1
|
Lu Z, Chen X, Wang C, Luo X, Wu X, Zhao X, Xiao S. Self-Assembled Nanocomposite DOX/TPOR 4@CB[7] 4 for Enhanced Synergistic Photodynamic Therapy and Chemotherapy in Neuroblastoma. Pharmaceutics 2024; 16:822. [PMID: 38931942 PMCID: PMC11207937 DOI: 10.3390/pharmaceutics16060822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
DOX/TPOR4@CB[7]4 was synthesized via self-assembly, and its physicochemical properties and ability to generate reactive oxygen species (ROS) were evaluated. The impact of photodynamic therapy on SH-SY5Y cells was assessed using the MTT assay, while flow cytometry analysis was employed to detect cell apoptosis. Confocal laser scanning microscopy was utilized to observe the intracellular distribution of DOX/TPOR4@CB[7]4 in SH-SY5Y cells. Additionally, fluorescence imaging of DOX/TPOR4@CB[7]4 in nude mice bearing SH-SY5Y tumors and examination of the combined effects of photodynamic and chemical therapies were conducted. The incorporation of CB[7] significantly enhanced the optical properties of DOX/TPOR4@CB[7]4, resulting in increased ROS production and pronounced toxicity towards SH-SY5Y cells. Moreover, both the apoptotic and mortality rates exhibited significant elevation. In vivo experiments demonstrated that tumor growth inhibition was most prominent in the DOX/TPOR4@CB[7]4 group. π-π interactions facilitated the binding between DOX and photosensitizer TPOR, with TPOR's naphthalene hydrophilic groups encapsulated within CB[7]'s cavity through host-guest interactions with CB[7]. Therefore, CB[7] can serve as a nanocarrier to enhance the combined application of chemical therapy and photodynamic therapy, thereby significantly improving treatment efficacy against neuroblastoma tumors.
Collapse
Affiliation(s)
- Zhouxia Lu
- Department of Chemistry, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China; (Z.L.); (X.C.); (C.W.); (X.L.); (X.W.)
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Xu Chen
- Department of Chemistry, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China; (Z.L.); (X.C.); (C.W.); (X.L.); (X.W.)
| | - Conghui Wang
- Department of Chemistry, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China; (Z.L.); (X.C.); (C.W.); (X.L.); (X.W.)
| | - Xuelian Luo
- Department of Chemistry, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China; (Z.L.); (X.C.); (C.W.); (X.L.); (X.W.)
| | - Xiaohan Wu
- Department of Chemistry, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China; (Z.L.); (X.C.); (C.W.); (X.L.); (X.W.)
| | - Xing Zhao
- Tumor Immunotherapy Technology Engineering Research Center, Guizhou Medical University, Guiyang 5500025, China;
| | - Song Xiao
- Department of Chemistry, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China; (Z.L.); (X.C.); (C.W.); (X.L.); (X.W.)
- Tumor Immunotherapy Technology Engineering Research Center, Guizhou Medical University, Guiyang 5500025, China;
| |
Collapse
|
2
|
Sun XR, Yang HP, Zhang W, Zhang S, Hu JH, Liu M, Zeng X, Li Q, Redshaw C, Tao Z, Xiao X. Supramolecular Room-Temperature Phosphorescent Hydrogel Based on Hexamethyl Cucurbit[5]uril for Cell Imaging. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4668-4676. [PMID: 36640109 DOI: 10.1021/acsami.2c17891] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The host-guest interaction between hexamethyl cucurbit[5]uril (HmeQ[5]) and 1,4-diaminobenzene (DB) was investigated, and a new low-molecular-weight supramolecular gel was prepared by a simple heating/mixing cooling method. The structure and properties of the supramolecular gel were characterized. Results revealed that DB molecules did not enter the cavity of HmeQ[5] and that hydrogen bonding between the carbonyl group at the HmeQ[5] port and the DB amino groups, together with dipole-dipole interactions and outer wall interactions, were the main driving forces for the formation of the supramolecular gel. The HmeQ[5]/DB gel system exhibits temperature sensitivity. The phosphor 6-bromo-2-naphthol (BrNp) was embedded in the gel to give the gel fluorescent phosphorescence double emission. The double emission ability at room temperature can be attributed to the ordered microstructure of the supramolecular gel, which effectively avoids the nonradiative transition of BrNp. Meanwhile, HmeQ[5]/DB-BrNp has good biocompatibility and low biotoxicity, which is compatible with HeLa cells to achieve cytoplasmic staining of HeLa in the red channel. The supramolecular gels constructed by this supramolecular assembly strategy not only have good temperature sensitivity but also extend the application of Q[n]s in biomedical fields.
Collapse
Affiliation(s)
- Xi-Ran Sun
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Hai-Ping Yang
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Wei Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Shuai Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Jian-Hang Hu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Ming Liu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Xi Zeng
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Qiu Li
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull, Hull HU6 7RX, U.K
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Applied Chemistry, Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Dai X, Huo M, Zhang B, Liu Z, Liu Y. Folic Acid-Modified Cyclodextrin Multivalent Supramolecular Assembly for Photodynamic Therapy. Biomacromolecules 2022; 23:3549-3559. [PMID: 35921592 DOI: 10.1021/acs.biomac.2c00276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The construction of supramolecular multivalent assemblies with unique photoluminescence behaviors and biological functions has become a research hot spot recently in the biomaterial field. Herein, we report an adaptive supramolecular assembly via a multivalent co-assembly strategy prepared in two stages by using an adamantane-connected pyrenyl pyridinium derivative (APA2), sulfonated aluminum phthalocyanine (PcS), and folic acid-modified β-cyclodextrin (FA-CD) for efficient dual-organelle targeted photodynamic cancer cell ablation. Benefiting from π-π and electrostatic interactions, APA2 and PcS could first assemble into non-fluorescent irregular nanoaggregates because of the heterodimer aggregation-induced quenching and then secondarily assemble with FA-CD to afford targeted spherical nanoparticles (NPs) with an average diameter of around 50 nm, which could be specifically taken up by HeLa cancer cells through endocytosis in comparison with 293T normal cells. Intriguingly, such multivalent NPs could adaptively disaggregate in an intracellular physiological environment of cancer cells and further respectively and selectively accumulate in mitochondria and lysosomes, which not only displayed near-infrared two-organelle localization in situ but also aroused efficient singlet oxygen generation under light irradiation to effectively eliminate cancer cells up to 99%. This supramolecular multivalent assembly with an adaptive feature in a specific cancer cell environment provides a feasible strategy for precise organelle-targeted imaging and an efficiently synergetic photodynamic effect in situ for cancer cell ablation.
Collapse
Affiliation(s)
- Xianyin Dai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Man Huo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Bing Zhang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300071, P. R. China
| | - Zhixue Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Nie H, Wei Z, Ni XL, Liu Y. Assembly and Applications of Macrocyclic-Confinement-Derived Supramolecular Organic Luminescent Emissions from Cucurbiturils. Chem Rev 2022; 122:9032-9077. [PMID: 35312308 DOI: 10.1021/acs.chemrev.1c01050] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cucurbit[n]urils (Q[n]s or CB[n]s), as a classical of artificial organic macrocyclic hosts, were found to have excellent advantages in the fabricating of tunable and smart organic luminescent materials in aqueous media and the solid state with high emitting efficiency under the rigid pumpkin-shaped structure-derived macrocyclic-confinement effect in recent years. This review aims to give a systematically up-to-date overview of the Q[n]-based supramolecular organic luminescent emissions from the confined spaces triggered host-guest complexes, including the assembly fashions and the mechanisms of the macrocycle-based luminescent complexes, as well as their applications. Finally, challenges and outlook are provided. Since this class of Q[n]-based supramolecular organic luminescent emissions, which have essentially derived from the cavity-dependent confinement effect and the resulting assembly fashions, emerged only a few years ago, we hope this review will provide valuable information for the further development of macrocycle-based light-emitting materials and other related research fields.
Collapse
Affiliation(s)
- Haigen Nie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Zhen Wei
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Xin-Long Ni
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China.,Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Chen J, Gao T, Chang Y, Wei Y, Wang Y. Supramolecular complexation between cucurbit[7]uril and folate and analytical applications. JOURNAL OF CHEMICAL RESEARCH 2021. [DOI: 10.1177/17475198211066489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Folate (FA) plays a key role in the biosynthesis of amino acids, purines, and pyrimidines in the human body, and intracellular folate metabolism has become an attractive target of tumor chemotherapy. In this work, an inclusion interaction was found between FA and cucurbit[7]uril (CB[7]), and the formation of a CB[7]-FA 2:1 supramolecular inclusion complex was confirmed by fluorescence spectra, UV-Vis absorption spectroscopy, 1H NMR, and molecular modeling calculations. In addition, FA is generally determined through the indirect fluorescent method because it shows weak fluorescence in aqueous solution. Therefore, a simple, direct fluorescence probe method for rapidly measuring FA was investigated, and the linear equation of FA was ΔF = 14.691C + 37.366 within the concentration ranges of 0.82 ~ 18.31 µg mL–1. The proposed direct fluorescence method was applied to the determination of spiked plasma. We demonstrated that this method could provide an experimental basis for the targeted administration of the CB[7]-FA complex, and it could be extended as a promising fluorescence detection method for drugs in vivo.
Collapse
Affiliation(s)
- Jue Chen
- Shanxi University of Chinese Medicine, Taiyuan, P.R. China
| | - Tengmei Gao
- Shanxi University of Chinese Medicine, Taiyuan, P.R. China
| | - Yinxia Chang
- Shanxi University of Chinese Medicine, Taiyuan, P.R. China
| | - Yanming Wei
- Shanxi University of Chinese Medicine, Taiyuan, P.R. China
| | - Yonghui Wang
- Shanxi University of Chinese Medicine, Taiyuan, P.R. China
| |
Collapse
|
6
|
Dai N, Qi R, Zhao H, Liu L, Lv F, Wang S. Supramolecular Regulation of Catalytic Activity for an Amphiphilic Pyrene-Ruthenium Complex in Water. Chemistry 2021; 27:11567-11573. [PMID: 34060163 DOI: 10.1002/chem.202101668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Indexed: 11/06/2022]
Abstract
A switchable catalytic system has been designed and constructed with a host-guest interaction between cucurbituril (CB) and an amphiphilic metal complex pyrene-ruthenium (Py-Ru). Py-Ru can self-assemble into positively charged nanoparticles in water, and exhibits an enhanced catalytic efficiency in the transfer hydrogenation of NAD+ to NADH. After forming an inclusion complex with CB, Py-Ru aggregates are broken, leading to a decrease in catalytic efficiency, which can be recovered by competitive replacement with amantadine. This supramolecular strategy provides an efficient and flexible method for constructing reversible catalytic system, which also extends the application scope of the host-guest interaction.
Collapse
Affiliation(s)
- Nan Dai
- Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ruilian Qi
- Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hao Zhao
- Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Libing Liu
- Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Fengting Lv
- Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shu Wang
- Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
7
|
Supramolecular nano drug delivery systems mediated via host-guest chemistry of cucurbit[n]uril (n = 6 and 7). CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.04.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Liu Y, Zhang Y, Yu H, Liu Y. Cucurbituril‐Based Biomacromolecular Assemblies. Angew Chem Int Ed Engl 2020; 60:3870-3880. [DOI: 10.1002/anie.202009797] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Yao‐Hua Liu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Ying‐Ming Zhang
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Hua‐Jiang Yu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Yu Liu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
9
|
Affiliation(s)
- Yao‐Hua Liu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Ying‐Ming Zhang
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Hua‐Jiang Yu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Yu Liu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
10
|
Ai Q, Fu Q, Liang F. pH-Mediated Single Molecule Conductance of Cucurbit[7]uril. Front Chem 2020; 8:736. [PMID: 33195012 PMCID: PMC7477741 DOI: 10.3389/fchem.2020.00736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/16/2020] [Indexed: 11/13/2022] Open
Abstract
Recognition tunneling technique owns the capability for investigating and characterizing molecules at single molecule level. Here, we investigated the conductance value of cucurbit[7]uril (CB[7]) and melphalan@CB[7] (Mel@CB[7]) complex molecular junctions by using recognition tunneling technique. The conductances of CB[7] and Mel@CB[7] with different pH values were studied in aqueous media as well as organic solvent. Both pH value and guest molecule have an impact on the conductance of CB[7] molecular junction. The conductances of CB[7] and Mel@CB[7] both showed slightly difference on the conductance under different measurement systems. This work extends the molecular conductance measurement to aqueous media and provides new insights of pH-responsive host-guest system for single molecule detection through electrical measurements.
Collapse
Affiliation(s)
- Qiushuang Ai
- The State Key Laboratory for Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Qiang Fu
- Jiangxi College of Traditional Chinese Medicine, Fuzhou, China
| | - Feng Liang
- The State Key Laboratory for Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Ai Q, Jin L, Gong Z, Liang F. Observing Host-Guest Interactions at Molecular Interfaces by Monitoring the Electrochemical Current. ACS OMEGA 2020; 5:10581-10585. [PMID: 32426616 PMCID: PMC7227043 DOI: 10.1021/acsomega.0c01077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/21/2020] [Indexed: 05/08/2023]
Abstract
Macrocyclic cucurbit[n]uril (CB[n]) molecules have triggered renewed interest because of their outstanding capabilities as host molecules to selectively interact with a wide range of small guest molecules. Here, CB[7]-based host-guest interactions were investigated for a guest-modified nanoelectrode by monitoring the electrochemical current. A ferrocene (Fc)-terminated molecule immobilized on a gold nanoelectrode (GNE) showed suitable affinity with CB[7] when the effective exposing area of the GNE was between 5.3 and 12 μm2 and the bias applied on the GNE was -500 mV. Monitoring the dynamics of nanoparticles (NPs) on a nanoelectrode provides new insights into the host-guest interactions at molecular interfaces.
Collapse
|
12
|
Guo H, Zhang R, Han Y, Wang J, Yan C. A p-tert-Tutyldihomooxacalix[4]arene Based Soft Gel for Sustained Drug Release in Water. Front Chem 2020; 8:33. [PMID: 32181237 PMCID: PMC7059609 DOI: 10.3389/fchem.2020.00033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/09/2020] [Indexed: 12/15/2022] Open
Abstract
P-tert-butyldihomooxacalix[4]arene is a well-known calix[4]arene analog in which one CH2 bridge is replaced by one -O- group. Thus, dihomooxacalix[4]arene has a slightly larger cavity than that of calix[4]arene and usually possesses a more flexible cone conformation, and the bridged oxygen atom might provide additional binding sites. Here, we synthesized a new functional p-tert-butyldihomooxacalix[4]arene 1 through Ugi reaction with good yield (70%), starting from condensed p-tert-butyldihomooxacalix[4]arene O-alkoxy-substituted benzaldehydes, benzoic acid, benzylamine, and cyclohexyl isocyanide. Proton nuclear magnetic resonance spectroscopy (1H NMR), 13C NMR, IR, and diffusion-ordered 1H NMR spectroscopy (DOSY) methods were used to characterize the structure of 1. Then soft gel was prepared by adding 1 into cyclohexane directly. It shows remarkable thermoreversibility and can be demonstrated for several cycles. As is revealed by scanning electron microscopy (SEM) images, xerogel showed highly interconnected and homogeneous porous network structures, and hence, the gel is suitable for storage and controlled release.
Collapse
Affiliation(s)
- Hao Guo
- School of Chemistry and Chemical Engineer, Yangzhou University, Yangzhou, China.,School of Chemistry and Chemical Engineer, Nantong University, Nantong, China
| | - Runmiao Zhang
- School of Chemistry and Chemical Engineer, Yangzhou University, Yangzhou, China.,School of Chemistry and Chemical Engineer, Nantong University, Nantong, China
| | - Ying Han
- School of Chemistry and Chemical Engineer, Yangzhou University, Yangzhou, China
| | - Jin Wang
- School of Chemistry and Chemical Engineer, Nantong University, Nantong, China
| | - Chaoguo Yan
- School of Chemistry and Chemical Engineer, Yangzhou University, Yangzhou, China
| |
Collapse
|
13
|
Yang K, Zhang Z, Du J, Li W, Pei Z. Host–guest interaction based supramolecular photodynamic therapy systems: a promising candidate in the battle against cancer. Chem Commun (Camb) 2020; 56:5865-5876. [DOI: 10.1039/d0cc02001j] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This article summarizes recent advances in the development of supramolecular photodynamic therapy based on host–guest interactions.
Collapse
Affiliation(s)
- Kui Yang
- Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Key Laboratory of Chemical Biology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| | - Zhihua Zhang
- Chimie ParisTech
- PSL University
- CNRS
- Institut de Recherche de Chimie Paris
- 75231 Paris
| | - Jie Du
- Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Key Laboratory of Chemical Biology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| | - Wei Li
- Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Key Laboratory of Chemical Biology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| |
Collapse
|