1
|
Ali T, Rahman T, Perveen S, Wang L, Khan A. Asymmetric Amination of 1,2-Diol through Borrowing Hydrogen: Synthesis of Vicinal Amino α-Tertiary Alcohol. Chemistry 2025; 31:e202404152. [PMID: 40011211 DOI: 10.1002/chem.202404152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/16/2025] [Accepted: 02/24/2025] [Indexed: 02/28/2025]
Abstract
Methods to prepare vicinal amino alcohols are important because of their presence in biologically active compounds. Despite the development of various methods for vicinal amino alcohol synthesis, C(sp3)-rich oxygen-containing β-amine compounds continue to pose great challenge. While ring-opening reaction of epoxides with amine nucleophile is the prime method for vicinal amino alcohol preparation, epoxides are highly reactive and sometimes difficult to make, resulting in drawbacks regarding selectivity of this approach. Here, we report a catalytic enantio-convergent amination of α-tertiary 1,2-diols for the efficient access to vicinal amino α-tertiary alcohols. The racemic α-tertiary 1,2-diol substrates of different alkyl/aryl or alkyl/alkyl backbone, can be converted to chiral vicinal amino α-tertiary alcohols through diphenyl phosphate-mediated RuCl3 catalysed asymmetric borrowing hydrogen (ABH) pathway. This simple ABH reaction can be scaled up to the synthesis of chiral ligands, synthetic intermediates, and other medicinally-relevant compounds. Overall, this catalytic redox-neutral procedure broadens the scope of Ru-catalysed amination of alcohols and discloses an underexplored step- and atom-economical synthetic strategy for the synthesis of vicinal amino α-tertiary alcohols and provides a practicable alternative to the present benchmark procedures.
Collapse
Affiliation(s)
- Tariq Ali
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Tahir Rahman
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Shahida Perveen
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Lingyun Wang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| | - Ajmal Khan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, P. R. China
| |
Collapse
|
2
|
Morvan J, Renders E, Buijnsters PJJA, Ryabchuk P. 3-Oxabicyclo[3.1.1]heptanes as Isosteres of meta-Substituted Benzene Rings. Org Lett 2025; 27:3291-3295. [PMID: 40113336 DOI: 10.1021/acs.orglett.5c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Replacement of the aromatic rings in drug candidates with isosteric rigid sp3-rich scaffolds can improve physicochemical properties, increase the chance of progressing the molecule in development, and open new chemical space. Isosteres of meta-substituted benzenes remain challenging due to the difficulty of mimicking the exit vector angles and bond distances. Herein, we report the synthesis of 1,5-disubstituted 3-oxabicyclo[3.1.1]heptanes (oxa-BCHeps), which can serve as saturated isosteres of meta-substituted phenyl rings with a similar geometric arrangement. This structural motif can be obtained under mild reaction conditions via acid-mediated isomerization of (2-oxaspiro[3.3]heptan-6-yl)methanols using catalytic quantities of pyridinium chloride (PyrHCl). We demonstrate the utility of this methodology by preparing various building blocks for use in medicinal chemistry and incorporating 3-oxa-BCHep into the anticancer drug sonidegib, improving its physicochemical properties, such as permeability, metabolic stability, and solubility.
Collapse
Affiliation(s)
- Jennifer Morvan
- Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse 2340, Belgium
| | - Evelien Renders
- Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse 2340, Belgium
| | - Peter J J A Buijnsters
- Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse 2340, Belgium
| | - Pavel Ryabchuk
- Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse 2340, Belgium
| |
Collapse
|
3
|
Xiong Z, Ge Y, Zhou Y, Li H, Yao W, Deng J, Wang Z. Asymmetric Formal [5 + 2] Annulation of 3-Hydroxyquinolinones and Vinylethylene Carbonates through Pd/Cu Tandem Catalysis. Org Lett 2024; 26:10334-10338. [PMID: 39569629 DOI: 10.1021/acs.orglett.4c03956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The asymmetric [5 + 2] cycloaddition of VECs remains to be comparatively rare. Herein, we reported an enantioselective formal [5 + 2] annulation of 3-hydroxyquinolinones and vinylethylene carbonates (VECs) through Pd- and Cu-catalyzed tandem allylation/asymmetric [1,3]-rearrangement/hemiketalization sequences. The strategy exhibits good substrate tolerance, affording a wide range of tricyclic quinolinones bearing two adjacent quaternary stereocenters in moderate to good yields with excellent enantioselectivities.
Collapse
Affiliation(s)
- Zongli Xiong
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, People's Republic of China
| | - Yi Ge
- Affiliated Hengyang Hospital of Hunan Normal University & Hengyang Central Hospital, Hengyang, Hunan 421001, People's Republic of China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China
| | - Heping Li
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, People's Republic of China
| | - Weijun Yao
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Jun Deng
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, People's Republic of China
| | - Zhen Wang
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, People's Republic of China
| |
Collapse
|
4
|
Shen P, Yang XH, Li Y, Ran GY. Palladium-Catalyzed [7 + 5] and Higher-Order Annulations of Oxa-1,n-dipoles: Synthesis of 12- to 15-Membered Lactones. Org Lett 2024; 26:8475-8480. [PMID: 39347609 DOI: 10.1021/acs.orglett.4c02872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Macrolactones are commonly found in natural products and pharmaceuticals. Herein, we present Pd-catalyzed [7 + 5] and higher-order annulations between unprecedented oxa-1,n-dipoles (n = 7-9) with active enol lactones. This protocol enables the rapid synthesis of complex 12 to 15-membered lactones bearing internal E-alkenes. Density functional theory calculations have revealed the favorable reaction pathway and identified coordination interactions between active enol lactones and palladium centers of π-allyl dipole species as key factors in manipulating these dipoles in annulations.
Collapse
Affiliation(s)
- Peng Shen
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Xin-Han Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Yang Li
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Guang-Yao Ran
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
5
|
Busicchia M, Roblin A, Dubois C, Mekranter N, Casaretto N, Archambeau A. Cycloadditions of 5-Vinyloxazolidine-2,4-diones: A Straightforward Access to the (Thio)hydantoin Scaffold. J Org Chem 2024; 89:12370-12377. [PMID: 39180739 DOI: 10.1021/acs.joc.4c01315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
A palladium-catalyzed (3 + 2) cycloaddition between 5-vinyloxazolidine-2,4-diones (VOxD) and (thio)isocyanates is described. Under optimized conditions, an array of (thio)hydantoins was readily prepared, and an enantioselective version of this transformation was then studied. To illustrate the importance of this method, a concise synthesis of two bioactive compounds, nirvanol and mephenytoin, was carried out. This work emphasizes the synthetic potential of VOxD as useful precursors of zwitterionic aza-π-allylpalladiumII intermediates.
Collapse
Affiliation(s)
- Marc Busicchia
- Laboratoire de Synthèse Organique, UMR 7652, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Antoine Roblin
- Laboratoire de Synthèse Organique, UMR 7652, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Carla Dubois
- Laboratoire de Synthèse Organique, UMR 7652, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Nagy Mekranter
- Laboratoire de Synthèse Organique, UMR 7652, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Nicolas Casaretto
- Laboratoire de Chimie Moléculaire, UMR 9168, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Alexis Archambeau
- Laboratoire de Synthèse Organique, UMR 7652, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| |
Collapse
|
6
|
Han Z, Xue Y, Xie H, Shang P, Sun J, Huang H. Type of Tetrahydronaphthalene-Fused 1,5-Dipoles and Their Application in Polycyclic Compounds Synthesis. J Org Chem 2024; 89:10551-10556. [PMID: 39016040 DOI: 10.1021/acs.joc.4c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Palladium-catalyzed dipolar cycloaddition reactions represent an efficient strategy for the construction of cyclic compounds, with the development of novel dipolar precursors being a key focus. In this study, a new type of dipolar precursor was synthesized through the assembly of the vinylethylene carbonate unit and the tetrahydronaphthalene skeleton. This dipolar precursor can undergo [3 + 2], [5 + 4], and [5 + 2] cycloaddition reactions, leading to the construction of tetrahydronaphthalene-fused oxazolidin-2-ones, 1,5-oxazonines, and tetrahydrooxepines. In general, all of these reactions exhibited good reaction efficiency and functional group tolerance.
Collapse
Affiliation(s)
- Zhengyu Han
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Yu Xue
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Hongling Xie
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Peinan Shang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|
7
|
Cheng L, Zhao JL, Zhang XT, Jia QS, Dong N, Peng Y, Kleij AW, Liu XW. Chemo-, Regio- and Stereoselective Preparation of (Z)-2-Butene-1,4-Diol Monoesters via Pd-Catalyzed Decarboxylative Acyloxylation. Chemistry 2024; 30:e202401377. [PMID: 38738789 DOI: 10.1002/chem.202401377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/14/2024]
Abstract
(Z)-alkenes are useful synthons but thermodynamically less stable than their (E)-isomers and typically more difficult to prepare. The synthesis of 1,4-hetero-bifunctionalized (Z)-alkenes is particularly challenging due to the inherent regio- and stereoselectivity issues. Herein we demonstrate a general, chemoselective and direct synthesis of (Z)-2-butene-1,4-diol monoesters. The protocol operates within a Pd-catalyzed decarboxylative acyloxylation regime involving vinyl ethylene carbonates (VECs) and various carboxylic acids as the reaction partners under mild and operationally attractive conditions. The newly developed process allows access to a structurally diverse pool of (Z)-2-butene-1,4-diol monoesters in good yields and with excellent regio- and stereoselectivity. Various synthetic transformations of the obtained (Z)-2-butene-1,4-diol monoesters demonstrate how these synthons are of great use to rapidly diversify the portfolio of these formal desymmetrized (Z)-alkenes.
Collapse
Affiliation(s)
- Long Cheng
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University. No. 111, North 1st Section, 2nd Ring Road, Chengdu, 610031, P. R. China
| | - Jia-Li Zhao
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University. No. 111, North 1st Section, 2nd Ring Road, Chengdu, 610031, P. R. China
| | - Xiao-Tian Zhang
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University. No. 111, North 1st Section, 2nd Ring Road, Chengdu, 610031, P. R. China
| | - Qiao-Sen Jia
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University. No. 111, North 1st Section, 2nd Ring Road, Chengdu, 610031, P. R. China
| | - Ni Dong
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University. No. 111, North 1st Section, 2nd Ring Road, Chengdu, 610031, P. R. China
| | - Yu Peng
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University. No. 111, North 1st Section, 2nd Ring Road, Chengdu, 610031, P. R. China
| | - Arjan W Kleij
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 -, Tarragona, Spain
- Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluis Companys 23, 08010 -, Barcelona, Spain
| | - Xiang-Wei Liu
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University. No. 111, North 1st Section, 2nd Ring Road, Chengdu, 610031, P. R. China
| |
Collapse
|
8
|
Nenashev AS, Dospekhov DA, Zavaruev MV, Levina II, Roznyatovsky VA, Mironov AV, Pavlova AS, Podrugina TA. Phenoxaphosphonium Mixed Ylides in Ring Expansion Reaction. J Org Chem 2024; 89:6533-6538. [PMID: 38607996 DOI: 10.1021/acs.joc.4c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Treatment of mixed phosphonium-iodonium ylides featuring a six-membered phenoxaphosphonium fragment with aqueous tetrafluoroboronic acid induces a rearrangement, resulting in expansion of the phosphacycle and oxidation of the phosphorus atom. The target difficult-to-access dibenzo[b,f][1,4]oxaphosphepine oxides (3 examples) were isolated in excellent yields (up to 95%) as mixtures of stereoisomers. Hydrolysis of a five-membered mixed ylide, a dibenzophosphole derivative, predominantly preserves the phosphole system with cycle expansion occurring as a side process.
Collapse
Affiliation(s)
- Anton S Nenashev
- Department of Chemistry Lomonosov Moscow State University, Building 3, 1 Leninskie Gory, 119334 Moscow, Russian Federation
| | - Dmitrii A Dospekhov
- Department of Chemistry Lomonosov Moscow State University, Building 3, 1 Leninskie Gory, 119334 Moscow, Russian Federation
| | - Mikhail V Zavaruev
- Department of Chemistry Lomonosov Moscow State University, Building 3, 1 Leninskie Gory, 119334 Moscow, Russian Federation
| | - Irina I Levina
- Emanuel Institute of Biochemical Physics Russian Academy of Sciences, 4 ul. Kosygina, 119334 Moscow, Russian Federation
| | - Vitaly A Roznyatovsky
- Department of Chemistry Lomonosov Moscow State University, Building 3, 1 Leninskie Gory, 119334 Moscow, Russian Federation
| | - Andrey V Mironov
- Department of Chemistry Lomonosov Moscow State University, Building 3, 1 Leninskie Gory, 119334 Moscow, Russian Federation
| | - Anna S Pavlova
- Department of Chemistry Lomonosov Moscow State University, Building 3, 1 Leninskie Gory, 119334 Moscow, Russian Federation
| | - Tatyana A Podrugina
- Department of Chemistry Lomonosov Moscow State University, Building 3, 1 Leninskie Gory, 119334 Moscow, Russian Federation
| |
Collapse
|
9
|
Huang H, Wu YQ, Han LY, Jiang L, Zhang ZZ, Zhang X, Han B, Huang W, Li JL. Palladium-catalyzed ( Z)-selective allylation of phosphine oxides with vinylethylene carbonates to construct phosphorus allyl alcohols. Org Biomol Chem 2024; 22:3068-3072. [PMID: 38546264 DOI: 10.1039/d4ob00354c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Allylphosphine oxide compounds are important building blocks with broad applications in organic synthesis and pharmaceutical science. Herein, we report an unprecedented palladium-catalyzed allylation of phosphine oxides with vinylethylene carbonates, producing various phosphorus allyl alcohols in excellent yields with high Z-selectivity. In addition, gram-scale synthesis and further functional group transformations demonstrate the practical utility of this synthetic method.
Collapse
Affiliation(s)
- Hua Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yi-Qi Wu
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Lu-Yao Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Lu Jiang
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Zhuo-Zhuo Zhang
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Xiang Zhang
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jun-Long Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| |
Collapse
|
10
|
De Abreu M, Rogge T, Lanzi M, Saiegh TJ, Houk KN, Wencel-Delord J. Cyclic Diaryl λ 3-Bromanes as a Precursor for Regiodivergent Alkynylation Reactions. Angew Chem Int Ed Engl 2024; 63:e202319960. [PMID: 38375976 DOI: 10.1002/anie.202319960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/21/2024]
Abstract
Regiodivergent reactions are a fascinating tool to rapidly access molecular diversity while using identical coupling partners. We have developed a new approach for regiodivergent synthesis using the dual character of hypervalent bromines. In addition to the recently reported reactivity of hypervalent bromines as aryne precursors, the first transition metal-catalyzed reaction is reported. Accordingly, the development of these two complementary transformations allows for the alteration of regioselectivity to furnish both ortho- and meta-substituted alkynylation products. Mechanistic and computational studies show how these selectivities are controlled.
Collapse
Affiliation(s)
- Maxime De Abreu
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM 25 rue Becquerel, 67087, Strasbourg, France
| | - Torben Rogge
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095-1569, USA
| | - Matteo Lanzi
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM 25 rue Becquerel, 67087, Strasbourg, France
| | - Tomas J Saiegh
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM 25 rue Becquerel, 67087, Strasbourg, France
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095-1569, USA
| | - Joanna Wencel-Delord
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM 25 rue Becquerel, 67087, Strasbourg, France
- Institute of Organic Chemistry, JMU Würzburg, Am Hubland, Würzburg, Germany
| |
Collapse
|
11
|
Wang L, Yang S, Tang Y, Li K, Lu M, Guo H. Palladium-Catalyzed [5 + 4] Cycloaddition of 4-Vinyl-4-Butyrolactones with N-Tosyl Azadienes: Construction of Nine-Membered Ring. J Org Chem 2024; 89:5019-5028. [PMID: 38502934 DOI: 10.1021/acs.joc.4c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
In this paper, we reported the palladium-catalyzed formal [5 + 4] cycloaddition reactions between 4-vinyl-4-butyrolactones (VBLs) and azadienes. Under mild reaction conditions, a wide range of benzofuran-fused 9-membered heterocyclic compounds had been provided in moderate to excellent yields with exclusive regioselectivities and excellent diastereoselectivities. The practical applicability of the synthesis was demonstrated through scale-up reaction and further transformation.
Collapse
Affiliation(s)
- Lan Wang
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Sen Yang
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Yi Tang
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Kuan Li
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Mengxi Lu
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Hongchao Guo
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
12
|
Shi W, Qiao C, Benet-Buchholz J, Kleij AW. Catalytic Domino Three-Component Synthesis of Functionalized Heterocycles from Carbon Dioxide. CHEMSUSCHEM 2024; 17:e202301626. [PMID: 38109072 DOI: 10.1002/cssc.202301626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/28/2023] [Indexed: 12/19/2023]
Abstract
A catalytic domino, three-component reaction has been developed for the transformation of carbon dioxide into functionalized six-membered cyclic carbonates. The catalytic process combines an initial carboxylative cyclization of β-epoxy alcohols followed by an oxa-Michael reaction affording an unparalleled scope of heterocyclic structures. The wide range of functional groups, including free-alcohols, empowers the access to a range of products including C11-oxo-based bicyclic heterocycles. The versatility of these functionalized carbonates is further complemented by a series of synthetic diversifications. Control experiments are consistent with the first step of this domino process being promoted by a binary Lewis acid/base catalyst, while the second stage only requires catalytic base.
Collapse
Affiliation(s)
- Wangyu Shi
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 -, Tarragona, Spain
- Universitat Rovira i Virgili, C/Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
| | - Chang Qiao
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 -, Tarragona, Spain
| | - Jordi Benet-Buchholz
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 -, Tarragona, Spain
| | - Arjan W Kleij
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 -, Tarragona, Spain
- Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
13
|
Yu TT, Huang PT, Chen BH, Zhong YJ, Han B, Peng C, Zhan G, Huang W, Zhao Q. Construction of 3,4-Dihydroquinolone Derivatives through Pd-Catalyzed [4+2] Cycloaddition of Vinyl Benzoxazinanones with α-Alkylidene Succinimides. J Org Chem 2024; 89:3279-3291. [PMID: 38377542 DOI: 10.1021/acs.joc.3c02728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The construction of 3,4-dihydroquinolone derivatives has attracted a considerable amount of attention due to their extensive applications in medicinal chemistry. In this study, we present the Pd-catalyzed [4+2] cycloaddition of vinyl benzoxazinanones with α-alkylidene succinimides for the efficient synthesis of 3,4-dihydroquinolones. This approach presents numerous advantages, including the ready availability of starting materials, mild reaction conditions without the use of additional bases, and a wide range of substrates. In particular, all of the desired products can be easily afforded in high yields (≤99%) and excellent diastereoselectivities (>20:1). The practicality and reliability of this strategy were demonstrated by the successful scale-up synthesis and subsequent straightforward synthetic transformations.
Collapse
Affiliation(s)
- Ting-Ting Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Peng-Ting Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ben-Hong Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ya-Jun Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
14
|
Li F, Chen X, Huang BQ, Xu HD, Zhu CF, Shen MH. Palladium-catalyzed ring-opening [5+2] annulation of vinylethylene carbonates (VECs) and C5-substituted Meldrum's acids: rapid synthesis of 7-membered lactones. Chem Commun (Camb) 2024; 60:1774-1777. [PMID: 38252322 DOI: 10.1039/d3cc05819k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
A novel approach for the synthesis of unsaturated 7-membered lactones by Pd-catalyzed [5+2] dipolar cycloaddition of vinylethylene carbonates (VECs) and C5-substituted Meldrum's acid derivatives has been developed. Various Meldrum's acid derivatives worked well in this reaction under mild reaction conditions. A variety of 7-membered lactones can be accessed in a facile manner in moderate to good yields by employing easily prepared Meldrum's acid derivatives.
Collapse
Affiliation(s)
- Fei Li
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Xin Chen
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Ben-Qing Huang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Hua-Dong Xu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Chi-Fan Zhu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Mei-Hua Shen
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| |
Collapse
|
15
|
Dong S, Fu C, Ge Y, Liu J, Wang H, Luan X. Dearomatization/Spiroannulation of Halophenols Enables the Forging of Contiguous Quaternary Carbon Cyclohexadienones. Org Lett 2023; 25:7841-7846. [PMID: 37862469 DOI: 10.1021/acs.orglett.3c03035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
A dearomatization/spiroannulation process has been successfully achieved between simple halophenols and α,β-unsaturated olefins under mild reaction conditions. This transformation addresses the chemoselectivity issue in the dearomatizative transformation of phenol scaffolds (6π-electron) caused by the SEAr process, enabling the construction of versatile cyclohexadienone frameworks containing contiguous quaternary all-carbon centers in high yields. Further studies have provided valuable insights into the process, revealing that debromination/spiroannulation occurs through the SRN1 pathway.
Collapse
Affiliation(s)
- Sichan Dong
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Changzhen Fu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Yicong Ge
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jingjing Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Han Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Xinjun Luan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| |
Collapse
|
16
|
Rao HW, Zhao TL, Wang L, Deng HD, Zhang YP, You Y, Wang ZH, Zhao JQ, Yuan WC. Palladium-catalyzed decarboxylative α-allylation of thiazolidinones and azlactones with sulfonamido-substituted acyclic allylic carbonates. Org Biomol Chem 2023; 21:8593-8602. [PMID: 37861421 DOI: 10.1039/d3ob01404e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
A palladium-catalyzed decarboxylative α-allylation of thiazolidinones and azlactones with aza-π-allylpalladium zwitterionic intermediates, in situ generated from sulfonamido-substituted allylic carbonates, is successfully developed. This method allows the formation of a series of structurally diverse 5-alkylated thiazolidinones and 2-piperidones under mild conditions in moderate to high yields (up to 99% yield).
Collapse
Affiliation(s)
- Han-Wen Rao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Tian-Lan Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Long Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Hong-Dan Deng
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
17
|
Zhang X, Dai HY, Liu WC, Zeng R, Dai Z, Wang YP, Li JL, Li QZ, Han B. Base-Promoted Formal (3 + 2) Cycloaddition of α-Halohydroxamates with Electron-Deficient Alkenyl-iminoindolines To Synthesize Spiro-indolinepyrrolidinones. J Org Chem 2023; 88:14619-14633. [PMID: 37789599 DOI: 10.1021/acs.joc.3c01619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Construction of pyrrolidinyl-spiroindoles with easily available starting materials has attracted considerable attention from the synthesis community and is in great demand. Here, we describe a base-promoted formal (3 + 2) cycloaddition of α-halohydroxamates with alkenyl-iminoindolines. The present methodology features mild reaction conditions and a broad substrate scope with up to 99% yield and excellent diastereoselectivity. The versatility of this approach is demonstrated through valuable synthetic transformations. Preliminary mechanistic studies shed light on the mechanism of this cycloaddition process.
Collapse
Affiliation(s)
- Xiang Zhang
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Hai-Yu Dai
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, P. R. China
| | - Wan-Cong Liu
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Rong Zeng
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, Chengdu 610106, P. R. China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Zhen Dai
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Ya-Peng Wang
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Jun-Long Li
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Qing-Zhu Li
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Bo Han
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, Chengdu 610106, P. R. China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|
18
|
Han Z, Xue Y, Li X, Hu X, Dong XQ, Sun J, Huang H. Studies on the [4 + 2] cycloaddition and allylic substitution of indole-fused zwitterionic π-allylpalladium. Org Biomol Chem 2023; 21:8162-8169. [PMID: 37782136 DOI: 10.1039/d3ob01451g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The zwitterionic π-allylpalladium species, also known as dipoles, are important synthons widely used in various reactions including cycloaddition and allylic substitution. This study reported the development of a new indole-fused zwitterionic π-allylpalladium precursor compound and its application in [4 + 2] cycloaddition and allylic substitution reactions. As a result, the synthesis of pyrrolo[3,2,1-ij]quinazolin-3-one and 7-vinyl indole compounds was achieved with moderate to good yields. Notably, the allylic substitution reaction exhibited excellent regio- and stereoselectivity.
Collapse
Affiliation(s)
- Zhengyu Han
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yu Xue
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Xiang Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Xinzhe Hu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, Hubei, 430072, China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
19
|
Roblin A, Casaretto N, Archambeau A. Diastereo- and Enantioselective Palladium-Catalyzed Cycloadditions of 5-Vinyloxazolidine-2,4-diones with Electrophilic Imines. Org Lett 2023; 25:6453-6458. [PMID: 37639245 DOI: 10.1021/acs.orglett.3c01883] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Despite the importance of the 4-imidazolidinone scaffold in bioactive compounds or organocatalysts, methodologies to access these nitrogenated heterocycles remain scarce. This manuscript describes a novel preparation of 4-imidazolidinones via a diastereo- and enantioselective (3 + 2) cycloaddition between 5-vinyloxazolidine-2,4-diones (VOxD) and electrophilic imines under palladium catalysis. This work supports the synthetic potential of VOxD as a promising equivalent of the C-C(═O)-N synthon.
Collapse
Affiliation(s)
- Antoine Roblin
- Laboratoire de Synthèse Organique, UMR 7652, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Nicolas Casaretto
- Laboratoire de Chimie Moléculaire, UMR 9168, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Alexis Archambeau
- Laboratoire de Synthèse Organique, UMR 7652, CNRS, Ecole Polytechnique, ENSTA Paris, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| |
Collapse
|
20
|
Gao Y, Wang H, Chen X, Qiao Y, Miao Z. Gold and Palladium Relay Catalytic [4 + 4] Cycloadditions of Enynamides and γ-Methylene-δ-valerolactones: Diastereoselective Construction of Furan-Fused Azacyclooctanes. J Org Chem 2023; 88:11822-11833. [PMID: 37534854 DOI: 10.1021/acs.joc.3c01114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
We report a highly efficient and diastereoselective gold and palladium sequential relay catalysis system for the synthesis of furan-fused eight-membered heterocycles. Employing a one-pot procedure, easily accessible enynamides undergo cyclization to generate azadienes in situ, which subsequently participate in diastereoselective formal [4 + 4] cycloadditions with γ-methylene-δ-valerolactones. This strategy enables the rapid and efficient construction of a series of furan-fused azacyclooctanes with diverse substituents in good yields (63-97%) and a high level of diastereoselectivity (7:1 → 20:1 dr).
Collapse
Affiliation(s)
- Yanfeng Gao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Hui Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Xiaoquan Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Yiyang Qiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Zhiwei Miao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
21
|
Yang D, Zhu M, Wang T, He Y, Xie L, Zhang J, Cheng B. Catalyst-free inverse-electron-demand aza-Diels-Alder reaction of 4,4-dicyano-2-methylenebut-3-enoates and 1,3,5-triazinanes: access to polysubstituted tetrahydropyridines. Org Biomol Chem 2023. [PMID: 37334910 DOI: 10.1039/d3ob00511a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
An inverse-electron-demand aza-Diels-Alder reaction between 4,4-dicyano-2-methylenebut-3-enoates and 1,3,5-triazinanes under catalyst-free and additive-free conditions was developed, which provided a highly convenient and straightforward method to construct a series of polyfunctionalized tetrahydropyridines in high yields. This strategy features numerous advantages, including high efficiency, good functional group tolerance, broad substrate scope, and environmentally friendly conditions.
Collapse
Affiliation(s)
- Dezhi Yang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
- Institute of Marine Biomedicine/Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Meng Zhu
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
- Institute of Marine Biomedicine/Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Taimin Wang
- Institute of Marine Biomedicine/Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Yixuan He
- Institute of Marine Biomedicine/Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Lang Xie
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
- Institute of Marine Biomedicine/Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Jiayong Zhang
- Institute of Marine Biomedicine/Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Bin Cheng
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
- Institute of Marine Biomedicine/Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China.
| |
Collapse
|
22
|
Shi L, Xiong Q, Wu SY, Li Y, Shen P, Lu J, Ran GY. Enantioselective Synthesis of Ten-Membered Lactones via Palladium-Catalyzed [5 + 5] Annulation. Org Lett 2023; 25:2030-2035. [PMID: 36939298 DOI: 10.1021/acs.orglett.3c00374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Ten-membered lactones are the core units of many biologically active natural products but with a great synthetic challenge. Based on the principle of vinylogy, novel types of cyclic vinylogous anhydrides have been designed as five-carbon carbonyl synthons, further applied in [5 + 5] annulation with vinylethylene carbonates under chiral palladium catalysis. This strategy features excellent regioselectivity, mild conditions, and broad substrate scope, affording a range of spiro ten-membered lactones bearing oxindole and pyrrolidinone motif in excellent yield (up to 99%) with moderate to high enantioselectivity (up to 89% ee).
Collapse
Affiliation(s)
- Liu Shi
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Qiang Xiong
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Shu-Yi Wu
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yang Li
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Peng Shen
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Ji Lu
- College of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Guang-Yao Ran
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
23
|
Chen LL, Li F, Yang Q, Ye YF, Yang WW, Wang YB. Base-Promoted Decarboxylative Annulation of Methyl 2-(2-Bromophenyl)acetates and Ynones to Access Benzoxepines. J Org Chem 2023. [PMID: 36799925 DOI: 10.1021/acs.joc.2c02870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
A simple and efficient base-mediated decarboxylative annulation of ynones with methyl 2-(2-bromophenyl)acetates has been developed. A broad range of benzoxepines were prepared with a broad substrate scope and high regioselectivity in moderate to excellent yields under transition-metal-free conditions. This method proceeds through a tandem [2 + 4] annulation, ring-opening decarboxylative reaction, and the intramolecular nucleophilic aromatic substitution reaction. Additionally, the key intermediates were successfully obtained and characterized unambiguously by single-crystal X-ray crystallography, which could favorably support a decarboxylative annulation mechanism. Furthermore, gram-scale reaction and synthetic applications for the further functionalization are also studied.
Collapse
Affiliation(s)
- Lu-Lu Chen
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Feng Li
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Qing Yang
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Ya-Fang Ye
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Wan-Wan Yang
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Yan-Bo Wang
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
24
|
Xu H, Ma S. Palladium-Catalyzed [6+2] Double Allene Annulation for Benzazocines Synthesis. Angew Chem Int Ed Engl 2023; 62:e202213676. [PMID: 36372784 DOI: 10.1002/anie.202213676] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022]
Abstract
An efficient double allene protocol for the formation of benzazocines has been developed. The reaction constitutes a highly regioselective palladium-catalyzed formal [6+2] annulation of allenyl benzoxazinanones with terminal allenes forming the challenging 8-membered cycles. Decent yields and excellent regioselectivity have been observed under mild conditions with a remarkable Z-stereoselectivity for the exo-cyclic C=C bonds. The synthetic potentials of benzazocine products have been demonstrated.
Collapse
Affiliation(s)
- Haibo Xu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, P. R. China.,Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, P. R. China
| |
Collapse
|
25
|
Li QZ, Guan YL, Huang QW, Qi T, Xiang P, Zhang X, Leng HJ, Li JL. Temperature-Controlled Divergent Asymmetric Synthesis of Indole-Based Medium-Sized Heterocycles through Palladium Catalysis. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Qing-Zhu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University, Chengdu 610106, China
| | - Yi-Long Guan
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University, Chengdu 610106, China
| | - Qian-Wei Huang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University, Chengdu 610106, China
| | - Ting Qi
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University, Chengdu 610106, China
| | - Peng Xiang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University, Chengdu 610106, China
| | - Xiang Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University, Chengdu 610106, China
| | - Hai-Jun Leng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University, Chengdu 610106, China
| | - Jun-Long Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University, Chengdu 610106, China
| |
Collapse
|
26
|
Lu LG, Chen JH, Huang XB, Liu MC, Zhou YB, Wu HY. Palladium-Catalyzed Ring-Opening Reaction of Cyclopropenones with Vinyl Epoxides. J Org Chem 2022; 87:16851-16859. [DOI: 10.1021/acs.joc.2c01976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Li-Guo Lu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, PR China
| | - Jun-Hua Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, PR China
| | - Xiao-Bo Huang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, PR China
| | - Miao-Chang Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, PR China
| | - Yun-Bing Zhou
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, PR China
| | - Hua-Yue Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, PR China
| |
Collapse
|
27
|
Xu ZY, Liu DG, Yao CY, Yu HZ, Fu Y. Mechanistic Study on Palladium-Catalyzed Cycloaddition of Vinylethylene Carbonates with α,β-Unsaturated Imines. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhe-Yuan Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Center for Excellence in Molecular Synthesis of CAS, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, China
| | - De-Guang Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Center for Excellence in Molecular Synthesis of CAS, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, China
| | - Cheng-Yu Yao
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Center for Excellence in Molecular Synthesis of CAS, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, China
| | - Hai-Zhu Yu
- Department of Chemistry, Anhui University, Jiulong Road, Hefei 230601, China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Center for Excellence in Molecular Synthesis of CAS, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
28
|
Zhao Q, Xiong SS, Chen C, Zhu HP, Xie X, Peng C, He G, Han B. Discovery of spirooxindole-derived small-molecule compounds as novel HDAC/MDM2 dual inhibitors and investigation of their anticancer activity. Front Oncol 2022; 12:972372. [PMID: 35992773 PMCID: PMC9386376 DOI: 10.3389/fonc.2022.972372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Simultaneous inhibition of more than one target is considered to be a novel strategy in cancer therapy. Owing to the importance of histone deacetylases (HDACs) and p53-murine double minute 2 (MDM2) interaction in tumor development and their synergistic effects, a series of MDM2/HDAC bifunctional small-molecule inhibitors were rationally designed and synthesized by incorporating an HDAC pharmacophore into spirooxindole skeletons. These compounds exhibited good inhibitory activities against both targets. In particular, compound 11b was demonstrated to be most potent for MDM2 and HDAC, reaching the enzyme inhibition of 68% and 79%, respectively. Compound 11b also showed efficient antiproliferative activity towards MCF-7 cells with better potency than the reference drug SAHA and Nutlin-3. Furthermore, western blot analysis revealed that compound 11b increased the expression of p53 and Ac-H4 in MCF-7 cells in a dose-dependent manner. Our results indicate that dual inhibition of HDAC and MDM2 may provide a novel and efficient strategy for the discovery of antitumor drug in the future.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shan-Shan Xiong
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Can Chen
- School of Pharmacy, Chengdu Medical College, Chengdu, China
- The First Affiliated Hospital, Chengdu Medical College, Chengdu, China
| | - Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gu He
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
29
|
Zhao C, Khan S, Khan I, Shah BH, Zhang YJ. Pd‐Catalyzed Asymmetric Allylic Cycloaddition of Vinylethylene Carbonates with Nitroalkenes: A Route to Tetrahydrofurans bearing Vicinal Tetrasubstituted Stereocenters. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Can Zhao
- Shanghai Jiao Tong University School of chemistry and Chemical Engineering CHINA
| | - Sardaraz Khan
- Shanghai Jiao Tong University School of chemistry and Chemical Engineering CHINA
| | - Ijaz Khan
- Shanghai Jiao Tong University School of chemistry and Chemical Engineering CHINA
| | - Babar Hussain Shah
- Shanghai Jiao Tong University School of chemistry and Chemical Engineering CHINA
| | - Yong Jian Zhang
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering 800 Dongchuan Road 200240 Shanghai CHINA
| |
Collapse
|
30
|
Unsworth WP, Stephens TC. Strategies for the Synthesis of Heterocyclic Macrocycles and Medium‐Sized Rings. HETEROCYCLES 2022. [DOI: 10.1002/9783527832002.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
31
|
Mishra DR, Panda BS, Nayak S, Panda J, Mohapatra S. Recent Advances in the Synthesis of 5‐Membered
N
‐Heterocycles via Rhodium Catalysed Cascade Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Deepak R. Mishra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Bhabani S. Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Jasmine Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| |
Collapse
|
32
|
Li K, Yang S, Zheng B, Wang W, Wu Y, Li J, Guo H. A new type of δ-vinylvalerolactone for palladium-catalyzed cycloaddition: synthesis of nine-membered heterocycles. Chem Commun (Camb) 2022; 58:6646-6649. [PMID: 35593191 DOI: 10.1039/d2cc01134d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this paper, a new type of δ-vinylvalerolactone was designed and synthesized, and used as a new precursor in Pd-catalyzed [6+3] cycloaddition with azomethine imines, leading to nine-membered 1,2-dinitrogen-containing heterocycles in 77-98% yields with >20 : 1 d.r. These nine-membered ring-fused products were further transformed into unusual tetracyclic bridged-ring compounds without loss of the diastereoselectivities.
Collapse
Affiliation(s)
- Kuan Li
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Sen Yang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Bing Zheng
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Wei Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Li
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
33
|
Zhang MM, Qu BL, Shi B, Xiao WJ, Lu LQ. High-order dipolar annulations with metal-containing reactive dipoles. Chem Soc Rev 2022; 51:4146-4174. [PMID: 35521739 DOI: 10.1039/d1cs00897h] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Medium-sized heterocycles are widespread among a spectrum of structurally intriguing and biologically significant natural products and synthetic pharmaceuticals. Metal-catalyzed high-order dipolar annulations resembling reactions of metal-containing reactive dipoles with dipolarophiles constitute a highly efficient and flexible strategy for constructing medium-sized heterocycles. Mechanistically, these annulation reactions usually proceeding through stepwise pathways are different from the classic high-order pericyclic reactions that follow the Woodward-Hoffman rules. More significantly, asymmetric high-order dipolar annulations using chiral organometallic catalysts have been proven successful for constructing chiral medium-sized heterocycles with high enantio- and diastereoselectivity. This review highlights the impressive advances in this area and is focused on the reactivity, scope, mechanisms and applications of high-order dipolar annulation reactions.
Collapse
Affiliation(s)
- Mao-Mao Zhang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
| | - Bao-Le Qu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
| | - Bin Shi
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Road, Shanghai 200032, China
| | - Liang-Qiu Lu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China. .,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
34
|
Dai QS, Li JL, Wang QW, Yang SL, Tao YM, He MH, Li QZ, Han B, Zhang X. Sulphur ylide-mediated cyclopropanation and subsequent spirocyclopropane rearrangement reactions. Org Biomol Chem 2022; 20:3486-3490. [PMID: 35388864 DOI: 10.1039/d2ob00466f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The efficient construction of cyclopropyl spiroindoline skeletons and the exploration of related follow-up synthetic transformations have elicited considerable interest amongst members of the chemistry community. Here, we describe a formal (2 + 1) annulation and three-component (1 + 1 + 1) cascade cyclisation via sulphur ylide cyclopropanation under mild conditions. The spiro-cyclopropyl iminoindoline moiety can be readily transformed into another medicinally interesting pyrrolo[3,4-c]quinoline framework through a novel rearrangement process.
Collapse
Affiliation(s)
- Qing-Song Dai
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China. .,Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun-Long Li
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China. .,Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Qi-Wei Wang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China. .,Institute for Advanced Study, Chengdu University, Chengdu 610106, China. .,Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Si-Lin Yang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Ying-Mao Tao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Mei-Hao He
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Qing-Zhu Li
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China. .,Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China. .,Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Xiang Zhang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China. .,Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| |
Collapse
|
35
|
Xiong Q, Lu J, Shi L, Ran GY. Pd-Catalyzed Tandem [5 + 2] Cycloaddition/Ring Contraction of Phthalide-Derived Alkenes and Vinylethylene Carbonates for the Construction of Benzo-[5,5]-spiroketal Lactones. Org Lett 2022; 24:3363-3367. [DOI: 10.1021/acs.orglett.2c01114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qiang Xiong
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Ji Lu
- College of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Liu Shi
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Guang-Yao Ran
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
36
|
Guo W, Yan B. Recent Advances in Decarboxylative Conversions of Cyclic Carbonates and Beyond. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1715-7413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractIn recent years, functionalized cyclic organic carbonates have emerged as valuable building blocks for the construction of interesting and useful molecules upon decarboxylation under transition-metal catalysis. By employing suitable catalytic systems, the development of chemo-, regio-, stereo- and enantioselective methods for the synthesis of useful and interesting compounds has advanced greatly. On the basis of previous research on this topic, this short review highlights the synthetic potential of cyclic carbonates under transition-metal catalysis over the last two years.1 Introduction2 Transition-Metal-Catalyzed Decarboxylation of Vinyl Cyclic Carbonates3 Zwitterionic Enolate Chemistry Based On Transition-Metal Catalysis4 Decarboxylation of Alkynyl Cyclic Carbonates and Dioxazolones5 Conclusions and Perspectives
Collapse
|
37
|
Huang W, Li G, He XH, Li HP, Zhao Q, Li DA, Zhu HP, Zhang YH, Zhan G. Design, synthesis, and biological evaluation of tetrahydro-αcarbolines as Akt1 inhibitors that inhibit colorectal cancer cells proliferation. ChemMedChem 2022; 17:e202200104. [PMID: 35355421 DOI: 10.1002/cmdc.202200104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/25/2022] [Indexed: 11/09/2022]
Abstract
A series of densely functionalized THαCs were designed and synthesized as Akt1 inhibitors. Organocatalytic [3+3] annulation between indolin-2-imines 1 and nitroallylic acetates 2 provided rapid access to this pharmacologically interesting framework. In vitro kinase inhibitory abilities and cytotoxicity assays revealed that compound 3af was the most potent Akt1 inhibitor, and mechanistic study indicated that compound 3af suppressed the proliferation of colorectal cancer cells via inducing apoptosis and autophagy. Molecular docking suggested that the indole fragment of 3af was inserted into the hydrophobic pocket of Akt1 protein, and the H-bond between 3af and residue Lys179 also contributed to the stable binding. This article provides an efficient strategy to design and synthesize biologically important compounds as novel Akt1 inhibitors.
Collapse
Affiliation(s)
- Wei Huang
- Chengdu University of Traditional Chinese Medicine, School of Pharmacy, 1166 Liu Tai Av., 610000, Chengdu, CHINA
| | - Guo Li
- Chengdu University of Traditional Chinese Medicine Wenjiang Campus: Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, CHINA
| | - Xiang-Hong He
- Chengdu University of Traditional Chinese Medicine Wenjiang Campus: Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, CHINA
| | - He-Ping Li
- Chengdu University of Traditional Chinese Medicine Wenjiang Campus: Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, CHINA
| | - Qian Zhao
- Chengdu University of Traditional Chinese Medicine Wenjiang Campus: Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, 610000, Chengdu, CHINA
| | - Dong-Ai Li
- Chengdu University of Traditional Chinese Medicine Wenjiang Campus: Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, CHINA
| | - Hong-Ping Zhu
- Chengdu University of Traditional Chinese Medicine Wenjiang Campus: Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, CHINA
| | - Yue-Hua Zhang
- Sichuan University, State Key Laboratory of Biotherapy and Department of Pharmacy, CHINA
| | - Gu Zhan
- Chengdu University of Traditional Chinese Medicine Wenjiang Campus: Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, CHINA
| |
Collapse
|
38
|
Liu Y, He Y, Liu Y, Wei K, Guo W. Kinetically Controllable Construction of Nine-Membered Carbocycles via Pd-Catalyzed Decarboxylative Cycloaddition. Org Lett 2022; 24:2567-2572. [PMID: 35343709 DOI: 10.1021/acs.orglett.2c00808] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A kinetically controllable strategy toward the construction of otherwise challenging nine-membered carbocycles is reported. This Pd-catalyzed decarboxylative procedure utilizes vinyl methylene cyclic carbonates as the C5-dipole and allylidenemalononitriles as C4-building blocks. The protocol features user-friendly operations with controllable regioselectivity and generates CO2 as the sole byproduct. The formation of synthetically valuable and thermodynamically favored seven-membered carbocycles was also investigated.
Collapse
Affiliation(s)
- Yin Liu
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an 710045, China.,School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yicheng He
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an 710045, China
| | - Yang Liu
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an 710045, China
| | - Kun Wei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Wusheng Guo
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an 710045, China
| |
Collapse
|
39
|
Xie X, Yuan D, Ma B, Jin J, Wang E, Zhou W, Hu Y, Hu L, Wang J. Sterically and Temperature Controlled Divergent Cycloadditions of α,β‐Unsaturated Imines with Vinylethylene Carbonates: Insights from Experimental and DFT studies. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Dandan Yuan
- Nanjing University of Chinese Medicine CHINA
| | - Ben Ma
- Nanjing University of Chinese Medicine CHINA
| | - Jiaming Jin
- Nanjing University of Chinese Medicine CHINA
| | - Enpeng Wang
- Nanjing University of Chinese Medicine CHINA
| | - Wenyi Zhou
- Nanjing University of Chinese Medicine CHINA
| | - Yaowen Hu
- Nanjing University of Chinese Medicine CHINA
| | | | - Junwei Wang
- Nanjing University of Chinese Medicine CHINA
| |
Collapse
|
40
|
You Y, Li Q, Zhang YP, Zhao JQ, Wang ZH, Yuan WC. Advances in Palladium‐Catalyzed Decarboxylative Cycloadditions of Cyclic Carbonates, Carbamates and Lactones. ChemCatChem 2022. [DOI: 10.1002/cctc.202101887] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yong You
- Chengdu University Innovation Research Center of Chiral Drugs, Institute for Advanced Study 610106 Chengdu CHINA
| | - Qun Li
- Chengdu University of Technology College of Materials and Chemistry & Chmical Engineering Chengdu CHINA
| | - Yan-Ping Zhang
- Chengdu University Innovation Research Center of Chiral Drugs, Institute for Advanced Study 610106 Chengdu CHINA
| | - Jian-Qiang Zhao
- Chengdu University Innovation Research Center of Chiral Drugs, Institute for Advanced Study 610106 Chengdu CHINA
| | - Zhen-Hua Wang
- Chengdu University Innovation Research Center of Chiral Drugs, Institute for Advanced Study 610106 Chengdu CHINA
| | - Wei-Cheng Yuan
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences National Engineering Research Center of Chiral Drugs Renmin South Road Block 4, No. 9 610041 Chengdu CHINA
| |
Collapse
|
41
|
Xie H, Yang Z, Tang L, Han Z, Sun J, Huang H. Construction of nine-membered N,N,O-heterocycles via Pd-catalyzed [6+3] dipolar cycloaddition. Chem Commun (Camb) 2022; 58:10560-10563. [DOI: 10.1039/d2cc03666e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new approach for the synthesis of 9-membered N,N,O-heterocycles by Pd-catalyzed [6+3] dipolar cycloaddition of N-iminoisoquinolinium ylides and 2-vinyl oxetanes has been developed.
Collapse
Affiliation(s)
- Hongling Xie
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, China
| | - Zhenkun Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, China
| | - Luning Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, China
| | - Zhengyu Han
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, China
| | - Jianwei Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, China
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, China
| |
Collapse
|
42
|
Wang Y, Xu Y, Khan S, Zhang Z, Khan A. Selective approach to N-substituted tertiary 2-pyridones. NEW J CHEM 2022. [DOI: 10.1039/d2nj01065h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Commercially available 2-hydroxypyridines are converted into enantiomerically enriched allylic 2-pyridones with elusive N-substituted tertiary carbon by means of Pd-catalyzed allylic amination of vinyl cyclic carbonates.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemistry, School of Chemistry, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium and Modulation of Condensed Matter, Xi’an Jiao Tong University, Xi’an, 710049, P. R. China
| | - Yaoyao Xu
- Department of Chemistry, School of Chemistry, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium and Modulation of Condensed Matter, Xi’an Jiao Tong University, Xi’an, 710049, P. R. China
| | - Shahid Khan
- Department of Chemistry, School of Chemistry, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium and Modulation of Condensed Matter, Xi’an Jiao Tong University, Xi’an, 710049, P. R. China
| | - Zhunjie Zhang
- Department of Chemistry, School of Chemistry, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium and Modulation of Condensed Matter, Xi’an Jiao Tong University, Xi’an, 710049, P. R. China
| | - Ajmal Khan
- Department of Chemistry, School of Chemistry, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium and Modulation of Condensed Matter, Xi’an Jiao Tong University, Xi’an, 710049, P. R. China
| |
Collapse
|
43
|
Transition-metal-catalyzed switchable divergent cycloaddition of para-quinone methides and vinylethylene carbonates: Access to different sized medium-sized heterocycles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
44
|
Fan Y, Li QZ, Li JL, Zhang B, Dai Z, Xie K, Zeng R, Zou L, Zhang X. Palladium-catalysed stereoselective [3 + 2] annulation of vinylethylene carbonates and tryptanthrin-based ketones. Org Chem Front 2022. [DOI: 10.1039/d1qo01543e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The first example of palladium-catalysed [3 + 2] annulation of VECs and ketones has been developed, allowing the efficient synthesis of indoloquinazolinones in generally excellent yields with good stereoselectivity.
Collapse
Affiliation(s)
- Yang Fan
- College of Pharmacy, Dali University, Dali 671003, PR China
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Qing-Zhu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Jun-Long Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Bin Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Zhen Dai
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Ke Xie
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Rong Zeng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Xiang Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| |
Collapse
|
45
|
He XH, Fu XJ, Zhan G, Zhang N, Li X, Zhu HP, Peng C, He G, Han B. Organocatalytic asymmetric synthesis of multifunctionalized α-carboline-spirooxindole hybrids that suppressed proliferation in colorectal cancer cells. Org Chem Front 2022. [DOI: 10.1039/d1qo01785c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An asymmetric organocatalytic cascade reaction has been reported for the rapid assembly of multifunctionalized α-carboline-spirooxindole hybrids, which suppressed proliferation in colorectal cancer cells.
Collapse
Affiliation(s)
- Xiang-Hong He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xue-Ju Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Biotherapy and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Gu He
- State Key Laboratory of Biotherapy and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
46
|
Ferroptosis in Non-Small Cell Lung Cancer: Progression and Therapeutic Potential on It. Int J Mol Sci 2021; 22:ijms222413335. [PMID: 34948133 PMCID: PMC8704137 DOI: 10.3390/ijms222413335] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/28/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022] Open
Abstract
As a main subtype of lung cancer, the current situation of non-small cell lung cancer (NSCLC) remains severe worldwide with a 19% survival rate at 5 years. As the conventional therapy approaches, such as chemotherapy, radiotherapy, targeted therapy, and immunotherapy, gradually develop into therapy resistance, searching for a novel therapeutic strategy for NSCLC is urgent. Ferroptosis, an iron-dependent programmed necrosis, has now been widely considered as a key factor affecting the tumorigenesis and progression in various cancers. Focusing on its effect in NSCLC, in different situations, ferroptosis can be triggered or restrained. When ferroptosis was induced in NSCLC, it was available to inhibit the tumor progression both in vitro and in vivo. The dominating mechanism was due to a regulation of the classic ferroptosis-repressed GSH-dependent GPX4 signaling pathway instead of other fractional regulating signal axes that regulated ferroptosis via impacting on the ROS, cellular iron levels, etc. In terms of the prevention of ferroptosis in NSCLC, an GSH-independent mechanism was also discovered, interestingly exhibiting the same upstream as the GPX4 signaling. In addition, this review summarizes the progression of ferroptosis in NSCLC and elaborates their association and specific mechanisms through bioinformatics analysis with multiple experimental evidence from different cascades. Finally, this review also points out the possibility of ferroptosis working as a novel strategy for therapy resistance in NSCLC, emphasizing its therapeutic potential.
Collapse
|
47
|
Chen Z, Chen ZC, Du W, Chen YC. Asymmetric [4 + 3] Annulations for Constructing Divergent Oxepane Frameworks via Cooperative Tertiary Amine/Transition Metal Catalysis. Org Lett 2021; 23:8559-8564. [PMID: 34699235 DOI: 10.1021/acs.orglett.1c03279] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report asymmetric [4 + 3] annulations between isatin-derived Morita-Baylis-Hillman carbonates and two types of vinyl carbonates synergistically catalyzed by tertiary amines and transition metals, through chemoselective assemblies of in situ formed allylic ylides and metal-containing 1,4-dipoles. A range of oxepane frameworks are generally constructed in moderate to good yields with high stereocontrol. Moreover, all four diastereomers for the products bearing vicinal stereocenters are accessible by tuning tertiary amine and metal catalysts.
Collapse
Affiliation(s)
- Zhi Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhi-Chao Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.,College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China
| |
Collapse
|
48
|
Yan J, Qiu P, Zhang X, Zhang Y, Mi L, Peng C, Pan X, Peng F. Biochanin A from Chinese Medicine: An Isoflavone with Diverse Pharmacological Properties. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:1623-1643. [PMID: 34530697 DOI: 10.1142/s0192415x21500750] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Biochanin A (BCA) is a dietary isoflavone, isolated from the leaves and stems of Trifolium pratense L and many other herbs of Chinese medicine. Recent findings indicated BCA as a promising drug candidate with diverse bioactive effects. On the purpose of evaluating the possibility of BCA in clinical application, this review is trying to provide a comprehensive summary of the pharmacological actions of BCA. The publications collected from PubMed, ScienceDirect, and Wiley databases were summarized for the last 10 years. Then, the potential therapeutic use of BCA on the treatment of various diseases was discussed according to its pharmacological properties, namely, anticancer, anti-inflammatory, anti-bacterial, anti-diabetic, and anti-obesity effects as well as neuroprotective, hepatoprotective, cardioprotective, and osteoprotective effects. BCA might mainly regulate the MAPK, PI3K, NRF2, and NF-kB pathways, respectively, to exert its bioactive effects. However, the limited definitive targets, poor biological availability, and insufficient safety evaluation might block the clinical application of BCA. This review may provide new insights for the development of BCA in the application of related diseases.
Collapse
Affiliation(s)
- Jia Yan
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery, System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced, Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Panda Qiu
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery, System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced, Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Xinyu Zhang
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery, System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced, Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Yuanyuan Zhang
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery, System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced, Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Linjing Mi
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery, System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced, Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, P. R. China
| | - Xiaoqi Pan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, P. R. China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery, System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced, Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
49
|
Yan RJ, Liu BX, Hu Y, Du W, Chen YC. Generation of zwitterionic trifluoromethyl N-allylic ylides and their use in switchable divergent annulations. Chem Commun (Camb) 2021; 57:9056-9059. [PMID: 34498623 DOI: 10.1039/d1cc03830c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The previously unreported zwitterionic N-allylic ylide species from the corresponding Morita-Baylis-Hillman carbonates of trifluoromethyl ketones and acrylonitrile are generated under the catalysis of cinchona-derived tertiary amines, and subsequently participate in switchable asymmetric [3+2] or [4+1] annulations with 1-azadienes in chemo-, regio-, and stereodivergent manners via catalyst or substrate control. A diverse range of frameworks, having a trifluoromethylated all-carbon quaternary stereogenic centre or a tetrasubstituted alkene moiety, are generally constructed in good yields with excellent enantioselectivity.
Collapse
Affiliation(s)
- Ru-Jie Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Bao-Xin Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Yuan Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China. .,College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China
| |
Collapse
|
50
|
Huang QW, Qi T, Liu Y, Zhang X, Li QZ, Gou C, Tao YM, Leng HJ, Li JL. Lewis Acid/Brønsted Base-Assisted Palladium Catalysis: Stereoselective Construction of Skeletally Diverse Spiro-Ketolactams from Vinylethylene Carbonates. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01724] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Qian-Wei Huang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Ting Qi
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yue Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Xiang Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Qing-Zhu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Chuan Gou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Ying-Mao Tao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Hai-Jun Leng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jun-Long Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| |
Collapse
|