1
|
Choi JH, Haizan I, Choi JW. Recent advances in two-dimensional materials for the diagnosis and treatment of neurodegenerative diseases. DISCOVER NANO 2024; 19:151. [PMID: 39289310 PMCID: PMC11408446 DOI: 10.1186/s11671-024-04099-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
With the size of the aging population increasing worldwide, the effective diagnosis and treatment of neurodegenerative diseases (NDDs) has become more important. Two-dimensional (2D) materials offer specific advantages for the diagnosis and treatment of NDDs due to their high sensitivity, selectivity, stability, and biocompatibility, as well as their excellent physical and chemical characteristics. As such, 2D materials offer a promising avenue for the development of highly sensitive, selective, and biocompatible theragnostics. This review provides an interdisciplinary overview of advanced 2D materials and their use in biosensors, drug delivery, and tissue engineering/regenerative medicine for the diagnosis and/or treatment of NDDs. The development of 2D material-based biosensors has enabled the early detection and monitoring of NDDs via the precise detection of biomarkers or biological changes, while 2D material-based drug delivery systems offer the targeted and controlled release of therapeutics to the brain, crossing the blood-brain barrier and enhancing treatment effectiveness. In addition, when used in tissue engineering and regenerative medicine, 2D materials facilitate cell growth, differentiation, and tissue regeneration to restore neuronal functions and repair damaged neural networks. Overall, 2D materials show great promise for use in the advanced treatment of NDDs, thus improving the quality of life for patients in an aging population.
Collapse
Affiliation(s)
- Jin-Ha Choi
- School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Izzati Haizan
- School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea.
| |
Collapse
|
2
|
Tufail S, Sherwani MA, Shamim Z, Abdullah, Goh KW, Alomary MN, Ansari MA, Almosa AA, Ming LC, Abdullah ADI, Khan FB, Menhali AA, Mirza S, Ayoub MA. 2D nanostructures: Potential in diagnosis and treatment of Alzheimer's disease. Biomed Pharmacother 2024; 170:116070. [PMID: 38163396 DOI: 10.1016/j.biopha.2023.116070] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/06/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024] Open
Abstract
Two-dimensional (2D) nanomaterials have garnered enormous attention seemingly due to their unusual architecture and properties. Graphene and graphene oxide based 2D nanomaterials remained the most sought after for several years but the quest to design superior 2D nanomaterials which can find wider application gave rise to development of non-graphene 2D materials as well. Consequently, in addition to graphene based 2D nanomaterials, 2D nanostructures designed using macromolecules (such as DNAs, proteins, peptides and peptoids), transition metal dichalcogenides, transition-metal carbides and/or nitrides (MXene), black phosphorous, chitosan, hexagonal boron nitrides, and graphitic carbon nitride, and covalent organic frameworks have been developed. Interestingly, these 2D nanomaterials have found applications in diagnosis and treatment of various diseases including Alzheimer's disease (AD). Although AD is one of the most debilitating neurodegenerative conditions across the globe; unfortunately, there remains a paucity of effective diagnostic and/or therapeutic intervention for it till date. In this scenario, nanomaterial-based biosensors, or therapeutics especially 2D nanostructures are emerging to be promising in this regard. This review summarizes the diagnostic and therapeutic platforms developed for AD using 2D nanostructures. Collectively, it is worth mentioning that these 2D nanomaterials would seemingly provide an alternative and intriguing platform for biomedical interventions.
Collapse
Affiliation(s)
- Saba Tufail
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| | | | - Zahid Shamim
- Department of Electrical Engineering, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, India
| | - Abdullah
- Department of Pharmacy, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Khang Wen Goh
- Faculty Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| | - Abdulaziz Abdullah Almosa
- Wellness and Preventive Medicine Institute, King AbdulAziz City of Science and Technology, Riyadh, Saudi Arabia.
| | - Long Chiau Ming
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia.
| | - Amar Daud Iskandar Abdullah
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia.
| | - Farheen Badrealam Khan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates; Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates.
| | - Asma Al Menhali
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Sameer Mirza
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Mohammed Akli Ayoub
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
3
|
Pandey S, Gupta SM, Sharma SK. Plasmonic nanoparticle's anti-aggregation application in sensor development for water and wastewater analysis. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:874. [PMID: 37351696 DOI: 10.1007/s10661-023-11355-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/08/2023] [Indexed: 06/24/2023]
Abstract
Colorimetric sensors have emerged as a powerful tool in the detection of water pollutants. Plasmonic nanoparticles use localized surface plasmon resonance (LSPR)-based colorimetric sensing. LSPR-based sensing can be accomplished through different strategies such as etching, growth, aggregation, and anti-aggregation. Based on these strategies, various sensors have been developed. This review focuses on the newly developed anti-aggregation-based strategy of plasmonic nanoparticles. Sensors based on this strategy have attracted increasing interest because of their exciting properties of high sensitivity, selectivity, and applicability. This review highlights LSPR-based anti-aggregation sensors, their classification, and role of plasmonic nanoparticles in these sensors for the detection of water pollutants. The anti-aggregation based sensing of major water pollutants such as heavy metal ions, anions, and small organic molecules has been summarized herein. This review also provides some personal insights into current challenges associated with anti-aggregation strategy of LSPR-based colorimetric sensors and proposes future research directions.
Collapse
Affiliation(s)
- Shailja Pandey
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi, 110078, India
| | - Shipra Mital Gupta
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi, 110078, India.
| | - Surendra Kumar Sharma
- University School of Chemical Technology, Guru Gobind Singh Indraprastha University, New Delhi, 110078, India
| |
Collapse
|
4
|
Botchway BOA, Liu X, Zhou Y, Fang M. Biometals in Alzheimer disease: emerging therapeutic and diagnostic potential of molybdenum and iodine. J Transl Med 2023; 21:351. [PMID: 37244993 PMCID: PMC10224607 DOI: 10.1186/s12967-023-04220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023] Open
Abstract
The current ageing trend of the world population has, in part, accounted for Alzheimer disease (AD) being a public health issue in recent times. Although some progress has been made in clarifying AD-related pathophysiological mechanisms, effective intervention is still elusive. Biometals are indispensable to normal physiological functions of the human body-for example, neurogenesis and metabolism. However, their association with AD remains highly controversial. Copper (Cu) and zinc (Zn) are biometals that have been investigated at great length in relation to neurodegeneration, whereas less attention has been afforded to other trace biometals, such as molybdenum (Mo), and iodine. Given the above context, we reviewed the limited number of studies that have evidenced various effects following the usage of these two biometals in different investigative models of AD. Revisiting these biometals via thorough investigations, along with their biological mechanisms may present a solid foundation for not only the development of effective interventions, but also as diagnostic agents for AD.
Collapse
Affiliation(s)
- Benson O. A. Botchway
- Department of Neurology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Centre for Child Health, Hangzhou, 310052 China
- Pharmacy Department, Bupa Cromwell Hospital, Kensington, London, SW5 0TU UK
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, Zhejiang China
| | - Yu Zhou
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, Zhejiang China
| | - Marong Fang
- Department of Neurology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Centre for Child Health, Hangzhou, 310052 China
| |
Collapse
|
5
|
Liu X, Liu Y, Liu Q. Fluorescent Sensing Platforms for Detecting and Imaging the Biomarkers of Alzheimer's Disease. BIOSENSORS 2023; 13:bios13050515. [PMID: 37232876 DOI: 10.3390/bios13050515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023]
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative disease with clinical symptoms of memory loss and cognitive impairment. Currently, no effective drug or therapeutic method is available for curing this disease. The major strategy used is to identify and block AD at its initial stage. Thus, early diagnosis is very important for intervention of the disease and assessment of drug efficacy. The gold standards of clinical diagnosis include the measurement of AD biomarkers in cerebrospinal fluid and positron emission tomography imaging of the brain for amyloid-β (Aβ) deposits. However, these methods are difficult to apply to the general screening of a large aging population because of their high cost, radioactivity and inaccessibility. Comparatively, blood sample detection is less invasive and more accessible for the diagnosis of AD. Hence, a variety of assays based on fluorescence analysis, surface-enhanced Raman scattering, electrochemistry, etc., were developed for the detection of AD biomarkers in blood. These methods play significant roles in recognizing asymptomatic AD and predicting the course of the disease. In a clinical setting, the combination of blood biomarker detection with brain imaging may enhance the accuracy of early diagnosis. Fluorescence-sensing techniques can be used not only to detect the levels of biomarkers in blood but also to image biomarkers in the brain in real time due to their low toxicity, high sensitivity and good biocompatibility. In this review, we summarize the newly developed fluorescent sensing platforms and their application in detecting and imaging biomarkers of AD, such as Aβ and tau in the last five years, and discuss their prospects for clinical applications.
Collapse
Affiliation(s)
- Xingyun Liu
- Department of Chemistry, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yibiao Liu
- Longgang District Central Hospital of Shenzhen, Shenzhen 518116, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Qiong Liu
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
6
|
Hu X, Qin W, Yuan R, Zhang L, Wang L, Ding K, Liu R, Huang W, Zhang H, Luo Y. Programmable molecular circuit discriminates multidrug-resistant bacteria. Mater Today Bio 2022; 16:100379. [PMID: 36042850 PMCID: PMC9420371 DOI: 10.1016/j.mtbio.2022.100379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 10/31/2022] Open
Abstract
Recognizing multidrug-resistant (MDR) bacteria with high accuracy and precision from clinical samples has long been a difficulty. For reliable detection of MDR bacteria, we investigated a programmable molecular circuit called the Background-free isothermal circuital kit (BRICK). The BRICK method provides a near-zero background signal by integrating four inherent modules equivalent to the conversion, amplification, separation, and reading modules. Interference elimination is largely owing to a molybdenum disulfide nanosheets-based fluorescence nanoswitch and non-specific suppression mediated by molecular inhibitors. In less than 70 min, an accurate distinction of various MDR bacteria was achieved without bacterial lysis. The BRICK technique detected 6.73 CFU/mL of methicillin-resistant Staphylococcus aureus in clinical samples in a proof-of-concept trial. By simply reprogramming the sequence panel, such a high signal-to-noise characteristic has been proven in the four other superbugs. The proposed BRICK method can provide a universal platform for infection surveillance and environmental management thanks to its superior programmability.
Collapse
Affiliation(s)
- Xiaolin Hu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, 174 Shazhengjie, Shapingba District, Chongqing, 400044, China
| | - Weichao Qin
- Department of Clinical Laboratory, Jiangjin Hospital, Chongqing University, 725 Jiangzhou Road, Jiangjin District, Chongqing, 402260, China
| | - Rui Yuan
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, 174 Shazhengjie, Shapingba District, Chongqing, 400044, China
| | - Liangliang Zhang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, 174 Shazhengjie, Shapingba District, Chongqing, 400044, China
| | - Liangting Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, 174 Shazhengjie, Shapingba District, Chongqing, 400044, China
| | - Ke Ding
- Department of Oncology, Jiangjin Hospital, Chongqing University, 725 Jiangzhou Road, Jiangjin District, Chongqing, 402260, China
| | - Ruining Liu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, 174 Shazhengjie, Shapingba District, Chongqing, 400044, China
| | - Wanyun Huang
- Life Science Laboratories, Biology Department, University of Massachusetts Amherst, 240 Thatcher Road, Amherst, MA, 01002, USA
| | - Hong Zhang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250033, China
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, 174 Shazhengjie, Shapingba District, Chongqing, 400044, China
- Department of Clinical Laboratory, Jiangjin Hospital, Chongqing University, 725 Jiangzhou Road, Jiangjin District, Chongqing, 402260, China
- Department of Clinical Laboratory, Fuling Hospital, Chongqing University, 2 Gaosuntang Road, Fuling District, Chongqing, 408099, China
| |
Collapse
|
7
|
Coelho FC, Cerchiaro G, Araújo SES, Daher JPL, Cardoso SA, Coelho GF, Guimarães AG. Is There a Connection between the Metabolism of Copper, Sulfur, and Molybdenum in Alzheimer’s Disease? New Insights on Disease Etiology. Int J Mol Sci 2022; 23:ijms23147935. [PMID: 35887282 PMCID: PMC9324259 DOI: 10.3390/ijms23147935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) and other forms of dementia was ranked 3rd in both the Americas and Europe in 2019 in a World Health Organization (WHO) publication listing the leading causes of death and disability worldwide. Copper (Cu) imbalance has been reported in AD and increasing evidence suggests metal imbalance, including molybdenum (Mo), as a potential link with AD occurrence.We conducted an extensive literature review of the last 60 years of research on AD and its relationship with Cu, sulfur (S), and Mo at out of range levels.Weanalyzed the interactions among metallic elements’ metabolisms;Cu and Mo are biological antagonists, Mo is a sulfite oxidase and xanthine oxidase co-factor, and their low activities impair S metabolism and reduce uric acid, respectively. We found significant evidence in the literature of a new potential mechanism linking Cu imbalance to Mo and S abnormalities in AD etiology: under certain circumstances, the accumulation of Cu not bound to ceruloplasmin might affect the transport of Mo outside the blood vessels, causing a mild Mo deficiency that might lowerthe activity of Mo and S enzymes essential for neuronal activity. The current review provides an updated discussion of the plausible mechanisms combining Cu, S, and Mo alterations in AD.
Collapse
Affiliation(s)
- Fábio Cunha Coelho
- Laboratório de Fitotecnia (LFIT), Universidade Estadual do Norte Fluminense Darcy Ribeiro—UENF, Campos dos Goytacazes 28013-602, Brazil
- Correspondence: ; Tel.: +55-22-998509469
| | - Giselle Cerchiaro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados, 5001, Bl. B, Santo André 09210-170, Brazil;
| | - Sheila Espírito Santo Araújo
- Laboratório de Biologia Celular e Tecidual (LBCT), Universidade Estadual do Norte Fluminense Darcy Ribeiro—UENF, Campos dos Goytacazes 28013-602, Brazil; (S.E.S.A.); (A.G.G.)
| | - João Paulo Lima Daher
- Departamento de Patologia, Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói 24210-350, Brazil;
| | - Silvia Almeida Cardoso
- Departamento de Medicina e Enfermagem (DEM), Universidade Federal de Viçosa, Viçosa 36579-900, Brazil;
| | - Gustavo Fialho Coelho
- Instituto de Ciências Médicas, Universidade Federal do Rio de Janeiro, Macaé 27930-560, Brazil;
| | - Arthur Giraldi Guimarães
- Laboratório de Biologia Celular e Tecidual (LBCT), Universidade Estadual do Norte Fluminense Darcy Ribeiro—UENF, Campos dos Goytacazes 28013-602, Brazil; (S.E.S.A.); (A.G.G.)
| |
Collapse
|
8
|
Murugan C, Sundararajan V, Mohideen SS, Sundaramurthy A. Controlled decoration of nanoceria on the surface of MoS 2nanoflowers to improve the biodegradability and biocompatibility in Drosophila melanogastermodel. NANOTECHNOLOGY 2022; 33:205703. [PMID: 35090149 DOI: 10.1088/1361-6528/ac4fe4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
In recent years, nanozymes based on two-dimensional (2D) nanomaterials have been receiving great interest for cancer photothermal therapy. 2D materials decorated with nanoparticles (NPs) on their surface are advantageous over conventional NPs and 2D material based systems because of their ability to synergistically improve the unique properties of both NPs and 2D materials. In this work, we report a nanozyme based on flower-like MoS2nanoflakes (NFs) by decorating their flower petals with NCeO2using polyethylenimine (PEI) as a linker molecule. A detailed investigation on toxicity, biocompatibility and degradation behavior of fabricated nanozymes in wild-typeDrosophila melanogastermodel revealed that there were no significant effects on the larval size, morphology, larval length, breadth and no time delay in changing larvae to the third instar stage at 7-10 d for MoS2NFs before and after NCeO2decoration. The muscle contraction and locomotion behavior of third instar larvae exhibited high distance coverage for NCeO2decorated MoS2NFs when compared to bare MoS2NFs and control groups. Notably, the MoS2and NCeO2-PEI-MoS2NFs treated groups at 100μg ml-1covered a distance of 38.2 mm (19.4% increase when compared with control) and 49.88 mm (no change when compared with control), respectively. High-resolution transmission electron microscopy investigations on the new born fly gut showed that the NCeO2decoration improved the degradation rate of MoS2NFs. Hence, nanozymes reported here have huge potential in various fields ranging from biosensing, cancer therapy and theranostics to tissue engineering and the treatment of Alzheimer's disease and retinal therapy.
Collapse
Affiliation(s)
- Chandran Murugan
- Biomaterials Research Laboratory, SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, India
| | - Vignesh Sundararajan
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, India
| | - Sahabudeen Sheik Mohideen
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, India
| | - Anandhakumar Sundaramurthy
- Biomaterials Research Laboratory, SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, India
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, India
| |
Collapse
|
9
|
Hydrazone ligation assisted DNAzyme walking nanomachine coupled with CRISPR-Cas12a for lipopolysaccharide analysis. Anal Chim Acta 2021; 1174:338747. [PMID: 34247734 DOI: 10.1016/j.aca.2021.338747] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/24/2021] [Accepted: 06/06/2021] [Indexed: 12/26/2022]
Abstract
In this work, hydrazone ligation assisted DNAzyme walking nanomachine is explored to couple with CRISPR-Cas12a trans-cleavage. Hydrazone ligation with high efficiency can mediate signal input which can be induced by target binding, thereby regulating the performance of DNAzyme walking nanomachine. The product strand from DNAzyme walking nanomachine can further activate the trans-cleavage of Cas12a. So, cascade signal amplification can be achieved to enhance the sensitivity for target detection. Subsequently, hydrazone ligation assisted DNAzyme walking nanomachine coupled with CRISPR-Cas12a has been further developed as a biosensor to analyze lipopolysaccharides. The developed biosensor exhibits a linear range from 0.05 ng/mL to 106 ng/mL and a lowest limit of detection of 7.31 fg/mL. This research provides a new mode for the signal output of DNAzyme walking nanomachine, so as to sensitively analyze different biomolecules.
Collapse
|
10
|
Li J, Wang J. Size-dependent optical extinction of MoS 2 nanosheets and their aptamer-induced dispersion behavior for the label-free detection of Escherichia coli O157:H7. Analyst 2021; 146:3121-3126. [PMID: 33999082 DOI: 10.1039/d1an00212k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For aptamer-modified nanomaterial biosensors label-free detection methods are desirable due to them being simple and low in cost. Among these methods, nanomaterial aggregation for signal conversion is common, using materials such as gold nanoparticles. However, for MoS2 nanosheets (MoS2-NSs), signal conversion of its aggregation is difficult, resulting in the limited development of its label-free sensing applications. Herein, for the first time, the extinction spectrum has been employed to quickly transform the signal of MoS2-NS aggregation and reveal the size-dependent extinction response of MoS2-NS aggregation. Moreover, the size-dependent optical extinction behavior of MoS2-NSs, using aptamers to induce the dispersion of the MoS2-NSs and greatly improve their ability to identify targets, is studied. Importantly, this method has been employed to achieve the label-free detection of Escherichia coli O157:H7. The present investigation shows the promising use of MoS2-NSs for the development of label-free detection.
Collapse
Affiliation(s)
- Jiye Li
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China. and University of Chinese Academy of Science, Beijing, 100049, China
| | - Jie Wang
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun, Jilin 130061, China
| |
Collapse
|
11
|
Jesus CSH, Soares HT, Piedade AP, Cortes L, Serpa C. Using amyloid autofluorescence as a biomarker for lysozyme aggregation inhibition. Analyst 2021; 146:2383-2391. [PMID: 33646214 DOI: 10.1039/d0an02260h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The assembly of proteins into amyloidogenic aggregates underlies the onset and symptoms of several pathologies, including Alzheimer's disease, Parkinson's disease and type II diabetes. Among the efforts for fighting these diseases, there is a great demand for developing novel, fast and reliable methods for in vitro screening of new drugs that may suppress or reverse amyloidogenesis. Recent studies unravelled a progressive increase in a blue autofluorescence upon amyloid formation originated from many different proteins, including the peptide amyloid-β, lysozyme or insulin. Herein, we propose a drug screening method using this property, avoiding the use of external probe dyes. We demonstrate that the inhibition of lysozyme amyloid formation by means of two known inhibitors, tartrazine and amaranth, can be monitored based on the autofluorescence of lysozyme amyloid aggregates. Our results show that amyloid luminescence is an intrinsic property that can be potentially applied in a screening assay, allowing the ranking of drug efficiency. The assays demonstrated here are fast to perform and suitable for scaling using microplate assays, configuring a new sensitive and economically feasible method.
Collapse
Affiliation(s)
- Catarina S H Jesus
- University of Coimbra, CQC, Department of Chemistry, 3004-535 Coimbra, Portugal.
| | | | | | | | | |
Collapse
|
12
|
Zhou X, Wang S, Zhang C, Lin Y, Lv J, Hu S, Zhang S, Li M. Colorimetric determination of amyloid-β peptide using MOF-derived nanozyme based on porous ZnO-Co 3O 4 nanocages. Mikrochim Acta 2021; 188:56. [PMID: 33502585 DOI: 10.1007/s00604-021-04705-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/09/2021] [Indexed: 12/24/2022]
Abstract
A sensitive and rapid colorimetric biosensor has been developed for determination of amyloid-β peptide (Aβ) and study of amyloidogenesis based on the high peroxidase-like activity of porous bimetallic ZnO-Co3O4 nanocages (NCs). Due to the high binding ability of Aβ monomer to ZnO-Co3O4 NCs, the catalytic activity of ZnO-Co3O4 NCs can be significantly suppressed by Aβ monomer. This finding forms the basis for a colorimetric assay for Aβ monomer detection. The detection limit for Aβ monomer is 3.5 nM with a linear range of 5 to 150 nM (R2 = 0.997). The system was successfully applied to the determination of Aβ monomer in rat cerebrospinal fluid. Critically, the different inhibition effects of monomeric and aggregated Aβ species on the catalytic activity of ZnO-Co3O4 NCs enabled the sensor to be used for tracking the dynamic progress of Aβ aggregation and screening Aβ inhibitors. Compared with the commonly used thioflavin T fluorescence assay, this method provided higher sensitivity to the formation of Aβ oligomer at the very early assembly stage. Our assay shows potential application in early diagnosis and therapy of Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Xi Zhou
- College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Shuangling Wang
- College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Cong Zhang
- Department of Chemistry, School of Sciences, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
| | - Yulong Lin
- College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jie Lv
- College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Shuyang Hu
- College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Shanshan Zhang
- College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Meng Li
- College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
13
|
Ren HX, Zhong Q, Miao YB, Wen XW, Wu GY, Wang HL, Zhang Y. A label-free reusable aptasensor for Alzheimer's disease. Mikrochim Acta 2020; 187:515. [PMID: 32839875 DOI: 10.1007/s00604-020-04518-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/18/2020] [Indexed: 11/29/2022]
Abstract
To early effectively detect amyloid-beta (Aβ) oligomers, a label-free reusable aptasensor was designed. This aptasensor based on a luminescent nanoscale lanthanum-based metal-organic framework (L-MOF)-armored single-stranded DNA antibody (MOF-armored-anti-DNA antibody) as signal tags and aptamer bound to magnetic beads (Apt-MB) as capture probe. The reusable aptasensor combines signal tag and capture probe with antigen-antibody interaction. When the reusable aptasensor is formed, the strong fluorescence intensity of L-MOF will "turn off" by photo-induced electron transfer from excited states to an unfilled d shell of iron cations on the nanoparticle surface. Upon the presence of Aβ oligomers in serum samples, they can be especially distinguished with the Aβ oligomers aptamer in capture probes and then signal tags are released into the solution for developing the fluorescence aptasensor under excitation/emission 365 nm/430 nm. Meanwhile, the aptamer was recovered from the complex of Aβ oligomers/Apt-MB by heat treatment. When the temperature returns to room temperature, the recovered aptamer in the capture probe can once again bound to the MOF-armored-anti-DNA antibody for reuse. The label-free reusable aptasensor system detection has high sensitivity and selectivity toward Aβ oligomers (LOD = 0.4 pg/mL) and an excellent linear range (0.001-100 ng/mL). This strategy is a fruitful step for the development of reusable aptasensor and may turn on new avenues for the applications of Aβ oligomer detection in clinical diagnosis.Graphical abstract.
Collapse
Affiliation(s)
- Hong-Xia Ren
- School of Chemistry and Chemical Engineering, Zunyi Normal College, Zunyi, 563000, Guizhou, China.
| | | | - Yang-Bao Miao
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan, 30013
| | - Xiao-Wei Wen
- School of Chemistry and Chemical Engineering, Zunyi Normal College, Zunyi, 563000, Guizhou, China
| | - Gui-Yan Wu
- School of Chemistry and Chemical Engineering, Zunyi Normal College, Zunyi, 563000, Guizhou, China
| | - Hui-Ling Wang
- School of Chemistry and Chemical Engineering, Zunyi Normal College, Zunyi, 563000, Guizhou, China
| | - Ying Zhang
- School of Chemistry and Chemical Engineering, Zunyi Normal College, Zunyi, 563000, Guizhou, China
| |
Collapse
|