1
|
Eswaran P, Mishra S. Synchronized rotations of active particles on chemical substrates. SOFT MATTER 2024; 20:2592-2599. [PMID: 38416156 DOI: 10.1039/d3sm00452j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Many microorganisms use chemical 'signaling' - a quintessential self-organizing strategy in non-equilibrium - that can induce spontaneous aggregation and coordinated motion. Using synthetic signaling as a design principle, we construct a minimal model of active Brownian particles (ABPs) having soft repulsive interactions on a chemically quenched patterned substrate. The interplay between chemo-phoretic interactions and activity is numerically investigated for a proposed variant of the Keller-Segel model for chemotaxis. Such competition not only results in a chemo-motility-induced phase-separated state, but also results in a new cohesive clustering phase with synchronized rotations. Our results suggest that rotational order can emerge in systems by virtue of activity and repulsive interactions alone without an explicit alignment interaction. These rotations can also be exploited by designing mechanical devices that can generate reorienting torques using active particles.
Collapse
Affiliation(s)
- Pathma Eswaran
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| | - Shradha Mishra
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| |
Collapse
|
2
|
Maleki F, Najafi A. Instabilities in a growing system of active particles: scalar and vectorial systems. SOFT MATTER 2023; 19:8157-8163. [PMID: 37850327 DOI: 10.1039/d3sm00880k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
The physics of micron-scale biological colonies usually benefits from different out-of-equilibrium sources. In bacterial colonies and cellular tissues, the growth process is among the important active sources that determine the dynamics. In this article, we study the generic dynamical instabilities associated with the growth phenomena that may arise in both scalar and vectorial systems. In vectorial systems, where the rotational degrees of particles play a role, a phenomenological growth-mediated torque can affect the rotational dynamics of individual particles. We show that such a growth-mediated torque can result in active traveling waves in the bulk of a growing system. In addition to the bulk properties, we analyze the instabilities in the shape of growing interfaces in both scalar and vectorial systems.
Collapse
Affiliation(s)
- Forouh Maleki
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Ali Najafi
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences, Zanjan, Iran.
| |
Collapse
|
3
|
Fadda F, Matoz-Fernandez DA, van Roij R, Jabbari-Farouji S. The interplay between chemo-phoretic interactions and crowding in active colloids. SOFT MATTER 2023; 19:2297-2310. [PMID: 36857712 PMCID: PMC10053041 DOI: 10.1039/d2sm00957a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Many motile microorganisms communicate with each other and their environments via chemical signaling which leads to long-range interactions mediated by self-generated chemical gradients. However, consequences of the interplay between crowding and chemotactic interactions on their collective behavior remain poorly understood. In this work, we use Brownian dynamics simulations to investigate the effect of packing fraction on the formation of non-equilibrium structures in a monolayer of diffusiophoretic self-propelled colloids as a model for chemically active particles. Focusing on the case when a chemical field induces attractive positional and repulsive orientational interactions, we explore dynamical steady-states of active colloids of varying packing fractions and degrees of motility. In addition to collapsed, active gas, and dynamical clustering steady-states reported earlier for low packing fractions, a new phase-separated state emerges. The phase separation results from a competition between long-range diffusiophoretic interactions and motility and is observed at moderate activities and a wide range of packing fractions. Our analysis suggests that the fraction of particles in the largest cluster is a suitable order parameter for capturing the transition from an active gas and dynamical clustering states to a phase-separated state.
Collapse
Affiliation(s)
- Federico Fadda
- Institute of Physics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands.
| | - Daniel A Matoz-Fernandez
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland.
| | - René van Roij
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, Utrecht 3584 CC, The Netherlands.
| | - Sara Jabbari-Farouji
- Institute of Physics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Bhattacharjee T, Amchin DB, Alert R, Ott JA, Datta SS. Chemotactic smoothing of collective migration. eLife 2022; 11:e71226. [PMID: 35257660 PMCID: PMC8903832 DOI: 10.7554/elife.71226] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 01/24/2022] [Indexed: 12/24/2022] Open
Abstract
Collective migration-the directed, coordinated motion of many self-propelled agents-is a fascinating emergent behavior exhibited by active matter with functional implications for biological systems. However, how migration can persist when a population is confronted with perturbations is poorly understood. Here, we address this gap in knowledge through studies of bacteria that migrate via directed motion, or chemotaxis, in response to a self-generated nutrient gradient. We find that bacterial populations autonomously smooth out large-scale perturbations in their overall morphology, enabling the cells to continue to migrate together. This smoothing process arises from spatial variations in the ability of cells to sense and respond to the local nutrient gradient-revealing a population-scale consequence of the manner in which individual cells transduce external signals. Altogether, our work provides insights to predict, and potentially control, the collective migration and morphology of cellular populations and diverse other forms of active matter.
Collapse
Affiliation(s)
- Tapomoy Bhattacharjee
- The Andlinger Center for Energy and the Environment, Princeton UniversityPrincetonUnited States
| | - Daniel B Amchin
- Department of Chemical and Biological Engineering, Princeton UniversityPrincetonUnited States
| | - Ricard Alert
- Lewis-Sigler Institute for Integrative Genomics, Princeton UniversityPrincetonUnited States
- Princeton Center for Theoretical Science, Princeton UniversityPrincetonUnited States
| | - Jenna Anne Ott
- Department of Chemical and Biological Engineering, Princeton UniversityPrincetonUnited States
| | - Sujit Sankar Datta
- Department of Chemical and Biological Engineering, Princeton UniversityPrincetonUnited States
| |
Collapse
|
5
|
Nejad MR, Yeomans JM. Active Extensile Stress Promotes 3D Director Orientations and Flows. PHYSICAL REVIEW LETTERS 2022; 128:048001. [PMID: 35148135 DOI: 10.1103/physrevlett.128.048001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/21/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
We use numerical simulations and linear stability analysis to study an active nematic layer where the director is allowed to point out of the plane. Our results highlight the difference between extensile and contractile systems. Contractile stress suppresses the flows perpendicular to the layer and favors in-plane orientations of the director. By contrast extensile stress promotes instabilities that can turn the director out of the plane, leaving behind a population of distinct, in-plane regions that continually elongate and divide. This supports extensile forces as a mechanism for the initial stages of layer formation in living systems, and we show that a planar drop with extensile (contractile) activity grows into three dimensions (remains in two dimensions). The results also explain the propensity of disclination lines in three dimensional active nematics to be of twist type in extensile or wedge type in contractile materials.
Collapse
Affiliation(s)
- Mehrana R Nejad
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Julia M Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
6
|
Wang Q, Wu H. Mathematical modeling of chemotaxis guided amoeboid cell swimming. Phys Biol 2021; 18. [PMID: 33853049 DOI: 10.1088/1478-3975/abf7d8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/14/2021] [Indexed: 01/15/2023]
Abstract
Cells and microorganisms adopt various strategies to migrate in response to different environmental stimuli. To date, many modeling research has focused on the crawling-basedDictyostelium discoideum(Dd) cells migration induced by chemotaxis, yet recent experimental results reveal that even without adhesion or contact to a substrate, Dd cells can still swim to follow chemoattractant signals. In this paper, we develop a modeling framework to investigate the chemotaxis induced amoeboid cell swimming dynamics. A minimal swimming system consists of one deformable Dd amoeboid cell and a dilute suspension of bacteria, and the bacteria produce chemoattractant signals that attract the Dd cell. We use themathematical amoeba modelto generate Dd cell deformation and solve the resulting low Reynolds number flows, and use a moving mesh based finite volume method to solve the reaction-diffusion-convection equation. Using the computational model, we show that chemotaxis guides a swimming Dd cell to follow and catch bacteria, while on the other hand, bacterial rheotaxis may help the bacteria to escape from the predator Dd cell.
Collapse
Affiliation(s)
- Qixuan Wang
- Department of Mathematics, University of California, Riverside, CA, United States of America.,Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, United States of America
| | - Hao Wu
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, United States of America
| |
Collapse
|
7
|
|
8
|
Nan H, Zheng Y, Lin YH, Chen S, Eddy CZ, Tian J, Xu W, Sun B, Jiao Y. Absorbing-active transition in a multi-cellular system regulated by a dynamic force network. SOFT MATTER 2019; 15:6938-6945. [PMID: 31432887 DOI: 10.1039/c9sm01244c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Collective cell migration in 3D extracellular matrix (ECM) is crucial to many physiological and pathological processes. Migrating cells can generate active pulling forces via actin filament contraction, which are transmitted to the ECM fibers and lead to a dynamically evolving force network in the system. Here, we elucidate the role of this force network in regulating collective cell behaviors using a minimal active-particle-on-network (APN) model, in which active particles can pull the fibers and hop between neighboring nodes of the network following local durotaxis. Our model reveals a dynamic transition as the particle number density approaches a critical value, from an "absorbing" state containing isolated stationary small particle clusters, to an "active" state containing a single large cluster undergoing constant dynamic reorganization. This reorganization is dominated by a subset of highly dynamic "radical" particles in the cluster, whose number also exhibits a transition at the same critical density. The transition is underlaid by the percolation of "influence spheres" due to the particle pulling forces. Our results suggest a robust mechanism based on ECM-mediated mechanical coupling for collective cell behaviors in 3D ECM.
Collapse
Affiliation(s)
- Hanqing Nan
- Materials Science and Engineering, Arizona State University, Tempe, AZ 85287, USA.
| | - Yu Zheng
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Yiheng H Lin
- Materials Science and Engineering, Arizona State University, Tempe, AZ 85287, USA. and Shenzhen Middle School, Shenzhen 518001, P. R. China
| | - Shaohua Chen
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 Bus 2450, Leuven, Belgium
| | - Christopher Z Eddy
- Department of Physics, Oregon State University, Corvallis, OR 97331, USA.
| | - Jianxiang Tian
- Materials Science and Engineering, Arizona State University, Tempe, AZ 85287, USA. and Department of Physics, Qufu Normal University, Qufu 273165, P. R. China
| | - Wenxiang Xu
- Materials Science and Engineering, Arizona State University, Tempe, AZ 85287, USA. and College of Mechanics and Materials, Hohai University, Nanjing 211100, P. R. China.
| | - Bo Sun
- Department of Physics, Oregon State University, Corvallis, OR 97331, USA.
| | - Yang Jiao
- Materials Science and Engineering, Arizona State University, Tempe, AZ 85287, USA. and Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
9
|
Alarcon F, Navarro-Argemí E, Valeriani C, Pagonabarraga I. Orientational order and morphology of clusters of self-assembled Janus swimmers. Phys Rev E 2019; 99:062602. [PMID: 31330735 DOI: 10.1103/physreve.99.062602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Indexed: 06/10/2023]
Abstract
Due to the combined effect of anisotropic interactions and activity, Janus swimmers are capable to self-assemble in a wide variety of structures, many more than their equilibrium counterpart. This might lead to the development of novel active materials capable of performing tasks without any central control. Their potential application in designing such materials endows trying to understand the fundamental mechanism in which these swimmers self-assemble. In the present work, we study a quasi-two-dimensional semidilute suspensions of two classes of amphiphilic spherical swimmers whose direction of motion can be tuned: either swimmers propelling in the direction of the hydrophobic patch or swimmers propelling in the opposite direction (toward the hydrophilic side). In both systems we have systematically tuned swimmers' hydrophobic strength and signature and observed that the anisotropic interactions, characterized by the angular attractive potential and its interaction range, in competition with the active stress, pointing toward or against the attractive patch gives rise to a rich aggregation phenomenology.
Collapse
Affiliation(s)
- Francisco Alarcon
- Departamento de Estructura de la Materia, Física Térmica y Electrónica and GISC, Universidad Complutense de Madrid 28040 Madrid, Spain
| | - Eloy Navarro-Argemí
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, C. Martí Franqués 1, 08028 Barcelona, Spain
- University of Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Chantal Valeriani
- Departamento de Estructura de la Materia, Física Térmica y Electrónica and GISC, Universidad Complutense de Madrid 28040 Madrid, Spain
| | - Ignacio Pagonabarraga
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, C. Martí Franqués 1, 08028 Barcelona, Spain
- University of Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, 08028 Barcelona, Spain
- CECAM, Centre Européen de Calcul Atomique et Moléculaire, École Polytechnique Fédérale de Lasuanne, Batochime, Avenue Forel 2, 1015 Lausanne, Switzerland
| |
Collapse
|