1
|
Wang Y, Fang L, Wang Y, Xiong Z. Current Trends of Raman Spectroscopy in Clinic Settings: Opportunities and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2300668. [PMID: 38072672 PMCID: PMC10870035 DOI: 10.1002/advs.202300668] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/08/2023] [Indexed: 02/17/2024]
Abstract
Early clinical diagnosis, effective intraoperative guidance, and an accurate prognosis can lead to timely and effective medical treatment. The current conventional clinical methods have several limitations. Therefore, there is a need to develop faster and more reliable clinical detection, treatment, and monitoring methods to enhance their clinical applications. Raman spectroscopy is noninvasive and provides highly specific information about the molecular structure and biochemical composition of analytes in a rapid and accurate manner. It has a wide range of applications in biomedicine, materials, and clinical settings. This review primarily focuses on the application of Raman spectroscopy in clinical medicine. The advantages and limitations of Raman spectroscopy over traditional clinical methods are discussed. In addition, the advantages of combining Raman spectroscopy with machine learning, nanoparticles, and probes are demonstrated, thereby extending its applicability to different clinical phases. Examples of the clinical applications of Raman spectroscopy over the last 3 years are also integrated. Finally, various prospective approaches based on Raman spectroscopy in clinical studies are surveyed, and current challenges are discussed.
Collapse
Affiliation(s)
- Yumei Wang
- Department of NephrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Liuru Fang
- Hubei Province Key Laboratory of Systems Science in Metallurgical ProcessWuhan University of Science and TechnologyWuhan430081China
| | - Yuhua Wang
- Hubei Province Key Laboratory of Systems Science in Metallurgical ProcessWuhan University of Science and TechnologyWuhan430081China
| | - Zuzhao Xiong
- Hubei Province Key Laboratory of Systems Science in Metallurgical ProcessWuhan University of Science and TechnologyWuhan430081China
| |
Collapse
|
2
|
Zhou L, Feng RR, Zhang W, Gai F. Triple-Bond Vibrations: Emerging Applications in Energy and Biological Sciences. J Phys Chem Lett 2024; 15:187-200. [PMID: 38156972 DOI: 10.1021/acs.jpclett.3c02619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Triple bonds, such as that formed between two carbon atoms (i.e., C≡C) or that formed between one carbon atom and one nitrogen atom (i.e., C≡N), afford unique chemical bonding and hence vibrational characteristics. As such, they are not only frequently used to construct molecules with tailored chemical and/or physical properties but also employed as vibrational probes to provide site-specific chemical and/or physical information at the molecular level. Herein, we offer our perspective on the emerging applications of various triple-bond vibrations in energy and biological sciences with a focus on C≡C and C≡N triple bonds.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Ran-Ran Feng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Feng Gai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Waite R, Adams CT, Chisholm DR, Sims CHC, Hughes JG, Dias E, White EA, Welsby K, Botchway SW, Whiting A, Sharples GJ, Ambler CA. The antibacterial activity of a photoactivatable diarylacetylene against Gram-positive bacteria. Front Microbiol 2023; 14:1243818. [PMID: 37808276 PMCID: PMC10556703 DOI: 10.3389/fmicb.2023.1243818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
The emergence of antibiotic resistance is a growing threat to human health, and therefore, alternatives to existing compounds are urgently needed. In this context, a novel fluorescent photoactivatable diarylacetylene has been identified and characterised for its antibacterial activity, which preferentially eliminates Gram-positive over Gram-negative bacteria. Experiments confirmed that the Gram-negative lipopolysaccharide-rich outer surface is responsible for tolerance, as strains with reduced outer membrane integrity showed increased susceptibility. Additionally, bacteria deficient in oxidative damage repair pathways also displayed enhanced sensitivity, confirming that reactive oxygen species production is the mechanism of antibacterial activity. This new diarylacetylene shows promise as an antibacterial agent against Gram-positive bacteria that can be activated in situ, potentially for the treatment of skin infections.
Collapse
Affiliation(s)
- Ryan Waite
- Department of Biosciences, Durham University, Science Site, Durham, United Kingdom
| | | | | | | | - Joshua G. Hughes
- Department of Biosciences, Durham University, Science Site, Durham, United Kingdom
- LightOx Limited, Newcastle, United Kingdom
- Department of Physics, Durham University, Science Site, Durham, United Kingdom
| | - Eva Dias
- LightOx Limited, Newcastle, United Kingdom
| | - Emily A. White
- Department of Biosciences, Durham University, Science Site, Durham, United Kingdom
| | - Kathryn Welsby
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, United Kingdom
| | - Stanley W. Botchway
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, United Kingdom
| | - Andrew Whiting
- LightOx Limited, Newcastle, United Kingdom
- Department of Chemistry, Durham University, Durham, United Kingdom
| | - Gary J. Sharples
- Department of Biosciences, Durham University, Science Site, Durham, United Kingdom
| | - Carrie A. Ambler
- Department of Biosciences, Durham University, Science Site, Durham, United Kingdom
- LightOx Limited, Newcastle, United Kingdom
| |
Collapse
|
4
|
Abstract
Lipids are essential cellular components forming membranes, serving as energy reserves, and acting as chemical messengers. Dysfunction in lipid metabolism and signaling is associated with a wide range of diseases including cancer and autoimmunity. Heterogeneity in cell behavior including lipid signaling is increasingly recognized as a driver of disease and drug resistance. This diversity in cellular responses as well as the roles of lipids in health and disease drive the need to quantify lipids within single cells. Single-cell lipid assays are challenging due to the small size of cells (∼1 pL) and the large numbers of lipid species present at concentrations spanning orders of magnitude. A growing number of methodologies enable assay of large numbers of lipid analytes, perform high-resolution spatial measurements, or permit highly sensitive lipid assays in single cells. Covered in this review are mass spectrometry, Raman imaging, and fluorescence-based assays including microscopy and microseparations.
Collapse
Affiliation(s)
- Ming Yao
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; , ,
| | | | - Nancy L Allbritton
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; , ,
| |
Collapse
|
5
|
Braddick HJ, Tipping WJ, Wilson LT, Jaconelli HS, Grant EK, Faulds K, Graham D, Tomkinson NCO. Determination of Intracellular Esterase Activity Using Ratiometric Raman Sensing and Spectral Phasor Analysis. Anal Chem 2023; 95:5369-5376. [PMID: 36926851 PMCID: PMC10061367 DOI: 10.1021/acs.analchem.2c05708] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Carboxylesterases (CEs) are a class of enzymes that catalyze the hydrolysis of esters in a variety of endogenous and exogenous molecules. CEs play an important role in drug metabolism, in the onset and progression of disease, and can be harnessed for prodrug activation strategies. As such, the regulation of CEs is an important clinical and pharmaceutical consideration. Here, we report the first ratiometric sensor for CE activity using Raman spectroscopy based on a bisarylbutadiyne scaffold. The sensor was shown to be highly sensitive and specific for CE detection and had low cellular cytotoxicity. In hepatocyte cells, the ratiometric detection of esterase activity was possible, and the result was validated by multimodal imaging with standard viability stains used for fluorescence microscopy within the same cell population. In addition, we show that the detection of localized ultraviolet damage in a mixed cell population was possible using stimulated Raman scattering microscopy coupled with spectral phasor analysis. This sensor demonstrates the practical advantages of low molecular weight sensors that are detected using ratiometric Raman imaging and will have applications in drug discovery and biomedical research.
Collapse
Affiliation(s)
- Henry J Braddick
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - William J Tipping
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K
| | - Liam T Wilson
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - Harry S Jaconelli
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K
| | - Emma K Grant
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Karen Faulds
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K
| | - Duncan Graham
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K
| | - Nicholas C O Tomkinson
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K
| |
Collapse
|
6
|
Liu X, Fan D, Ren Y, Huang S, Ding J, Liu M, Wegner SV, Hou J, Rong P, Chen F, Zeng W. Photo-Activable Organosilver Nanosystem Facilitates Synergistic Cancer Theranostics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:711-722. [PMID: 36579754 DOI: 10.1021/acsami.2c21004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Anticancer drug development is important for human health, yet it remains a tremendous challenge. Photodynamic therapy (PDT), which induces cancer cell apoptosis via light-triggered production of reactive oxygen species, is a promising method. However, it has minimal efficacy in subcellular targeting, hypoxic microenvironments, and deep-seated malignancies. Here, we constructed a breast cancer photo-activable theranostic nanosystem through the rational design of a synthetic lysosomal-targeted molecule with multifunctions as aggregation-induced near-infrared (NIR) emission, a photosensitizer (PDT), and organosilver (chemotherapy) for NIR imaging and synergistic cancer therapy. The synthetic molecule could self-assemble into nanoparticles (TPIMBS NPs) and be stabilized with amphiphilic block copolymers for enhanced accumulation in tumor sites through passive targeting while reducing the leakage in normal tissues. Through photochemical internalization, TPIMBS NPs preferentially concentrated in the lysosomes of cancer cells and generated reactive oxygen species (ROS) upon light irradiation, resulting in lysosomal rupture and release of PSs to the cytosol, which led to cell apoptosis. Further, the photoinduced release of Ag+ from TPIMBS NPs could act as chemotherapy, significantly improving the overall therapeutic efficacy by synergistic effects with PDT. This research sheds fresh light on the creation of effective cancer treatments.
Collapse
Affiliation(s)
- Xiaohui Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, P. R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410078, P. R. China
| | - Duoyang Fan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, P. R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410078, P. R. China
| | - Yueming Ren
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, P. R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410078, P. R. China
| | - Shuai Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, P. R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410078, P. R. China
| | - Jipeng Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, P. R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410078, P. R. China
| | - Min Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, P. R. China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410078, P. R. China
| | - Seraphine V Wegner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Jing Hou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, P. R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410078, P. R. China
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, P. R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410078, P. R. China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, P. R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha 410078, P. R. China
| |
Collapse
|
7
|
Abstract
In chemical biology research, various fluorescent probes have been developed and used to visualize target proteins or molecules in living cells and tissues, yet there are limitations to this technology, such as the limited number of colors that can be detected simultaneously. Recently, Raman spectroscopy has been applied in chemical biology to overcome such limitations. Raman spectroscopy detects the molecular vibrations reflecting the structures and chemical conditions of molecules in a sample and was originally used to directly visualize the chemical responses of endogenous molecules. However, our initial research to develop "Raman tags" opens a new avenue for the application of Raman spectroscopy in chemical biology. In this Perspective, we first introduce the label-free Raman imaging of biomolecules, illustrating the biological applications of Raman spectroscopy. Next, we highlight the application of Raman imaging of small molecules using Raman tags for chemical biology research. Finally, we discuss the development and potential of Raman probes, which represent the next-generation probes in chemical biology.
Collapse
Affiliation(s)
- Kosuke Dodo
- Synthetic
Organic Chemistry Laboratory, RIKEN Cluster
for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Catalysis
and Integrated Research Group, RIKEN Center
for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Katsumasa Fujita
- Department
of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Institute
for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- AIST-Osaka
University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science
and Technology (AIST), Suita, Osaka 565-0871, Japan
| | - Mikiko Sodeoka
- Synthetic
Organic Chemistry Laboratory, RIKEN Cluster
for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Catalysis
and Integrated Research Group, RIKEN Center
for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
8
|
Brasiliense V, Park JE, Berns EJ, Van Duyne RP, Mrksich M. Surface potential modulation as a tool for mitigating challenges in SERS-based microneedle sensors. Sci Rep 2022; 12:15929. [PMID: 36151248 PMCID: PMC9508330 DOI: 10.1038/s41598-022-19942-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/06/2022] [Indexed: 11/08/2022] Open
Abstract
Raman spectroscopic-based biosensing strategies are often complicated by low signal and the presence of multiple chemical species. While surface-enhanced Raman spectroscopy (SERS) nanostructured platforms are able to deliver high quality signals by focusing the electromagnetic field into a tight plasmonic hot-spot, it is not a generally applicable strategy as it often depends on the specific adsorption of the analyte of interest onto the SERS platform. This paper describes a strategy to address this challenge by using surface potential as a physical binding agent in the context of microneedle sensors. We show that the potential-dependent adsorption of different chemical species allows scrutinization of the contributions of different chemical species to the final spectrum, and that the ability to cyclically adsorb and desorb molecules from the surface enables efficient application of multivariate analysis methods. We demonstrate how the strategy can be used to mitigate potentially confounding phenomena, such as surface reactions, competitive adsorption and the presence of molecules with similar structures. In addition, this decomposition helps evaluate criteria to maximize the signal of one molecule with respect to others, offering new opportunities to enhance the measurement of analytes in the presence of interferants.
Collapse
Affiliation(s)
- Vitor Brasiliense
- Department of Chemistry, Northwestern University, Evanston, IL-60208, USA
- PPSM, ENS Paris-Saclay, CNRS (UMR 5831), Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Ji Eun Park
- Department of Chemistry, Northwestern University, Evanston, IL-60208, USA
| | - Eric J Berns
- Department of Biomedical Engineering, Northwestern University, Evanston, IL-60208, USA
| | - Richard P Van Duyne
- Department of Chemistry, Northwestern University, Evanston, IL-60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL-60208, USA
| | - Milan Mrksich
- Department of Chemistry, Northwestern University, Evanston, IL-60208, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL-60208, USA.
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL-60611, USA.
| |
Collapse
|