Y, Ren J, Yu X, Cao X. Switchable Supramolecular Configurations of Al 3+/LysTPY Coordination Polymers in a Hydrogel Network Controlled by Ultrasound and Heat. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40079-40087. [PMID: 34379399 DOI: 10.1021/acsami.1c10150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Coordination-driven self-assembly with controllable properties has attracted increasing interest because of its potential in biological events and material science. Herein, we report on the remote, instant, and switchable control of competitive coordination interactions via ultrasound and heat stimuli in a hydrogel network. Configurational coordination changes result in the transformation of blue-emissive and opaque Al3+-amide aggregations to yellow-green-emissive and transparent Al3+-terpyridine aggregations. Interestingly, circularly polarized luminescence "off-on" switches of the metallo-supramolecular assembly are also created by these configuration changes. Additionally, the impact of the stoichiometric ratio of Al3+ and LysTPY on the assembly is also studied in detail. With a higher content of Al3+, the hydrogel with branched and abundant junctions exhibited robust, self-healing, and self-supporting properties. This in-depth understanding of the coordination interaction adjustment will afford new insights into the preparation of stimuli-responsive metallogels.
Collapse
Affiliation(s)
- Jiangbo Guo
- College of Science, Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Yajuan Li
- College of Science, Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Yajun Zhang
- College of Science, Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Jujie Ren
- College of Science, Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Xudong Yu
- College of Science, Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Xinhua Cao
- College of Chemistry and Chemical Engineering & Green Catalysis and Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Nanhu Road 237, Xinyang 464000, PR China
| |
Collapse
|
38
|
Xing J, Jia J. Reversible mechanofluorochromic properties of phenothiazine-based D-A-D′ aza-N,O-chelated boron difluoride complexes. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Li Z, Ji X, Xie H, Tang BZ. Aggregation-Induced Emission-Active Gels: Fabrications, Functions, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100021. [PMID: 34216407 DOI: 10.1002/adma.202100021] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/14/2021] [Indexed: 05/07/2023]
Abstract
Chromophores that exhibit aggregation-induced emission (i.e., aggregation-induced emission luminogens [AIEgens]) emit intense fluorescence in their aggregated states, but show negligible emission as discrete molecular species in solution due to the changes in restriction and freedom of intramolecular motions. As solvent-swollen quasi-solids with both a compact phase and a free space, gels enable manipulation of intramolecular motions. Thus, AIE-active gels have attracted significant interest owing to their various distinctive properties and promising application potential. Herein, a comprehensive overview of AIE-active gels is provided. The fabrication strategies employed are detailed, and the applications of AIEgens are summarized. In addition, the gel functions arising from the AIE moieties are revealed, along with their structure-property relationships. Furthermore, the applications of AIE-active gels in diverse areas are illustrated. Finally, ongoing challenges and potential means to address them are discussed, along with future perspectives on AIE-active gels, with the overall aim of inspiring research on novel materials and ideas.
Collapse
Affiliation(s)
- Zhao Li
- Institute of Engineering Medicine, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Xiaofan Ji
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Huilin Xie
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan, Shenzhen, 518055, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan, Shenzhen, 518055, China
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institutes, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
40
|
Xie T, Yuan W, Li X, Li M, Chen Y. Circularly Polarized Luminescence from Chiral
p
‐Terphenylene‐Based
Supramolecular Aggregates. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Titi Xie
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Institute of Molecular Plus, Tianjin University Tianjin 300354 China
| | - Wei Yuan
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Institute of Molecular Plus, Tianjin University Tianjin 300354 China
| | - Xiaopei Li
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Institute of Molecular Plus, Tianjin University Tianjin 300354 China
| | - Mengwei Li
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Institute of Molecular Plus, Tianjin University Tianjin 300354 China
| | - Yulan Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Institute of Molecular Plus, Tianjin University Tianjin 300354 China
| |
Collapse
|
41
|
Deng Y, Wang M, Zhuang Y, Liu S, Huang W, Zhao Q. Circularly polarized luminescence from organic micro-/nano-structures. LIGHT, SCIENCE & APPLICATIONS 2021; 10:76. [PMID: 33840811 PMCID: PMC8039044 DOI: 10.1038/s41377-021-00516-7] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/16/2021] [Accepted: 03/21/2021] [Indexed: 05/17/2023]
Abstract
Circularly polarized light exhibits promising applications in future displays and photonic technologies. Circularly polarized luminescence (CPL) from chiral luminophores is an ideal approach to directly generating circularly polarized light, in which the energy loss induced by the circularly polarized filters can be reduced. Among various chiral luminophores, organic micro-/nano-structures have attracted increasing attention owing to the high quantum efficiency and luminescence dissymmetry factor. Herein, the recent progress of CPL from organic micro-/nano-structures is summarized. Firstly, the design principles of CPL-active organic micro-/nano-structures are expounded from the construction of micro-/nano-structure and the introduction of chirality. Based on these design principles, several typical organic micro-/nano-structures with CPL activity are introduced in detail, including self-assembly of small molecules, self-assembly of π-conjugated polymers, and self-assembly on micro-/nanoscale architectures. Subsequently, we discuss the external stimuli that can regulate CPL performance, including solvents, pH value, metal ions, mechanical force, and temperature. We also summarize the applications of CPL-active materials in organic light-emitting diodes, optical information processing, and chemical and biological sensing. Finally, the current challenges and prospects in this emerging field are presented. It is expected that this review will provide a guide for the design of excellent CPL-active materials.
Collapse
Affiliation(s)
- Yongjing Deng
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, 210023, Nanjing, Jiangsu, China
| | - Mengzhu Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, 210023, Nanjing, Jiangsu, China
| | - Yanling Zhuang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, 210023, Nanjing, Jiangsu, China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, 210023, Nanjing, Jiangsu, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, 210023, Nanjing, Jiangsu, China.
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, 710072, Xi'an, Shaanxi, China.
| | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, 210023, Nanjing, Jiangsu, China.
- College of Electronic and Optical Engineering & College of Microelectronics, Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices, Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, 210023, Nanjing, Jiangsu, China.
| |
Collapse
|
42
|
Ono Y, Hirao T, Ikeda T, Haino T. Self-Assembling Behavior and Chiroptical Properties of Carbazole-Cored Phenyl Isoxazolyl Benzenes. J Org Chem 2021; 86:5499-5505. [DOI: 10.1021/acs.joc.0c03005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yudai Ono
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Takehiro Hirao
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Toshiaki Ikeda
- Department of Chemistry, Faculty of Science, Tokai University, 4-1-1, Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Takeharu Haino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
43
|
Grover G, Weiss RG. Luminescent Behavior of Gels and Sols Comprised of Molecular Gelators. Gels 2021; 7:19. [PMID: 33671130 PMCID: PMC8005951 DOI: 10.3390/gels7010019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 12/05/2022] Open
Abstract
We present a brief review of some important conceptual and practical aspects for the design and properties of molecular luminescent gelators and their gels. Topics considered include structural and dynamic aspects of the gels, including factors important to their ability to emit radiation from electronically excited states.
Collapse
Affiliation(s)
| | - Richard G. Weiss
- Department of Chemistry, Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC 20057, USA;
| |
Collapse
|
44
|
A Multiple Chirality Switching Device for Spatial Light Modulators. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202009916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Yang G, Yu Y, Yang B, Lu T, Cai Y, Yin H, Zhang H, Zhang NN, Li L, Zhang YM, Zhang SXA. A Multiple Chirality Switching Device for Spatial Light Modulators. Angew Chem Int Ed Engl 2021; 60:2018-2023. [PMID: 32885573 DOI: 10.1002/anie.202009916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/24/2020] [Indexed: 12/25/2022]
Abstract
A new and simple strategy towards electric-field-driven multiple chirality switching device has been designed and fabricated by combining a newly synthesized base-responsive chiroptical polymer switch (R-FLMA) and p-benzoquinone (p-BQ) via proton-coupled electron transfer (PCET) mechanism. Clear and stable triple chirality states (silence, positive, negative) of this device in visible band can be regulated reversibly (>1000 cycles) by adjusting voltage programs. Furthermore, such chiral switching phenomena are also accompanied by apparent changes of color and fluorescence. More importantly, the potential application of this device for a spatial light modulator has also been demonstrated.
Collapse
Affiliation(s)
- Guojian Yang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, P. R. China.,College of Chemistry, Jilin University, Changchun, P. R. China
| | - Yang Yu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, P. R. China.,College of Chemistry, Jilin University, Changchun, P. R. China
| | - Baige Yang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, P. R. China.,College of Chemistry, Jilin University, Changchun, P. R. China
| | - Tong Lu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, P. R. China.,College of Chemistry, Jilin University, Changchun, P. R. China
| | - Yiru Cai
- College of Chemistry, Jilin University, Changchun, P. R. China
| | - Hang Yin
- Institute of Atom and Molecular Physics, Jilin University, Changchun, P. R. China
| | - Huiqi Zhang
- College of Chemistry, Jilin University, Changchun, P. R. China
| | - Ning-Ning Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, P. R. China.,College of Chemistry, Jilin University, Changchun, P. R. China
| | - Li Li
- College of Chemistry, Jilin University, Changchun, P. R. China.,State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, P. R. China
| | - Yu-Mo Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, P. R. China.,College of Chemistry, Jilin University, Changchun, P. R. China
| | - Sean Xiao-An Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, P. R. China.,College of Chemistry, Jilin University, Changchun, P. R. China
| |
Collapse
|
46
|
Cheng Q, Duan H, Hao A, Xing P. Photoregulated "Breathing" Vesicle with Inversed Supramolecular Chirality. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2091-2099. [PMID: 33382591 DOI: 10.1021/acsami.0c20211] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Though phospholipids possess chiral centers, their chiral aggregation within bilayer cell membranes has seldom been referred and recognized. Insight into the chirality at higher levels in artificial molecular bilayer assemblies such as vesicles or liposomes is important to better understand biomembrane functions. In this work, we illustrate the fabrication of chiral vesicles with photoresponsive supramolecular chirality and structural transformation property. Cholesterol was conjugated to azobenzene via different spacers, of which molecular chirality underwent transfer to supramolecular level upon aggregation in water. The resultant building block self-assembled into unilamellar vesicles that could respond to light irradiation by showing reversible extension/contraction behavior. Such "breathing" behavior was accompanied with supramolecular chirality inversion from M- to P-handedness, confirmed by the solid-state crystal structure and electronic circular dichroism spectra based on density functional theory. The vesicle membrane behaves as a matrix to accommodate guest molecules via aromatic interactions, which significantly elevated the UV light resistance with respect to the structural and supramolecular chirality transformation. This work offers an unprecedented rational control over supramolecular chirality using photoresponsiveness in vesicular membranes.
Collapse
Affiliation(s)
- Qiuhong Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Hongdong Duan
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
47
|
The initial attempt to reveal the emission processes of both mechanoluminescence and room temperature phosphorescence with the aid of circular dichroism in solid state. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9907-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Wen L, Sun J, Li C, Zhu C, Zhang X, Wang Z, Song Q, Lv C, Zhang Y. Rich-colour mechanochromism of a cyanostilbene derivative with chiral self-assembly. NEW J CHEM 2021. [DOI: 10.1039/d1nj01528a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The tricolored fluorescence switching was realized in a novel chiral fluorophore. The fabrication of a helical assembly was proposed as a candidate strategy for attaining an additional metastable state, which contributed to enriched PL colors via pairwise excimer emission.
Collapse
Affiliation(s)
- Li Wen
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Jingwei Sun
- Department of Materials Chemistry
- Huzhou University
- Huzhou
- People's Republic of China
| | - Chengjian Li
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Chenfei Zhu
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Xi Zhang
- Department of Materials Chemistry
- Huzhou University
- Huzhou
- People's Republic of China
| | - Zhenbo Wang
- Department of Materials Chemistry
- Huzhou University
- Huzhou
- People's Republic of China
| | - Qingbao Song
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Chunyan Lv
- Department of Materials Chemistry
- Huzhou University
- Huzhou
- People's Republic of China
| | - Yujian Zhang
- Department of Materials Chemistry
- Huzhou University
- Huzhou
- People's Republic of China
| |
Collapse
|
49
|
Albano G, Pescitelli G, Di Bari L. Chiroptical Properties in Thin Films of π-Conjugated Systems. Chem Rev 2020; 120:10145-10243. [PMID: 32892619 DOI: 10.1021/acs.chemrev.0c00195] [Citation(s) in RCA: 299] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chiral π-conjugated molecules provide new materials with outstanding features for current and perspective applications, especially in the field of optoelectronic devices. In thin films, processes such as charge conduction, light absorption, and emission are governed not only by the structure of the individual molecules but also by their supramolecular structures and intermolecular interactions to a large extent. Electronic circular dichroism, ECD, and its emission counterpart, circularly polarized luminescence, CPL, provide tools for studying aggregated states and the key properties to be sought for designing innovative devices. In this review, we shall present a comprehensive coverage of chiroptical properties measured on thin films of organic π-conjugated molecules. In the first part, we shall discuss some general concepts of ECD, CPL, and other chiroptical spectroscopies, with a focus on their applications to thin film samples. In the following, we will overview the existing literature on chiral π-conjugated systems whose thin films have been characterized by ECD and/or CPL, as well other chiroptical spectroscopies. Special emphasis will be put on systems with large dissymmetry factors (gabs and glum) and on the application of ECD and CPL to derive structural information on aggregated states.
Collapse
Affiliation(s)
- Gianluigi Albano
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
50
|
Zeng M, Ren A, Wu W, Zhao Y, Zhan C, Yao J. Lanthanide MOFs for inducing molecular chirality of achiral stilbazolium with strong circularly polarized luminescence and efficient energy transfer for color tuning. Chem Sci 2020; 11:9154-9161. [PMID: 34123164 PMCID: PMC8163402 DOI: 10.1039/d0sc02856h] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We present herein an innovative host–guest method to achieve induced molecular chirality from an achiral stilbazolium dye (DSM). The host–guest system is exquisitely designed by encapsulating the dye molecule in the molecule-sized chiral channel of homochiral lanthanide metal–organic frameworks (P-(+)/M-(−)-TbBTC), in which the P- or M-configuration of the dye is unidirectionally generated via a spatial confinement effect of the MOF and solidified by the dangling water molecules in the channel. Induced chirality of DSM is characterized by solid-state circularly polarized luminescence (CPL) and micro-area polarized emission of DSM@TbTBC, both excited with 514 nm light. A luminescence dissymmetry factor of 10−3 is obtained and the photoluminescence quantum yield (PLQY) of the encapsulated DSM in DSM@TbTBC is ∼10%, which is close to the PLQY value of DSM in dilute dichloromethane. Color-tuning from green to red is achieved, owing to efficient energy transfer (up to 56%) from Ln3+ to the dye. Therefore, this study for the first time exhibits an elegant host–guest system that shows induced strong CPL emission and enables efficient energy transfer from the host chiral Ln-MOF to the achiral guest DSM with the emission color tuned from green to red. Homochiral Ln-MOFs are synthesized to encapsulate achiral dyes to induce strong circularly polarized luminescence with a luminescence dissymmetry factor of 10−3.![]()
Collapse
Affiliation(s)
- Min Zeng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Ang Ren
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Wubin Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Yongsheng Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Chuanlang Zhan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China .,Key Laboratory of Excitonic Materials Chemistry and Devices (EMC&D), College of Chemistry and Environmental Science, Inner Mongolia Normal University Huhehot 010022 China.,University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China .,University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|