1
|
Kaur A, Bagherifard M, Anderson AB, Tariq N, Syrgiannis Z, Spanopoulos I. A perylene-based fluorescent probe for highly efficient SDS detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1784-1789. [PMID: 39885785 DOI: 10.1039/d4ay02122c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Sodium dodecyl sulfate (SDS) is widely used in numerous household products and pharmaceuticals due to its excellent water solubility, emulsification, foaming, and dispersing properties. However, the extensive use of SDS has made it a significant environmental pollutant, posing a great threat to aquatic ecosystems. Therefore, developing a rapid, efficient, and sensitive probe for detecting SDS in aqueous environments is crucial. In this study, we present a cationic imidazolium-conjugated perylene bisimide (PBI) compound, as an effective probe for detecting SDS in aqueous media. The probe exhibits a distinct color change from dark pink to light pink upon interaction with SDS, making it a simple yet powerful tool for naked-eye detection. Moreover, the strong electrostatic interaction between the positively charged PBI compound and the negatively charged sulfate group in SDS leads to the formation of closely packed molecular aggregates. This results in significant quenching of fluorescence emission, enabling the detection of SDS at micromolar concentrations. We further demonstrate the practical application of PBI compound for sensitive and selective fluorometric detection of SDS in home-care items and tap water samples. These findings highlight the potential of such compounds as versatile tools for both environmental monitoring and product safety applications involving sulfate-containing species.
Collapse
Affiliation(s)
- Amrit Kaur
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, USA.
| | - Mina Bagherifard
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, USA.
| | | | - Neelam Tariq
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, USA.
| | - Zois Syrgiannis
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, USA.
| | - Ioannis Spanopoulos
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, USA.
| |
Collapse
|
2
|
Hegde C, Shekhar R, Paul PM, Pathak C. A review on forensic analysis of bio fluids (blood, semen, vaginal fluid, menstrual blood, urine, saliva): Spectroscopic and non-spectroscopic technique. Forensic Sci Int 2025; 367:112343. [PMID: 39708707 DOI: 10.1016/j.forsciint.2024.112343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/30/2024] [Accepted: 12/08/2024] [Indexed: 12/23/2024]
Abstract
The accurate detection, identification, and analysis of biofluids at crime scenes play a critical role in forensic investigations. Various biofluids, such as blood, semen, vaginal fluid, menstrual blood, urine, and saliva, can be crucial evidence. In a murder case involving a knife attack, for instance, bloodstains from both the victim and perpetrator might be present. Sexual assault cases often involve the analysis of semen and vaginal secretions. Biofluid analysis employs a two-tiered approach: presumptive tests for initial identification and confirmatory tests for definitive analysis. This review article focuses on six key biofluids and their forensic significance. In this review, we comprehensively explore the relevant analytical techniques, including non-spectroscopic methods like immunoassays, spot tests, and cytokine profiling, alongside spectroscopic techniques such as Infrared (IR) spectroscopy, Mass Spectrometry (MS), and Raman Spectroscopy (RS).
Collapse
Affiliation(s)
- Chitrakara Hegde
- Department of Science, Alliance University, Bengaluru 562106, India.
| | - R Shekhar
- CoE Intel-High performance Computing, Alliance University, Bengaluru 562106, India
| | - P Mano Paul
- Department of Computer Science Engineering, Alliance University, Bengaluru 562106, India
| | - Chandni Pathak
- Department of Science, Alliance University, Bengaluru 562106, India
| |
Collapse
|
3
|
Duo Y, Han L, Yang Y, Wang Z, Wang L, Chen J, Xiang Z, Yoon J, Luo G, Tang BZ. Aggregation-Induced Emission Luminogen: Role in Biopsy for Precision Medicine. Chem Rev 2024; 124:11242-11347. [PMID: 39380213 PMCID: PMC11503637 DOI: 10.1021/acs.chemrev.4c00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Biopsy, including tissue and liquid biopsy, offers comprehensive and real-time physiological and pathological information for disease detection, diagnosis, and monitoring. Fluorescent probes are frequently selected to obtain adequate information on pathological processes in a rapid and minimally invasive manner based on their advantages for biopsy. However, conventional fluorescent probes have been found to show aggregation-caused quenching (ACQ) properties, impeding greater progresses in this area. Since the discovery of aggregation-induced emission luminogen (AIEgen) have promoted rapid advancements in molecular bionanomaterials owing to their unique properties, including high quantum yield (QY) and signal-to-noise ratio (SNR), etc. This review seeks to present the latest advances in AIEgen-based biofluorescent probes for biopsy in real or artificial samples, and also the key properties of these AIE probes. This review is divided into: (i) tissue biopsy based on smart AIEgens, (ii) blood sample biopsy based on smart AIEgens, (iii) urine sample biopsy based on smart AIEgens, (iv) saliva sample biopsy based on smart AIEgens, (v) biopsy of other liquid samples based on smart AIEgens, and (vi) perspectives and conclusion. This review could provide additional guidance to motivate interest and bolster more innovative ideas for further exploring the applications of various smart AIEgens in precision medicine.
Collapse
Affiliation(s)
- Yanhong Duo
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02138, United States
| | - Lei Han
- College of
Chemistry and Pharmaceutical Sciences, Qingdao
Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong China
| | - Yaoqiang Yang
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
| | - Zhifeng Wang
- Department
of Urology, Henan Provincial People’s Hospital, Zhengzhou University
People’s Hospital, Henan University
People’s Hospital, Zhengzhou, 450003, China
| | - Lirong Wang
- State
Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jingyi Chen
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02138, United States
| | - Zhongyuan Xiang
- Department
of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Juyoung Yoon
- Department
of Chemistry and Nanoscience, Ewha Womans
University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Guanghong Luo
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
| | - Ben Zhong Tang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen 518172, Guangdong China
| |
Collapse
|
4
|
Lee S, Ju J, Keum C, Bang J, Lee H, Vikneshvaran S, Yoo H, Park J, Lee SY. Enhanced Photocatalytic Oxygen Evolution Using Copper-Coordinated Perylene Diimide Nanorod Assemblies. CHEMSUSCHEM 2024; 17:e202301044. [PMID: 38030584 DOI: 10.1002/cssc.202301044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/27/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023]
Abstract
A crystalline supramolecular photocatalyst is prepared through metal-induced self-assembly of perylene diimide with imidazole groups at the imide position (PDI-Hm). Exploiting the metal-coordination ability of imidazole, a crystalline assembly of copper-coordinated PDI-Hm (CuPDI-Hm) in a nanorod shape is prepared which displays an outstanding photocatalytic oxygen evolution rate of 25,900 μmol g-1 h-1 without additional co-catalysts. The imidazole-copper coordination, along with π-π stacking of PDI frameworks, guides the arrangement of PDI-Hm molecules to form highly crystalline assemblies. The coordination of copper also modulates the size of the CuPDI-Hm supramolecular assembly by regulating the nucleation and growth processes. Furthermore, the imidazole-copper coordination constructs the electric field within the PDI-Hm assembly, hindering the recombination of photo-induced charges to enhance the photoelectric/photocatalytic activity when compared to Cu-free PDI-Hm assemblies. Small CuPDI-Hm assembly exhibits higher photocatalytic activity due to their larger surface area and reduced light scattering. Together, the Cu-imidazole coordination presents a facile way for fabricating size-controlled crystalline PDI assemblies with built-in electric field enhancing photoelectric and photocatalytic activities substantially.
Collapse
Affiliation(s)
- Sukjun Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 03722, Seoul, Republic of Korea
| | - Jeewon Ju
- Department of Chemical and Biomolecular Engineering, Yonsei University, 03722, Seoul, Republic of Korea
| | - Changjoon Keum
- Department of Chemical and Biomolecular Engineering, Yonsei University, 03722, Seoul, Republic of Korea
- Current affiliation: Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jieun Bang
- Department of Chemistry and Nanoscience, Ewha Womans University, 03760, Seoul, Republic of Korea
| | - Hyesung Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 03722, Seoul, Republic of Korea
| | - Sekar Vikneshvaran
- Department of Chemical and Biomolecular Engineering, Yonsei University, 03722, Seoul, Republic of Korea
- Department of Chemistry, Government Arts College, Paramakudi, 623701, Paramakudi, Tamil Nadu, India
| | - Hyeri Yoo
- Department of Chemical and Biomolecular Engineering, Yonsei University, 03722, Seoul, Republic of Korea
| | - JaeHong Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 03760, Seoul, Republic of Korea
| | - Sang-Yup Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 03722, Seoul, Republic of Korea
| |
Collapse
|
5
|
Barboza-Ramos I, Karuk Elmas SN, Schanze KS. Fluorogenic sensors. SENSORY POLYMERS 2024:181-223. [DOI: 10.1016/b978-0-443-13394-7.00005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Zhao Y, Zheng W, Liao M, Zhou S, He W, Liu M, Yao Z. Fluorescent detection of tartrazine based on the supramolecular self-assembly of cationic perylene diimide. Mikrochim Acta 2023; 190:290. [PMID: 37442817 DOI: 10.1007/s00604-023-05862-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/03/2023] [Indexed: 07/15/2023]
Abstract
A cationic perylene probe was designed and synthesized for sensitive determination of tartrazine. In the presence of tartrazine, the fluorescence of the perylene probe was quenched by efficient supramolecular self-assembly of the perylene derivate. The quenching is caused by the synergistic effect of noncovalent interactions including static electricity, π-π stacking, and hydrophobic interaction. Benefiting from these advantages, the probe exhibited excellent sensing performance to tartrazine within 2 min. The detection and quantification limit of tartrazine are as low as 2.42 and 8.07 nmol L-1, respectively, with a wide linear operation range from 15 to 500 nmol L-1. Most importantly, due to the high binding affinity (3.22 × 107 mol L-1) between the perylene probe and tartrazine, the sensing system shows great anti-interference capacity. Subsequently, the visualization application of the approach was evaluated by portable device, and the limits of detection for visual detection for test strip, membrane, and hydrogel were 0.5, 0.5, and 5 μmol L-1, respectively. The approach has been applied to monitor tartrazine in various food condiments with recoveries in the range 91.29-108.83%. As far as we know, this is the first report of using perylene-based probe for tartrazine determination, offering a promising strategy for the construction of perylene-based detection system in the field of food safety.
Collapse
Affiliation(s)
- Yijian Zhao
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Weilian Zheng
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Mengyu Liao
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Shuai Zhou
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Weiheng He
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ming Liu
- Technical Center for Safety of Industrial Products of Tianjin Customs District, Tianjin Key Laboratory of Port Non-Traditional Security (NTS) Risk Prevention and Control Science and Technology, Laboratory of Emergency Inspection and Testing for Toxicological Safety Assessment of Import and Export Food Safety of General Administration of Customs, Tianjin, China
| | - Zhiyi Yao
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
7
|
Li Y, Zhao A, Wang J, Yu J, Xiao F, Sun H. Highly Bright Gold Nanowires Arrays for Sensitive Detection of Urea and Urease. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4023. [PMID: 36432310 PMCID: PMC9698401 DOI: 10.3390/nano12224023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
In this work, highly fluorescent gold nanowire arrays (Au NWs) are successfully synthesized by assembling Zn2+ ions and non-emissive oligomeric gold-thiolate clusters using mercaptopropionic acid both as a reducing agent and a growth ligand. The synthesized Au NWs exhibited strong bluish green fluorescence with an absolute quantum yield up to 32% and possessed ultrasensitive pH stimuli-responsive performance in the range of 7.0-7.8. Based on the excellent properties of the as-prepared nanowire arrays, we developed a facile, sensitive, and selective fluorescent method for quantitative detection of urea and urease. The fabricated nanoprobe showed superior biosensing response characteristics with good linearities in the range of 0-100 μM for urea concentration and 0-12 U/L for urease activity. In addition, this fluorescent probe afforded relatively high sensitivity with the detection limit as low as 2.1 μM and 0.13 U/L for urea and urease, respectively. Urea in human urine and urease in human serum were detected with satisfied results, exhibiting a promising potential for biomedical application.
Collapse
Affiliation(s)
- Yan Li
- Correspondence: (Y.L.); (H.S.)
| | | | | | | | | | | |
Collapse
|
8
|
Yuan Y, He Y, Pei D, Tong L, Hu S, Liu L, Yi X, Wang J. Urease-Functionalized Near-Infrared Light-Responsive Gold Nanoflowers for Rapid Detection of Urea by a Portable Pressure Meter. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Roy R, Khan A, Dutta T, Koner AL. Red to NIR-emissive anthracene-conjugated PMI dyes with dual functions: singlet-oxygen response and lipid-droplet imaging. J Mater Chem B 2022; 10:5352-5363. [PMID: 35583595 DOI: 10.1039/d2tb00349j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The rich chemistry of solution-processable red and near-infrared (NIR) organic emitters has emerged as an attractive and progressive research field because of their particular applications in organic optoelectronics and bioimaging. Also, one can see that the research area of perylene monoimide-based red and NIR-emissive fluorophores is underexplored, which prompted us to design and synthesize three anthracene-conjugated PMI dyes exhibiting strong emission in the red and NIR window in solution. Three PMI-based fluorophores were synthesized via conjoining anthracene and donor moieties (-Ph, -N,N-PhNMe2) with a PMI core via an acetylene linkage at the peri-position, which helped to attain extensive electronic conjugation, which was reflected in red and NIR-emission in solution. The key molecular features to be highlighted here are: all three dyes are strongly emissive in solution, as unveiled by the excellent absolute fluorescence QYs; and they possess tuneable emission properties, guided by the donor strength and a profound Stokes shift (100-200 nm). The three fluorescent dyes demonstrated appreciable singlet-oxygen (1O2) sensitivity when photoirradiated with methylene blue (MB) in solution, showing a substantial blue-shift in emission in a ratiometric manner. Further, the treatment of dye-MB solution with α-tocopherol (1O2 scavenger) validated the presence of 1O2 as the only oxidizing species generated by MB in solution. Computational investigations gave insight into the twisting of donor moieties in their ground-state optimized geometries, the modulation of the FMO energy gap, and the thermodynamic feasibility of the 1O2 reaction. Finally, via taking advantage of the red and NIR-emission, we successfully utilized one of the fluorophores as a lipid-droplet marker for bioimaging in HepG2 cells.
Collapse
Affiliation(s)
- Rupam Roy
- Bionanotechnology Laboratory, Department of Chemistry Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, India.
| | - Aasif Khan
- Bionanotechnology Laboratory, Department of Chemistry Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, India.
| | - Tanoy Dutta
- Bionanotechnology Laboratory, Department of Chemistry Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, India.
| | - Apurba Lal Koner
- Bionanotechnology Laboratory, Department of Chemistry Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, India.
| |
Collapse
|
10
|
Tariq A, Garnier U, Ghasemi R, Pierre Lefevre J, Mongin C, Brosseau A, Frédéric Audibert J, Pansu R, Dauzères A, Leray I. Perylene based PET Fluorescent molecular probes for pH monitoring. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Yin W, Zhang Y, Gu J, Wang T, Ma C, Zhu C, Li L, Yang Z, Zhu T, Chen G. Urea detection in milk by urease-assisted pH-sensitive carbon dots. APPLIED OPTICS 2021; 60:10421-10428. [PMID: 34807053 DOI: 10.1364/ao.437787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Excessive urea in milk will lead to serious health problems. To detect whether the urea concentration in milk exceeds the standard and ensure the quality of milk, it is necessary to develop detection technology for urea in milk. But it is difficult to detect urea in milk conveniently and accurately by traditional methods. To measure the concentration of urea in milk, stable green light carbon dots (CDs) were synthesized by a one-step method as a fluorescent probe. Then, 3, 5-diaminobenzoic acid was used as the precursor for CD synthesis. Experimental results showed that CDs can generate strong fluorescence when excited by light (350-450 nm). The fluorescence peak wavelength is 490 nm, and the optimum excitation wavelength is 390 nm. The fluorescence intensity of CDs has a significant change with variations of pH (pH of 6-9), and the higher the pH, the lower the fluorescence intensity. Additionally, urea can be hydrolyzed by urease to produce ammonia and carbon dioxide. Ammonia is ionized in water to produce OH-, which increases the pH of the solution. After adding standard urea to milk, urease and CDs are added. The fluorescence intensity of CDs in the mixed solution decreases as the concentration of standard added urea increases. Thus the concentration of urea in milk can be calculated. The experimental results show that the CD method for detecting urea in milk has advantages of high sensitivity and wide measurement range. The linear interval is 25-500 mg/L, R2 is 0.998, and the limit of detection is 6.27 mg/L. The concentration of urea in the milk used in the experiment is 265.46 mg/L. CDs are easy to fabricate, and the advantages of the method are simple operation, no pretreatment, safety, and low cost. A new method for the detection of urea in milk was established, to the best of our knowledge, and this method can aid in food quality control.
Collapse
|