1
|
Nga DTN, Nguyen HA, Hoa NT, Ngoc Huyen N, Xuan Dinh N, Ngoc Bach T, Quang Hoa N, Le AT. A zinc oxide-silver nanocomposite-based SERS nanoplatform for ultrasensitive ofloxacin determination in beef and an ophthalmic solution: effects of ZnO and ZnO content on electron transfer and SERS enhancements. RSC Adv 2025; 15:8878-8888. [PMID: 40129645 PMCID: PMC11931375 DOI: 10.1039/d5ra00776c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 03/17/2025] [Indexed: 03/26/2025] Open
Abstract
Surface-Enhanced Raman Scattering (SERS) is a powerful analytical tool, which is usually based on the use of noble metal nanoparticles. To further improve the performance of SERS sensors, the substrates have been modified, leading to the design and development of metal-semiconductor nanocomposites. In this work, a series of zinc oxide-silver (ZnO/Ag) nanocomposites with different ZnO contents were prepared and employed for Raman measurements of ofloxacin (OFL) to evaluate their SERS performance. By comparing their SERS sensing performance, the effects of ZnO and ZnO content were clarified. With the most optimal ZnO content of 16 wt%, the ZnO/Ag-based SERS sensor could detect OFL at concentrations ranging from 10-3 M to 10-11 M in standard solutions, achieving an ultralow limit of detection (LOD) of 1.5 × 10-11 M. The SERS signal of OFL on ZnO/Ag substrate has been improved with the EF calculated to be 1.8 × 106, which is about 10 times higher than on pure AgNPs (1.7 × 105). This impressive enhancement was achieved by the effects of Ag (electromagnetic and chemical enhancement) and ZnO (adsorption), individually, as well as the combining effects of the two components (additional electromagnetic enhancement and charge transfer). Furthermore, the advanced SERS sensor based on ZnO/Ag nanocomposite substrate could determine OFL content in beef and a commercial OFL ophthalmic solution.
Collapse
Affiliation(s)
- Dao Thi Nguyet Nga
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Ha Anh Nguyen
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Nguyen Thi Hoa
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Nguyen Ngoc Huyen
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Ngo Xuan Dinh
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Ta Ngoc Bach
- Institute of Materials Science (IMS), Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi 10000 Vietnam
| | - Nguyen Quang Hoa
- Center for Materials Science, Faculty of Physics, Ha Noi University of Science Nguyen Trai Street Hanoi 10000 Vietnam
| | - Anh-Tuan Le
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| |
Collapse
|
2
|
Lu X, Ma Y, Jiang S, Wang Z, Yu Q, Ji C, Guo J, Kong X. Quantitative monitoring ofloxacin in beef by TLC-SERS combined with machine learning analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123790. [PMID: 38142496 DOI: 10.1016/j.saa.2023.123790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/03/2023] [Accepted: 12/16/2023] [Indexed: 12/26/2023]
Abstract
Ofloxacin is one kind of quinolone antibiotic drugs, the abuse of ofloxacin in livestock and aquaculture may bring bacterial resistance and healthy problem of people. The illegally feeding cattle with ofloxacin will help it keep health, but the sedimentation of ofloxacin could bring problem in food safety. The accurate, simple and instant monitoring ofloxacin from beef by portable sensor was of vital issue in food quality. A simple and reliable method was proposed for instant and quantitative detecting ofloxacin in beef, in which the thin-layer chromatography (TLC) -surface-enhanced Raman scattering (SERS) spectroscopy was in tandem with machine learning analysis base one principal component analysis-back propagation neural network (PCA-BPNN). The TLC plate was composed with diatomite, that was function as the stationary phase to separate ofloxacin from beef. The real beef juice was directly casted onto the diatomite plate for separating and detecting. The directly monitor ofloxacin from beef was achieved and the sensitivity down to 0.01 ppm. The PCA-BPNN was used as reliable model for quantitative predict the concentration of ofloxacin, that shown superior accuracy compared with the traditional model. The results verify that the diatomite plate TLC-SERS combined with machine-learning analysis is an effective, simple and accurate technique for detecting and quantifying antibiotic drug in meat stuff to improve the food safety.
Collapse
Affiliation(s)
- Xiaoqi Lu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Yidan Ma
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China; International Education College, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Shangkun Jiang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Zice Wang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China; International Education College, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Qian Yu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Chengcheng Ji
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China; Engineering Training Centre, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China.
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xianming Kong
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China; International Education College, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China.
| |
Collapse
|
3
|
Wang Z, Zhang L, Sun L, Bao S, Liu D, Li H, Liu Y. Self-assembly flexible SERS imprinted membrane based on Ag nanocubes for selective detection of microcystin-LR. Mikrochim Acta 2023; 191:19. [PMID: 38087094 DOI: 10.1007/s00604-023-06096-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
Silver nanocubes monolayer-modified polydimethylsiloxane (Ag NC/PDMS) flexible SERS substrates have been prepared by a three-phase interface self-assembly procedure. The combination of this method with membrane technology brings nanoparticles in close proximity, densely, and regularly arranged in monolayers over a large area, leading to excellent SERS properties. Considering the complexity of practical detection, molecular imprinted polymers (MIPs) were anchored on the surface of SERS substrate and applied to selective detection of microcystin-LR (MC-LR). It is worth mentioning that the SERS imprinted membranes (AP-MIMs) were still clearly detected at a concentration of 0.1 µg·L-1 of MC-LR in drinking water, and the detection limit was as low as 0.0067 µg·L-1. The substrate exhibited excellent uniformity with a relative standard deviation (RSD) of 6.1%. In the presence of interference molecules, AP-MIMs exhibited excellent selectivity for MC-LR. Furthermore, in the spiking and recovery tests of practical lake water samples, the method showed excellent recoveries ranging from 96.47 to 105.31%. It has been demonstrated that the prepared AP-MIMs can be applied to sensitive and specific detection of trace amounts of MC-LR in drinking water.
Collapse
Affiliation(s)
- Zedong Wang
- College of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
- Zhong Shan Institute of Changchun University of Science and Technology, Zhongshan, 528437, Guangdong, China
| | - Liang Zhang
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, 130022, China
| | - Lian Sun
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, 130022, China
| | - Siqi Bao
- College of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Dajun Liu
- College of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
- Zhong Shan Institute of Changchun University of Science and Technology, Zhongshan, 528437, Guangdong, China.
| | - Hongji Li
- Zhong Shan Institute of Changchun University of Science and Technology, Zhongshan, 528437, Guangdong, China.
- College of Engineering, Jilin Normal University, Siping, 136000, China.
| | - Yuming Liu
- Zhong Shan Institute of Changchun University of Science and Technology, Zhongshan, 528437, Guangdong, China.
| |
Collapse
|
4
|
Guo H, Ren X, Song X, Li X. Preparation of SiO 2@Ag@molecular imprinted polymers hybrid for sensitive and selective detection of amoxicillin using surface-enhanced Raman scattering. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122365. [PMID: 36652805 DOI: 10.1016/j.saa.2023.122365] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
In this work, we fabricated a 300 nm-sized silver-coated silica (SiO2@Ag) SERS substrate. Based on SiO2@Ag, we designed SiO2@Ag@molecular imprinted polymers (SiO2@Ag@MIPs) to realize selectively detection of amoxicillin by coating a molecular imprinted layer averagely thinner than 10 nm on SiO2@Ag. The as-prepared SERS-active substrate demonstrates excellent enhancement for amoxicillin as well as the enhancement factors were 1.63 × 106 of SiO2@Ag@MIPs and 2.97 × 105 of SiO2@Ag, respectively. The SiO2@Ag@MIPs core-shell hybrids as SERS substrates and the minimum detectable concentration of amoxicillin was as low as 2.7 × 10-9 M, and the detection limit of SiO2@Ag was 2.7 × 10-7 M. The linear relationship between intensities of characteristic peaks and concentrations of amoxicillin was established. Both SiO2@Ag and SiO2@Ag@MIPs substrates were highly sensitive and could achieve qualitative and semi-quantitative analysis of amoxicillin in aqueous media with good linear correlations. Based on the above, SiO2@Ag@MIPs will be conducive to detecting actual samples and expanding the practical application.
Collapse
Affiliation(s)
- Hui Guo
- School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaohui Ren
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xinyue Song
- School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xin Li
- School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
5
|
Tarannum N, Khatoon S, Yadav A, Yadav AK. SERS-Based Molecularly Imprinted Polymer Sensor for Highly Sensitive Norfloxacin Detection. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
6
|
Wang T, Liu M, Huang S, Yuan H, Zhao J. Detection of Ofloxacin and Norfloxacin in Duck Meat Using Surface-Enhanced Raman Spectroscopy (SERS) Coupled with Multivariate Analysis. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2098313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Ting Wang
- Key Laboratory of Modern Agricultural Equipment in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Muhua Liu
- Key Laboratory of Modern Agricultural Equipment in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Shuanggen Huang
- Key Laboratory of Modern Agricultural Equipment in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Haichao Yuan
- Key Laboratory of Modern Agricultural Equipment in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Jinhui Zhao
- Key Laboratory of Modern Agricultural Equipment in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
7
|
Jiang S, Chang L, Luo J, Zhang J, Liu X, Lee CY, Zhang W. Fabrication of a honeycomb-like bimetallic SERS substrate for the detection of triphenyltin chloride. Analyst 2021; 146:6170-6177. [PMID: 34522939 DOI: 10.1039/d1an01359a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Triphenyltin chloride (TPhT) is an organotin compound that causes intensive toxicological risk to the environment and humans. A detection method with high sensitivity and stability is therefore desired to better detect TPhT. In this study, a novel SERS substrate was prepared by sputtering an ultra-thin Au layer on a honeycomb-like silver nanoarray fabricated via the nanosphere lithography method. The ultra-thin Au layer was formed by sputtering the intermittent Au nanoparticles on the silver nanoarray, resulting in bimetallic coupling with dramatically increased hotspots and extremely high SERS enhancement with an analytical enhancement factor (AEF) of 6.08 × 109 using Rhodamine 6G (R6G) as the probe molecule. Based on density functional theory (DFT) simulations, the Raman characteristic peaks of TPhT at 999 cm-1 and 655 cm-1 were selected for TPhT detection. The AEF of the SERS substrate HC5-AgAu was calculated to be 3.38 × 106 with the detection concentration of TPhT down to 10-10 M. The as-prepared honeycomb-like silver-gold bimetallic SERS substrate demonstrated great stability and sensitivity for TPhT detection, which might also be applied in monitoring many other environmental pollutants.
Collapse
Affiliation(s)
- Shan Jiang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China. .,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lin Chang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China. .,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jie Luo
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha 410073, P. R. China
| | - Jianfa Zhang
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha 410073, P. R. China
| | - Xiaohong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China.
| | - Chong-Yew Lee
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Wei Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China. .,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
8
|
Yan BX, Zhu YY, Wei Y, Pei H. Study on surface enhanced Raman scattering of Au and Au@Al 2O 3 spherical dimers based on 3D finite element method. Sci Rep 2021; 11:8391. [PMID: 33864018 PMCID: PMC8052425 DOI: 10.1038/s41598-021-87997-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/15/2021] [Indexed: 12/26/2022] Open
Abstract
In this paper, the surface enhanced Raman scattering (SERS) characteristics of Au and Au@Al2O3 nanoparticle dimers were calculated and analyzed by using finite element method (3D-FEM). Firstly, the electric field enhancement factors of Au nanoparticles at the dimer gap were optimized from three aspects: the incident angle of the incident light, the radius of nanoparticle and the distance of the dimer. Then, aluminum oxide is wrapped on the Au dimer. What is different from the previous simulation is that Al2O3 shell and Au core are regarded as a whole and the total radius of Au@Al2O3 dimer is controlled to remain unchanged. By comparing the distance of Au nucleus between Au and Au@Al2O3 dimer, it is found that the electric field enhancement factor of Au@Al2O3 dimer is much greater than that of Au dimer with the increase of Al2O3 thickness. The peak of electric field of Au@Al2O3 dimer moves towards the middle of the resonance peak of the two materials, and it is more concentrated than that of the Au dimer. The maximum electric field enhancement factor 583 is reached at the shell thickness of 1 nm. Our results provide a theoretical reference for the design of SERS substrate and the extension of the research scope.
Collapse
Affiliation(s)
- Bao-Xin Yan
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004, China
| | - Yan-Ying Zhu
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004, China
| | - Yong Wei
- College of Li Ren, Yanshan University, Qinhuangdao, 066004, China.
| | - Huan Pei
- College of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China.
| |
Collapse
|