1
|
Sun D, Liu T, Yao Y, Kong D, Liu C, Ye H, Zhang Q, Li S, Li Y, Shi Q. A core-satellite self-assembled SERS aptasensor used for ultrasensitive detection of AFB 1. Mikrochim Acta 2025; 192:190. [PMID: 40009200 DOI: 10.1007/s00604-025-07040-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
A surface-enhanced Raman scattering (SERS) aptasensor was developed using gold nanostars (Au NSs) and Fe3O4@Au nanoparticles (NPs) for the highly sensitive detection of aflatoxin B1 (AFB1). Au NSs were modified by the Raman reporter 4-aminothiophenol (PATP) and then coupled with cDNA to act as the capture probes (Au NSs@PATP-cDNA). Fe3O4@Au NPs were modified with the AFB1 aptamer (AFB1 Apt) and used as signal probes (Fe3O4@Au NPs-AFB1 Apt). The SERS peak of PATP at 1078 cm-1 was used for quantitative analysis. When the core-satellite nanostructures (Fe3O4@Au NPs-AFB1 Apt/cDNA-Au NSs@PATP) were self-assembled by oligonucleotide hybridization, the SERS intensity was significantly enhanced. When AFB1 was present, AFB1 Apt specifically binds to AFB1, causing the Fe3O4@Au NPs-AFB1 Apt and Au NSs@PATP-cDNA to dissociate, resulting in a decrease in the SERS intensity measured after magnetic separation. Under optimal conditions, the limit of detection (LOD) of AFB1 can be reduced to 0.24 pg/mL. This is attributed to the high affinity of AFB1 Apt, excellent magnetic separation characteristics, and multiple SERS hotspots. The assay has been validated to perform well in recovery and accuracy by evaluating spiked samples (rice, corn, and wheat) and positive samples (corn, brown rice, and wheat).
Collapse
Affiliation(s)
- Danni Sun
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
| | - Tao Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
| | - Yiran Yao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
| | - Dezhao Kong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, 212003, Jiangsu, China
| | - Chang Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, 212003, Jiangsu, China
| | - Hua Ye
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, 212003, Jiangsu, China
| | - Qi Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, 212003, Jiangsu, China
| | - Shijie Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, 212003, Jiangsu, China
| | - Yaqi Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China.
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, 212003, Jiangsu, China.
| | - Qiaoqiao Shi
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China.
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, 212003, Jiangsu, China.
| |
Collapse
|
2
|
Zhu J, Sun W, Yao Y, Guo Z, Li Q, Li Z, Jiang L, Zuo S, Liu S, Huang J, Wang Y. Combination of specific proteins as markers for accurate detection of extracellular vesicles using proximity ligation-mediated bHCR amplification. Anal Chim Acta 2023; 1267:341322. [PMID: 37257980 DOI: 10.1016/j.aca.2023.341322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023]
Abstract
As the molecular characteristics of extracellular vesicles (EVs) are closely related to the occurrence and progression of cancer, the detection of tumor-derived EVs provides a promising non-invasive tool for the early diagnosis and treatment of cancer. However, it would be difficult for most of the existing methods to avoid false positives because the obtained result declares the amounts of proteins, but cannot accurately reflect the protein sources, including EV proteins and interfering proteins, in the actual samples. In this manuscript, a robust, accurate, and sensitive fluorescent strategy for profiling EV proteins is developed by using the combination of specific proteins as markers (Co-marker). Our strategy relies on the Co-marker recognition-activated cascade bHCR amplification, which forms numerous G-quadruplex structures that are integrated with fluorescent dyes for signal transduction. Notably, the detection accuracy can be improved owing to the effective avoidance of false positives from interfering proteins or single protein markers. Moreover, by using the double-positive protein recognition mode, unpurified detection can be achieved that avoids time-consuming EVs purification procedures. With its capacities of accuracy, portability, sensitivity, high throughput, and non-purification, the developed strategy might provide a practical tool for EV identification and the related early diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Jingru Zhu
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, PR China
| | - Wenyu Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, PR China
| | - Yuying Yao
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, PR China
| | - Zhiqiang Guo
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Qianru Li
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Zongqiang Li
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, PR China
| | - Long Jiang
- Qingdao Spring Water-treatment Co, Ltd, Qingdao, 266000, PR China
| | - Shangci Zuo
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, PR China
| | - Su Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Jiadong Huang
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, PR China; Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yu Wang
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, PR China.
| |
Collapse
|
3
|
Wei Y, Zhang J, Yang X, Wang Z, Wang J, Qi H, Gao Q, Zhang C. Washing-free electrogenerated chemiluminescence magnetic microbiosensors based on target assistant proximity hybridization for multiple protein biomarkers. Anal Chim Acta 2023; 1253:340926. [PMID: 36965986 DOI: 10.1016/j.aca.2023.340926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
This work reports washing-free electrogenerated chemiluminescence (ECL) magnetic microbiosensors based on target assistant proximity hybridization (TAPH) for multiple protein biomarkers for the first time. As a principle-of-proof, alpha-fetoprotein (AFP) was chosen as a model analyte, and biotin-DNA1 bound streptavidin-coated magnetic microbeads (MMB@SA⋅biotin-DNA1) were designed as the universal capture MMB, while the corresponding two antibodies tagged with DNA2 or DNA3 were utilized as hybrid recognition probes, and ruthenium complex-tagged DNA4-10A was designed as a universal ECL signal probe. When the capture MMB was added into the mixture solution (containing the analyte, hybrid recognition probes, signal probe and tri-n-propylamine), biocomplexes were formed on the MMB. After the resulting MMB was efficiently brought to the surface of a magnetic glassy carbon electrode (MGCE), ECL measurement was performed without a washing step, resulting in an increase in the ECL intensity. A model for ECL measuring the second-order rate constants of hybridization reactions on MMB was derived. It was found that the rate constants for hybridization reactions on MMB in rotating mode are 1.6-fold higher than those in shaking mode, and a suitable DNA length of the signal probe can improve the signal-to-noise ratio. The washing-free ECL method was developed for the determination of AFP with a much lower detection limit (LOD) of 0.04 ng mL-1. The developed flexible strategy has been extended to determine D-dimer with an LOD of 0.1 ng mL-1 and myoglobinglobin with an LOD of 1.1 ng mL-1. This work demonstrated that the proposed strategy of ECL TAPH on MMB at MGCE is a washing-free and flexible promising strategy, and can be extended to qualify other multiple protein biomarkers in real clinical assays.
Collapse
Affiliation(s)
- Yuxi Wei
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Jian Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Xiaolin Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Zimei Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Junxia Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China.
| | - Qiang Gao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China.
| |
Collapse
|
4
|
Peptide-anchored biomimetic interface for electrochemical detection of cardiomyocyte-derived extracellular vesicles. Anal Bioanal Chem 2023; 415:1305-1311. [PMID: 36370201 DOI: 10.1007/s00216-022-04419-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
Cardiomyocyte-derived extracellular vesicles (EVs) are a promising class of biomarkers that can advance the diagnosis of many kinds of cardiovascular diseases. Herein, we develop a new electrochemical method for the feasible detection of cardiomyocyte-derived EVs in biological fluids. The core design of the method is the fabrication of a peptide-anchored biomimetic interface consisting of a lipid bilayer and peptide probes. On the one hand, the lipid bilayer provides excellent antifouling ability to the electrode interface and facilitates the anchoring of peptide probes. On the other hand, the peptide probes equip the electrode interface with excellent binding capability and affinity to CD172a, a specific marker of cardiomyocyte-derived EVs, thus enabling the efficient and selective detection of target EVs. Taking EVs derived from the heart myoblast cells H9C2 as the model target, the method displays a wide linear detection range from 1 × 103 to 1 × 108 particles/mL with a desirable detection limit of 132 particles/mL. Furthermore, the method shows good performance in biological fluids such as serum, and thus may have great potential for practical use in the diagnosis of cardiovascular diseases.
Collapse
|
5
|
Gao H, Wang K, Li H, Fan Y, Sun X, Wang X, Sun H. Recent advances in electrochemical proximity ligation assay. Talanta 2023; 254:124158. [PMID: 36502611 DOI: 10.1016/j.talanta.2022.124158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Proximity ligation assay (PLA) is a vigorously developed homogeneous immunoassay assisted by DNA combining dual recognition of target protein by pairs of proximity probes, in which the detection of protein is tactfully converted to the detection of DNA. The booming developments in PLA have enabled a variety of ultrasensitive assays for the detection of protein and this concept of PLA is also extended to the detection of nucleic acids and some small molecule. The association between PLA and electrochemical method, defined as electrochemical proximity ligation assay (ECPLA), has gained much interests in disease diagnosis, food safety and environmental assays with the advantages, such as broad range of targets, simplicity, low cost and rapid response. In this review, we took a different perspective to present the history of PLA, the classical ECPLA biosensing methodology as well as the developments of ECPLA based on several key parameters, such as sensitivity, selectivity, reusability and generalization. In addition, the developments of PLA with electrochemiluminescence as readout are also presented. Finally, perspective and some unresolved challenges in ECPLA that can potentially be addressed have also been discussed.
Collapse
Affiliation(s)
- Hongfang Gao
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China.
| | - Ke Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics & Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Haiyu Li
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China
| | - Yeli Fan
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China
| | - Xiong Sun
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China
| | - Xia Wang
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China
| | - Huiping Sun
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215000, PR China
| |
Collapse
|
6
|
Dezhakam E, Khalilzadeh B, Mahdipour M, Isildak I, Yousefi H, Ahmadi M, Naseri A, Rahbarghazi R. Electrochemical biosensors in exosome analysis; a short journey to the present and future trends in early-stage evaluation of cancers. Biosens Bioelectron 2023; 222:114980. [PMID: 36521207 DOI: 10.1016/j.bios.2022.114980] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/15/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
The tumor microenvironment consists of a multiplicity of cells such as cancer cells, fibroblasts, endothelial cells, and immune cells within the specific parenchyma. It has been indicated that cancer cells can educate other cells within the tumor niche in a paracrine manner by the release of nano-sized extracellular vesicles namely exosomes (Exo), resulting in accelerated tumor mass growth. It is suggested that exosomal cargo with remarkable information can reflect any changes in metabolic and proteomic profiles in parent tumor cells. Therefore, exosomes can be touted as prognostic, diagnostic, and therapeutic elements with specific biomarkers in patients with different tumor types. Despite the advantages, conventional exosome separation and purification protocols are time-consuming and laborious with low abnormal morphology and purity rate. During the last decades, biosensor-based modalities, as emerging instruments, have been used to detect and analyze Exo in biofluids. Due to suitable specificity, sensitivity, and real-time readout, biosensors became promising approaches for the analysis of Exo in in vitro and in vivo settings. The inherent advantages and superiority of electrochemical biosensors in the determination of tumor grade based on exosomal cargo and profile were also debated. Present and future challenges were also discussed related to the application of electrochemical biosensors in the clinical setting. In this review, the early detection of several cancer types associated with ovaries, breast, brain, colon, lungs, T and B lymphocytes, liver and rare types of cancers were debated in association with released exosomes.
Collapse
Affiliation(s)
- Ehsan Dezhakam
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ibrahim Isildak
- Department of Bioengineering, Faculty of Chemistry-Metallurgy, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Hadi Yousefi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Mahdi Ahmadi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abdolhossein Naseri
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Datta B, Dutta N, Ashish A, Mandal M, Shukla J, Suresh R, Choudhury P, Chaudhury K, Dutta G. Electrochemical Detection of Cancer Fingerprint: A Systematic Review on Recent Progress in Extracellular Vesicle Research from Lab to Market. NEXT-GENERATION NANOBIOSENSOR DEVICES FOR POINT-OF-CARE DIAGNOSTICS 2023:47-77. [DOI: 10.1007/978-981-19-7130-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
8
|
Bioprobes-regulated precision biosensing of exosomes: From the nanovesicle surface to the inside. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214538] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Liang TT, Qin X, Xiang Y, Tang Y, Yang F. Advances in nucleic acids-scaffolded electrical sensing of extracellular vesicle biomarkers. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Sousa DA, Carneiro M, Ferreira D, Moreira FTC, Sales MGFV, Rodrigues LR. Recent advances in the selection of cancer-specific aptamers for the development of biosensors. Curr Med Chem 2022; 29:5850-5880. [PMID: 35209816 DOI: 10.2174/0929867329666220224155037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/30/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
An early diagnosis has the potential to greatly decrease cancer mortality. For that purpose, specific cancer biomarkers have been molecularly targeted by aptamer sequences to enable an accurate and rapid detection. Aptamer-based biosensors for cancer diagnostics are a promising alternative to those using antibodies, due to their high affinity and specificity to the target molecules and advantageous production. Synthetic nucleic acid aptamers are generated by in vitro Systematic Evolution of Ligands by Exponential enrichment (SELEX) methodologies that have been improved over the years to enhance the efficacy and to shorten the selection process. Aptamers have been successfully applied in electrochemical, optical, photoelectrochemical and piezoelectrical-based detection strategies. These aptasensors comprise a sensitive, accurate and inexpensive option for cancer detection being used as point-of-care devices. This review highlights the recent advances in cancer biomarkers, achievements and optimizations made in aptamer selection, as well as the different aptasensors developed for the detection of several cancer biomarkers.
Collapse
Affiliation(s)
- Diana A Sousa
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- MIT-Portugal Program, Lisbon, Portugal
| | - Mariana Carneiro
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- BioMark@ISEP, School of Engineering, Polytechnic of Porto, Porto, Portugal
| | - Débora Ferreira
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- MIT-Portugal Program, Lisbon, Portugal
| | - Felismina T C Moreira
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- BioMark@ISEP, School of Engineering, Polytechnic of Porto, Porto, Portugal
| | - Maria Goreti F V Sales
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- MIT-Portugal Program, Lisbon, Portugal
- BioMark@UC, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Lígia R Rodrigues
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| |
Collapse
|
11
|
Lee S, Crulhas BP, Suvakov S, Verkhoturov SV, Verkhoturov DS, Eller MJ, Malhi H, Garovic VD, Schweikert EA, Stybayeva G, Revzin A. Nanoparticle-Enabled Multiplexed Electrochemical Immunoassay for Detection of Surface Proteins on Extracellular Vesicles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52321-52332. [PMID: 34709783 PMCID: PMC11235089 DOI: 10.1021/acsami.1c14506] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Extracellular vesicles (EVs) are lipid bilayer particles secreted from various cells. EVs carry molecular information of parent cells and hold considerable promise for early disease diagnostics. This paper describes a general strategy for multiplexed immunosensing of EV surface proteins, focusing on surface markers CD63, CD81, nephrin, and podocin to prove the concept. This sensing strategy entailed functionalizing gold nanoparticles (AuNPs) with two types of antibodies and then tagging with metal ions, either Pb2+ or Cu2+. The metal ions served as redox reporters, generating unique redox peaks at -0.23 and 0.28 V (vs Ag/AgCl) during electrochemical oxidation of Pb2+ and Cu2+, respectively. Capture of EVs on the working electrode, followed by labeling with immunoprobes and square wave voltammetry, produced redox currents proportional to concentrations of EVs and levels of expression of EV surface markers. Importantly, metal-ion tagging of immunoprobes enabled detection of two EV surface markers simultaneously from the same electrode. We demonstrated dual detection of either CD63/CD81 or podocin/nephrin surface markers from urinary EVs. The NP-enabled immunoassay had a sensitivity of 2.46 × 105 particles/mL (or 40.3 pg/mL) for CD63- and 5.80 × 105 particles/mL (or 47.7 pg/mL) for CD81-expressing EVs and a linear range of four orders of magnitude. The limit of detection for podocin and nephrin was 3.1 and 3.8 pg/mL, respectively. In the future, the capacity for multiplexing may be increased by extending the repertoire of metal ions used for redox tagging of AuNPs.
Collapse
Affiliation(s)
- Seonhwa Lee
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minesotta 55905, United States
| | - Bruno P Crulhas
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minesotta 55905, United States
| | - Sonja Suvakov
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minesotta 55905, United States
| | | | - Dmitriy S Verkhoturov
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Michael J Eller
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, California 91330, United States
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minesotta 55905, United States
| | - Vesna D Garovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minesotta 55905, United States
| | - Emile A Schweikert
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Gulnaz Stybayeva
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minesotta 55905, United States
- Sersense Inc., Rochester, Minesotta 55905, United States
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minesotta 55905, United States
| |
Collapse
|
12
|
Wu L, Wang Y, Xu X, Liu Y, Lin B, Zhang M, Zhang J, Wan S, Yang C, Tan W. Aptamer-Based Detection of Circulating Targets for Precision Medicine. Chem Rev 2021; 121:12035-12105. [PMID: 33667075 DOI: 10.1021/acs.chemrev.0c01140] [Citation(s) in RCA: 344] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The past decade has witnessed ongoing progress in precision medicine to improve human health. As an emerging diagnostic technique, liquid biopsy can provide real-time, comprehensive, dynamic physiological and pathological information in a noninvasive manner, opening a new window for precision medicine. Liquid biopsy depends on the sensitive and reliable detection of circulating targets (e.g., cells, extracellular vesicles, proteins, microRNAs) from body fluids, the performance of which is largely governed by recognition ligands. Aptamers are single-stranded functional oligonucleotides, capable of folding into unique tertiary structures to bind to their targets with superior specificity and affinity. Their mature evolution procedure, facile modification, and affinity regulation, as well as versatile structural design and engineering, make aptamers ideal recognition ligands for liquid biopsy. In this review, we present a broad overview of aptamer-based liquid biopsy techniques for precision medicine. We begin with recent advances in aptamer selection, followed by a summary of state-of-the-art strategies for multivalent aptamer assembly and aptamer interface modification. We will further describe aptamer-based micro-/nanoisolation platforms, aptamer-enabled release methods, and aptamer-assisted signal amplification and detection strategies. Finally, we present our perspectives regarding the opportunities and challenges of aptamer-based liquid biopsy for precision medicine.
Collapse
Affiliation(s)
- Lingling Wu
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yidi Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yilong Liu
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bingqian Lin
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mingxia Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jialu Zhang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shuang Wan
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Weihong Tan
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China.,The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
13
|
Liu LS, Wang F, Ge Y, Lo PK. Recent Developments in Aptasensors for Diagnostic Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9329-9358. [PMID: 33155468 DOI: 10.1021/acsami.0c14788] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Aptamers are exciting smart molecular probes for specific recognition of disease biomarkers. A number of strategies have been developed to convert target-aptamer binding into physically detectable signals. Since the aptamer sequence was first discovered, a large variety of aptamer-based biosensors have been developed, with considerable attention paid to their potential applications in clinical diagnostics. So far, a variety of techniques in combination with a wide range of functional nanomaterials have been used for the design of aptasensors to further improve the sensitivity and detection limit of target determination. In this paper, the advantages of aptamers over traditional antibodies as the molecular recognition components in biosensors for high-throughput screening target molecules are highlighted. Aptamer-target pairing configurations are predominantly single- or dual-site binding; the design of recognition modes of each aptamer-target pairing configuration is described. Furthermore, signal transduction strategies including optical, electrical, mechanical, and mass-sensitive modes are clearly explained together with examples. Finally, we summarize the recent progress in the development of aptamer-based biosensors for clinical diagnosis, including detection of cancer and disease biomarkers and in vivo molecular imaging. We then conclude with a discussion on the advanced development and challenges of aptasensors.
Collapse
Affiliation(s)
- Ling Sum Liu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Fei Wang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yonghe Ge
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Pik Kwan Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
14
|
Prabowo BA, Purwidyantri A, Liu B, Lai HC, Liu KC. Gold nanoparticle-assisted plasmonic enhancement for DNA detection on a graphene-based portable surface plasmon resonance sensor. NANOTECHNOLOGY 2021; 32:095503. [PMID: 33232941 DOI: 10.1088/1361-6528/abcd62] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The impact of different gold nanoparticle (GNP) structures on plasmonic enhancement for DNA detection is investigated on a few-layer graphene (FLG) surface plasmon resonance (SPR) sensor. Two distinct structures of gold nano-urchins (GNu) and gold nanorods (GNr) were used to bind the uniquely designed single-stranded probe DNA (ssDNA) of Mycobacterium tuberculosis complex DNA. The two types of GNP-ssDNA mixture were adsorbed onto the FLG-coated SPR sensor through the π-π stacking force between the ssDNA and the graphene layer. In the presence of complementary single-stranded DNA, the hybridization process took place and gradually removed the probes from the graphene surface. From SPR sensor preparation, the annealing process of the Au layer of the SPR sensor effectively enhanced the FLG coverage leading to a higher load of the probe DNA onto the sensing interface. The FLG was shown to be effective in providing a larger surface area for biomolecular capture due to its roughness. Carried out in the DNA hybridization study with the SPR sensor, GNu, with its rough and spiky structures, significantly reinforced the overall DNA hybridization signal compared with GNr with smooth superficies, especially in capturing the probe DNA. The DNA hybridization detection assisted by GNu reached the femtomolar range limit of detection. An optical simulation validated the extreme plasmonic field enhancement at the tip of the GNu spicules. The overall integrated approach of the graphene-based SPR sensor and GNu-assisted DNA detection provided the proof-of-concept for the possibility of tuberculosis disease screening using a low-cost and portable system to be potentially applied in remote or third-world countries.
Collapse
Affiliation(s)
- Briliant Adhi Prabowo
- International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal
- Department of Electronics Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Research Center for Electronics and Telecommunications, Indonesian Institute of Sciences, Bandung 40135, Indonesia
| | - Agnes Purwidyantri
- International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal
- Research Unit for Clean Technology, Indonesian Institute of Sciences, Bandung 40135, Indonesia
| | - Bei Liu
- Department of Electronics Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hsin-Chih Lai
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan 33302, Taiwan
- Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Kou-Chen Liu
- Department of Electronics Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Center for Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Division of Pediatric Infectious Disease, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| |
Collapse
|
15
|
Zhang H, Zhou Y, Luo D, Liu J, Yang E, Yang G, Feng G, Chen Q, Wu L. Immunoassay-aptasensor for the determination of tumor-derived exosomes based on the combination of magnetic nanoparticles and hybridization chain reaction. RSC Adv 2021; 11:4983-4990. [PMID: 35424452 PMCID: PMC8694620 DOI: 10.1039/d0ra10159a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/10/2021] [Indexed: 12/21/2022] Open
Abstract
The detection of tumor-related exosomes is of great significance. In this work, a fluorescence aptasensor was designed for the determination of tumor-related exosomes based on the capture of magnetic nanoparticles (MNPs) and specific recognition of an aptamer. MNPs were used as substrates to capture the exosomes by modifying the CD63 antibody on the MNP surface. Probe 1 consists of PDL-1 aptamer sequence and a section of other sequences. PDL-1 expression was observed on the surface of exosomes; the aptamer of PDL-1 could combine with PDL-1 with high affinity. Thus, the immunoassay-type compounds of "MNPs-exosomes-probe 1" were formed. The other section of probe 1 triggered the HCR with probe 2 and probe 3 and formed the super-long dsDNA. The addition of GelRed resulted in the generation of an amplified fluorescence signal. The proposed design demonstrated a good linearity with the exosome concentration ranging from 300 to 107 particles per mL and with a low detection limit of 100 particles per mL. This aptasensor also exhibited high specificity for tumor-related exosomes, and was successfully applied in biological samples.
Collapse
Affiliation(s)
- Hua Zhang
- Affiliated Dongfeng Hospital, Hubei University of Medicine Shiyan 442008 Hubei China
| | - Yajuan Zhou
- Department of Radiotherapy, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430074 China
| | - Dan Luo
- Affiliated Dongfeng Hospital, Hubei University of Medicine Shiyan 442008 Hubei China
| | - Jingjian Liu
- Affiliated Dongfeng Hospital, Hubei University of Medicine Shiyan 442008 Hubei China
| | - E Yang
- Shenzhen Baoan Authentic TCM Therapy Hospital Shenzhen Guangdong 518101 China + 86-0719-8272238
| | - Guangyi Yang
- Shenzhen Baoan Authentic TCM Therapy Hospital Shenzhen Guangdong 518101 China + 86-0719-8272238
| | - Guangjun Feng
- Shenzhen Baoan Authentic TCM Therapy Hospital Shenzhen Guangdong 518101 China + 86-0719-8272238
| | - Qinhua Chen
- Shenzhen Baoan Authentic TCM Therapy Hospital Shenzhen Guangdong 518101 China + 86-0719-8272238
| | - Lun Wu
- Affiliated Dongfeng Hospital, Hubei University of Medicine Shiyan 442008 Hubei China
| |
Collapse
|
16
|
Xue F, Chen Y, Wen Y, Abhange K, Zhang W, Cheng G, Quinn Z, Mao W, Wan Y. Isolation of extracellular vesicles with multivalent aptamers. Analyst 2021; 146:253-261. [PMID: 33107503 DOI: 10.1039/d0an01420f] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are lipid-enclosed submicron-sized vesicles that are secreted by all eukaryotic cells. EVs can selectively encapsulate tissue-specific small molecules from parent cells and efficiently deliver them to recipient cells. As signal mediators of intercellular communication, the molecules packaged in EVs play critical roles in the pathophysiology of diseases. In relevant clinical translation, EV contents have been used for cancer diagnosis and treatment monitoring. To further promote EV-based cancer liquid biopsy toward large-scale clinical implementation, the efficient and specific isolation of pure tumor-derived EVs from body fluids is a prerequisite. However, the existing EV isolation methods are unable to address certain technical challenges, such as lengthy procedures, low throughput, low specificity, heavy protein contamination, etc., and thus, new approaches for EV isolation are required. Here, we report a multivalent, long single-stranded aptamer with repeated units for EV enrichment and retrieval. After short incubation of biotin-labeled multivalent aptamers (MAs) with the samples, EVs can be quickly secured by MAs, anchored onto streptavidin-coated microspheres, and further retrieved via digestion of the DNA aptamer. Approximately 45% of EVs can be isolated from the spiked samples in 40 min with a depletion of 84.7% of albumin contamination. In addition, 93.1% of the isolated EVs can be retrieved via DNase-mediated aptamer degradation in 10 min for downstream molecular analyses. Our findings suggest that MAs can efficiently and specifically isolate EVs derived from malignant lymphocytes, and this simple method could facilitate the EV-centered study of acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Fei Xue
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|