1
|
Sun R, Gangan MS, Wang Q, Boedicker JQ, Armani AM. Magnetically Tunable Hydrogel for Biofilm Control. ACS APPLIED BIO MATERIALS 2025. [PMID: 40383927 DOI: 10.1021/acsabm.5c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Bacterial biofilm formation contributes to healthcare and energy challenges, and researchers are actively pursuing a range of strategies to restrict the spread of biofilms in an eco-friendly manner. Commonly used approaches in industry rely on physical removal and chemical techniques, frequently targeting mature biofilms. While effective, these methods often face implementation challenges in remote settings and can have off-target environmental impacts. As a result, an alternative strategy is to focus on controlling or limiting the biofilm formation and growth rates with remote stimuli. It has been shown that the mechanotransduction pathway intrinsic to bacteria responds to changes in the storage modulus of the growth surface, modifying the bacteria's motility and biofilm formation. We developed a material with magnetically tunable mechanical properties by intercalating magnetic nanoparticles into an agar gel matrix and investigated its ability to control Escherichia coli motility and biofilm growth. The initial storage modulus ranges from 0.5 to 2.5 kPa, depending on the material composition. Upon exposure to a 20 mT magnetic field using standard neodymium magnets, the modulus is dynamically and reversibly increased by approximately 30%. As a result of this increase, the expansion rate of the E. coli biofilm is reduced by approximately 40%. The simplicity of the manipulation of its mechanical property not only gives this biomaterial potential to further mechanosensing mechanism research but also proves to be an innovative strategy for remote and eco-conscious restriction of biofilm formation.
Collapse
Affiliation(s)
- Ruojiao Sun
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Manasi S Gangan
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Qiming Wang
- Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - James Q Boedicker
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Andrea M Armani
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
- Ellison Medical Institute, Los Angeles, California 90064-1016, United States
| |
Collapse
|
2
|
Fareed MM, Shityakov S. Next-Generation Hydrogel Design: Computational Advances in Synthesis, Characterization, and Biomedical Applications. Polymers (Basel) 2025; 17:1373. [PMID: 40430669 PMCID: PMC12115241 DOI: 10.3390/polym17101373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Hydrogels are pivotal in advanced materials, driving innovations in medical fields, such as targeted drug delivery, regenerative medicine, and skin repair. This systematic review explores the transformative impact of in-silico design on hydrogel development, leveraging computational tools such as molecular dynamics, finite element modeling, and artificial intelligence to optimize synthesis, characterization, and performance. We analyze cutting-edge strategies for tailoring the physicochemical properties of hydrogels, including their mechanical strength, biocompatibility, and stimulus responsiveness, to meet the needs of next-generation biomedical applications. By integrating machine learning and computational modeling with experimental validation, this review highlights how in silico approaches accelerate material innovation, addressing challenges and outlining future directions for scalable, personalized hydrogel solutions in regenerative medicine and beyond.
Collapse
Affiliation(s)
- Muhammad Mazhar Fareed
- Department of Computer Science, School of Science and Engineering, Università Degli Studi di Verona, 37134 Verona, Italy;
| | - Sergey Shityakov
- Laboratory of Bioinformatics, Department of Bioinformatics, Biocenter, Würzburg University, 97080 Würzburg, Germany
| |
Collapse
|
3
|
Salehi Moghaddam A, Bahrami M, Sarikhani E, Tutar R, Ertas YN, Tamimi F, Hedayatnia A, Jugie C, Savoji H, Qureshi AT, Rizwan M, Maduka CV, Ashammakhi N. Engineering the Immune Response to Biomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414724. [PMID: 40232044 PMCID: PMC12097135 DOI: 10.1002/advs.202414724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/29/2025] [Indexed: 04/16/2025]
Abstract
Biomaterials are increasingly used as implants in the body, but they often elicit tissue reactions due to the immune system recognizing them as foreign bodies. These reactions typically involve the activation of innate immunity and the initiation of an inflammatory response, which can persist as chronic inflammation, causing implant failure. To reduce these risks, various strategies have been developed to modify the material composition, surface characteristics, or mechanical properties of biomaterials. Moreover, bioactive materials have emerged as a new class of biomaterials that can induce desirable tissue responses and form a strong bond between the implant and the host tissue. In recent years, different immunomodulatory strategies have been incorporated into biomaterials as drug delivery systems. Furthermore, more advanced molecule and cell-based immunomodulators have been developed and integrated with biomaterials. These emerging strategies will enable better control of the immune response to biomaterials and improve the function and longevity of implants and, ultimately, the outcome of biomaterial-based therapies.
Collapse
Affiliation(s)
- Abolfazl Salehi Moghaddam
- Department of BioengineeringP.C. Rossin College of Engineering & Applied ScienceLehigh UniversityBethlehemPA18015USA
| | - Mehran Bahrami
- Department of Mechanical Engineering & MechanicsLehigh UniversityBethlehemPA18015USA
| | - Einollah Sarikhani
- Department of Nano and Chemical EngineeringUniversity of California San DiegoLa JollaCA92093USA
| | - Rumeysa Tutar
- Department of ChemistryFaculty of Engineering, Istanbul University‐CerrahpaşaIstanbul, Avcılar34320Turkey
| | - Yavuz Nuri Ertas
- Department of Biomedical EngineeringErciyes UniversityKayseri38039Turkey
- ERNAM – Nanotechnology Research and Application CenterErciyes UniversityKayseri38039Turkey
| | - Faleh Tamimi
- College of Dental MedicineQatar University HealthQatar UniversityP.O. Box 2713DohaQatar
| | - Ali Hedayatnia
- Azrieli Research CenterCentre Hospitalier Universitaire Sainte‐JustineMontrealQCH3T 1C5Canada
- Institute of Biomedical Engineering, Department of Pharmacology and PhysiologyFaculty of MedicineMontrealQuebecH3T 1J4Canada
- Montreal TransMedTech InstituteiTMTMontrealQuebecH3T 1J4Canada
| | - Clotilde Jugie
- Azrieli Research CenterCentre Hospitalier Universitaire Sainte‐JustineMontrealQCH3T 1C5Canada
- Montreal TransMedTech InstituteiTMTMontrealQuebecH3T 1J4Canada
| | - Houman Savoji
- Azrieli Research CenterCentre Hospitalier Universitaire Sainte‐JustineMontrealQCH3T 1C5Canada
- Institute of Biomedical Engineering, Department of Pharmacology and PhysiologyFaculty of MedicineMontrealQuebecH3T 1J4Canada
- Montreal TransMedTech InstituteiTMTMontrealQuebecH3T 1J4Canada
| | - Asma Talib Qureshi
- Department of Biomedical EngineeringMichigan Technological UniversityHoughtonMI49931USA
| | - Muhammad Rizwan
- Department of Biomedical EngineeringMichigan Technological UniversityHoughtonMI49931USA
- Health Research InstituteMichigan Technological UniversityHoughtonMI49931USA
| | - Chima V. Maduka
- BioFrontiers InstituteUniversity of ColoradoBoulderCO80303USA
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME)Colleges of Engineering and Human MedicineMichigan State UniversityEast LansingMI48824USA
- Department of BioengineeringSamueli School of EngineeringUniversity of California Los AngelesLos AngelesCA90095USA
| |
Collapse
|
4
|
Segujja F, Duruksu G, Eren EB, İsayeva A, Yazır Y, Erdem A. Diels-Alder-based IPN hydrogels with tunable mechanical and protein release properties for tissue engineering. Int J Biol Macromol 2025; 306:141779. [PMID: 40049464 DOI: 10.1016/j.ijbiomac.2025.141779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/19/2025] [Accepted: 03/04/2025] [Indexed: 04/12/2025]
Abstract
Advancing hydrogel technology with tunable mechanical strength and sustained release is critical for therapeutic applications in drug delivery and tissue engineering. Conventional single polymer networks, including semi-interpenetrating polymer network (SIPN) hydrogels, often lack mechanical robustness and controlled release needed for therapeutic use. In this study, we fabricated a biocompatible interpenetrating polymer network (IPN) hydrogel with improved properties for controlled protein release. We employed a facile one-pot synthesis approach that integrated aqueous Diels-Alder (DA) 'click' chemistry with photopolymerization methods to crosslink gelatin methacryloyl (GelMA) within a polymeric framework of poly(ethylene) glycol bismaleimide (PEGMI) and multi-furan-modified polyethylene glycol (PEGFU). Spectroscopy (FTIR and 1H NMR) confirmed the chemical composition of the hydrogels. The effect of varying polymer ratios on hydrogel properties was assessed to optimize protein release and mechanical behavior. Fully crosslinked IPN hydrogels exhibited enhanced energy dissipation and compressive moduli 2.5- to 3.5-fold relative to SIPN hydrogels across various polymer ratios. Release kinetics followed the Korsmeyer-Peppas mathematical model, indicating sustained release. IPN hydrogels demonstrated good water absorption, moderate degradation, and favorable biocompatibility with 3T3 fibroblast cells. Overall, these findings highlight the potential of IPN hydrogels as a promising drug delivery platform for advancing regenerative therapies and targeted treatment strategies.
Collapse
Affiliation(s)
- Farouk Segujja
- Department of Biomedical Engineering, Faculty of Technology, Kocaeli University, 41001, Kocaeli, Turkey.
| | - Gökhan Duruksu
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, 41001, Kocaeli, Turkey; Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, 41001, Kocaeli, Turkey.
| | - Elif Beyza Eren
- Department of Biomedical Engineering, Faculty of Technology, Kocaeli University, 41001, Kocaeli, Turkey
| | - Aygun İsayeva
- Department of Biomedical Engineering, Faculty of Technology, Kocaeli University, 41001, Kocaeli, Turkey; Department of Stem Cell, Institute of Health Sciences, Kocaeli University, 41001, Kocaeli, Turkey
| | - Yusufhan Yazır
- Department of Stem Cell, Institute of Health Sciences, Kocaeli University, 41001, Kocaeli, Turkey; Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, 41001, Kocaeli, Turkey
| | - Ahmet Erdem
- Department of Biomedical Engineering, Faculty of Technology, Kocaeli University, 41001, Kocaeli, Turkey.
| |
Collapse
|
5
|
Ding X, Sha D, Sun K, Fan Y. Biomechanical insights into the development and optimization of small-diameter vascular grafts. Acta Biomater 2025:S1742-7061(25)00270-3. [PMID: 40239752 DOI: 10.1016/j.actbio.2025.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/22/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
Small-diameter vascular grafts (SDVGs; inner diameter ≤6 mm) offer transformative potential for treating cardiovascular diseases, yet their clinical application remains limited due to high rates of complications such as acute thrombosis and intimal hyperplasia (IH), which compromise long-term patency. While advancements in biological and material science have driven progress, the critical role of biomechanical factors-such as hemodynamic forces and mechanical mismatch-in graft failure is often overlooked. This review presents insights from recent clinical trials of SDVG products and summarizes biomechanical contributors to failure, including disturbed flow patterns, mechanical mismatch, and insufficient mechanical strength. We outline essential mechanical performance criteria (e.g., compliance, burst pressure) and evaluation methodologies to assess SDVG performance. Furthermore, we present optimization strategies based on biomechanical principles: (1) graft morphological design optimization to improve hemodynamic stability, (2) structural, material, and fabrication innovations to achieve compliance matching with native arteries, and (3) biomimetic approaches to mimic vascular tissue and promote endothelialization. By systematically addressing these biomechanical challenges, next-generation SDVGs may achieve superior patency, accelerating their clinical translation. This review highlights the necessity of considering biomechanical compatibility in SDVG development, thereby providing initial insights for the clinical translation of SDVG. STATEMENT OF SIGNIFICANCE: Small-diameter vascular grafts (SDVGs) offer transformative potential for cardiovascular disease treatment but face clinical limitations. While significant progress has been made in biological and material innovations, the critical role of biomechanical factors in graft failure has often been underestimated. This review highlights the importance of biomechanical compatibility in SDVG design and performance, emphasizing the need to address disturbed flow patterns, mechanical mismatch, and inadequate mechanical strength. By proposing optimization strategies based on biomechanical principles, such as graft morphological design, compliance matching, and biomimetic approaches, this work provides a roadmap for developing next-generation SDVGs with improved patency. These advancements have the potential to overcome current limitations, accelerate clinical translation, ultimately benefiting patients worldwide.
Collapse
Affiliation(s)
- Xili Ding
- Medical Engineering & Engineering Medicine Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China; Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100191, China; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, Beihang University, Beijing, 100083, China
| | - Dongyu Sha
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Kaixin Sun
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100191, China; National Superior College for Engineers, Beihang University, Beijing, 100191, China
| | - Yubo Fan
- Medical Engineering & Engineering Medicine Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China; Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100191, China; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, Beihang University, Beijing, 100083, China.
| |
Collapse
|
6
|
Liton M, Farid Ul Islam A, Sarker M, Rahman M, Khan M. Unlocking the mechanical, thermodynamic and thermoelectric properties of NaSbS 2: A DFT scheme. Heliyon 2025; 11:e41220. [PMID: 39811289 PMCID: PMC11730540 DOI: 10.1016/j.heliyon.2024.e41220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/13/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
The present study focuses on the ground state mechanical, acoustic, thermodynamic and electronic transport properties of NaSbS2 polymorphs using the density functional theory (DFT) and semi-classical Boltzmann transport theory. The mechanical stability of the polymorphs is affirmed by the calculated elastic tensor. The calculated elastic properties asserted that all the polymorphs exhibit soft, brittle, anisotropic nature containing dominant covalent bonding. The 2D polar graphs are used to describe the anisotropic characteristic of the elastic parameters. The estimated value of Young's modulus and lattice thermal conductivity suggested that the polymorphs could be suitable for thermal barrier coating. Heat capacity, melting temperature, thermal conductivities, Grüneisen parameter, and thermal expansion coefficient of the polymorphs have also been studied to demonstrate thermodynamic behavior. The predicted lower values of lattice thermal conductivity declared that NaSbS2 polymorphs exhibit excellent electrical conductivity and transport properties. The estimated Seebeck coefficient (S), power factor (PF) and figure of merit (ZT) suggested that n-type triclinic and monoclinic, as well as p-type trigonal NaSbS2, are better for thermoelectric applications. The optimal carrier concentration for monoclinic structure is 1021 cm-3 for T < 750 K, while it becomes 1020 cm-3 for T > 750 K. It is also found that the optimal carrier concentration of the trigonal is 1021 cm-3, whereas it is 1020 cm-3 for triclinic structures. Therefore, it can be stated that NaSbS2 polymorphs possess excellent thermoelectric features, making them a promising choice for thermoelectric (TE) applications.
Collapse
Affiliation(s)
- M.N.H. Liton
- Department of Physics, University of Rajshahi, Rajshahi, 6205, Bangladesh
- Department of Physics, Begum Rokeya University, Rangpur, Rangpur, 5400, Bangladesh
| | - A.K.M. Farid Ul Islam
- Department of Computer Science and Engineering, Begum Rokeya University, Rangpur, Rangpur, 5400, Bangladesh
| | - M.S.I. Sarker
- Department of Physics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - M.M. Rahman
- Department of Physics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - M.K.R. Khan
- Department of Physics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| |
Collapse
|
7
|
Didi Y, Belhajji M, Bahhar S, Tahiri A, Naji M, Rjeb A, Zaini HG, Flah A, Ghoneim SSM, Sharaf ABA, Hashim MA. Computational insights into spin-polarized density functional theory applied to actinide-based perovskites XBkO₃ (X = Sr, Ra, Pb). Sci Rep 2025; 15:87. [PMID: 39747322 PMCID: PMC11696916 DOI: 10.1038/s41598-024-81887-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
The exploration of perovskite compounds incorporating actinide and divalent elements reveals remarkable characteristics. Focusing on PbBkO3, RaBkO3, and SrBkO3, these materials were studied using density functional theory (DFT) via the CASTEP code to analyze their electronic, optical, and mechanical properties. The results show semiconductor behavior, with respective band gaps of 1.320 eV for PbBkO3, 3.415 eV for RaBkO3, and 2.775 eV for SrBkO3. Additionally, the elastic constants Cij, bulk modulus B, elasticity modulus G, Young's modulus Y, and Poisson's ratio v were optimized, highlighting anisotropic behavior. The mechanical stability of the compounds meets Born's criteria, and RaBkO3 stands out with a stable lattice dynamic, as demonstrated by phonon dispersion curves in the Pm-3 m space group. The optical properties of these materials indicate they are excellent absorbers of incident radiation, suggesting their potential for applications in magnetic sensors due to their anisotropic magnetic behavior, as well as for capturing solar radiation in the ultraviolet range.
Collapse
Affiliation(s)
- Youssef Didi
- LPAIS, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, B.P. 1796, Fez-Atlas, Morocco
| | - Mounir Belhajji
- LPAIS, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, B.P. 1796, Fez-Atlas, Morocco
| | - Soufiane Bahhar
- Faculty of Sciences, Department of Physics, Chouaïb Doukkali University, B.P. 24000, El-Jadida, Morocco
| | - Abdellah Tahiri
- LPAIS, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, B.P. 1796, Fez-Atlas, Morocco.
| | - Mohamed Naji
- LPAIS, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, B.P. 1796, Fez-Atlas, Morocco
| | - Abdelilah Rjeb
- LPAIS, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, B.P. 1796, Fez-Atlas, Morocco
| | - Hatim G Zaini
- Computer Engineering Department, College of Computer and Information Technology, Taif University, Taif, 21944, Saudi Arabia
| | - Aymen Flah
- College of Engineering, University of Business and Technology (UBT), 21448, Jeddah, Saudi Arabia
- Applied Science Research Center, Applied Science Private University, 11931, Amman, Jordan
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
- ENET Centre, VSB-Technical University of Ostrava, Ostrava, Czech Republic
| | - Sherif S M Ghoneim
- Department of Electrical Engineering, College of Engineering, Taif University, P.O. BOX 11099, 21944, Taif, Saudi Arabia
| | - Ahmed B Abou Sharaf
- Ministry of Higher Education & Scientific Research, Industrial Technical Institute in Mataria, 11718, Cairo, Egypt
- Chitkara Centre for Research and Development, Chitkara University, 174103, Baddi, Himachal Pradesh, India
| | - Mofreh A Hashim
- Water Management Research Institute, National Water Research Center, Shubra El-Kheima 13411, Cairo, Egypt.
| |
Collapse
|
8
|
Zatorski JM, Lee IL, Ortiz-Cárdenas JE, Ellena JF, Pompano RR. Measurement of Covalent Bond Formation in Light-Curing Hydrogels Predicts Physical Stability under Flow. Anal Chem 2024; 96:19880-19888. [PMID: 39625220 DOI: 10.1021/acs.analchem.4c03482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Photo-crosslinking hydrogels are promising for tissue engineering and regenerative medicine, but challenges in reaction monitoring often leave their optimization subject to trial and error. The stability of crosslinked gels under fluid flow, as in the case of a microfluidic device, is particularly challenging to predict, both because of obstacles inherent to solid-state macromolecular analysis that prevent accurate chemical monitoring and because stability is dependent on size of the patterned features. To solve both problems, we obtained 1H NMR spectra of cured hydrogels which were enzymatically degraded. This allowed us to take advantage of the high-resolution that solution NMR provides. This unique approach enabled the measurement of degree of cross-linking (DoC) and prediction of material stability under physiological fluid flow. We showed that NMR spectra of enzyme-digested gels successfully reported on DoC as a function of light exposure and wavelength within two classes of photo-cross-linkable hydrogels: methacryloyl-modified gelatin and a composite of thiol-modified gelatin and norbornene-terminated polyethylene glycol. This approach revealed that a threshold DoC was required for patterned features in each material to become stable and that smaller features required a higher DoC for stability. Finally, we demonstrated that DoC was predictive of the stability of architecturally complex features when photopatterning, underscoring the value of monitoring DoC when using light-reactive gels. We anticipate that the ability to quantify chemical cross-links will accelerate the design of advanced hydrogel materials for structurally demanding applications such as photopatterning and bioprinting.
Collapse
Affiliation(s)
- Jonathan M Zatorski
- Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, Virginia 22904, United States
| | - Isabella L Lee
- Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, Virginia 22904, United States
| | - Jennifer E Ortiz-Cárdenas
- Department of Bioengineering, Stanford University, 443 Via Ortega, Rm 119, Stanford, California 94305, United States
| | - Jeffrey F Ellena
- Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, Virginia 22904, United States
| | - Rebecca R Pompano
- Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, Virginia 22904, United States
- Department of Biomedical Engineering, University of Virginia School of Engineering and Applied Sciences, Thornton Hall, 351 McCormick Rd, Charlottesville, Virginia 22904, United States
- Carter Immunology Center and UVA Cancer Center, University of Virginia, 345 Crispell Dr., MR-6, Charlottesville, Virginia 22908, United States
| |
Collapse
|
9
|
Ozudogru E, Kurt T, Derkus B, Cengiz U, Arslan YE. Supercritical CO 2-Mediated Decellularization of Bovine Spinal Cord Meninges: A Comparative Study for Decellularization Performance. ACS OMEGA 2024; 9:48781-48790. [PMID: 39676980 PMCID: PMC11635505 DOI: 10.1021/acsomega.4c08684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/07/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024]
Abstract
The extracellular matrix (ECM) of spinal meninge tissue closely resembles the wealthy ECM content of the brain and spinal cord. The ECM is typically acquired through the process of decellularizing tissues. Nevertheless, the decellularization process of the brain and spinal cord is challenging due to their high-fat content, in contrast to the spinal meninges. Hence, bovine spinal cord meninges offer a promising source to produce ECM-based scaffolds, thanks to their abundance, accessibility, and ease of decellularization for neural tissue engineering. However, most decellularization techniques involve disruptive chemicals and repetitive rinsing processes, which could lead to drastic modifications in the tissue ultrastructure and a loss of mechanical stability. Over the past decade, supercritical fluid technology has experienced considerable advancements in fabricating biomaterials with its applications spreading out to tissue engineering to tackle the complications mentioned above. Supercritical carbon-dioxide (scCO2)-based decellularization procedures especially offer a significant advantage over classical decellularization techniques, enabling the preservation of extracellular matrix components and structures. In this study, we decellularized the bovine spinal cord meninges by seven different methods. To identify the most effective approach, the decellularized matrices were characterized by dsDNA, collagen, and glycosaminoglycan contents and histological analyses. Moreover, the mechanical properties of the hydrogels produced from the decellularized matrices were evaluated. The novel scCO2-based treatment was completed in a shorter time than the conventional method (3 versus 7 days) while maintaining the structural and mechanical integrity of the tissue. Additionally, all hydrogels derived from scCO2-decellularized matrices demonstrated high cell viability and biocompatibility in a cell culture. The current study suggests a rapid, effective, and detergent-free scCO2-assisting decellularization protocol for clinical tissue engineering applications.
Collapse
Affiliation(s)
- Eren Ozudogru
- Regenerative
Biomaterials Laboratory, Department of Bioengineering, Faculty of
Engineering, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Tugce Kurt
- Regenerative
Biomaterials Laboratory, Department of Bioengineering, Faculty of
Engineering, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Burak Derkus
- Stem Cell
Research Laboratory, Department of Chemistry, Faculty of Science, Ankara University, Ankara 06560, Turkey
| | - Ugur Cengiz
- Surface Science
Research Laboratory, Department of Chemical Engineering, Faculty of
Engineering, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey
| | - Yavuz Emre Arslan
- Regenerative
Biomaterials Laboratory, Department of Bioengineering, Faculty of
Engineering, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| |
Collapse
|
10
|
Huang R, Niu X, Li X, Li X. Applications of type I and II collagen in osteochondral tissue engineering: Respective features and future perspectives. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2024; 24:100328. [DOI: 10.1016/j.medntd.2024.100328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025] Open
|
11
|
Simińska-Stanny J, Podstawczyk D, Delporte C, Nie L, Shavandi A. Hyaluronic Acid Role in Biomaterials Prevascularization. Adv Healthc Mater 2024; 13:e2402045. [PMID: 39254277 DOI: 10.1002/adhm.202402045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Indexed: 09/11/2024]
Abstract
Tissue vascularization is a major bottleneck in tissue engineering. In this review, the state of the art on the intricate role of hyaluronic acid (HA) in angiogenesis is explored. HA plays a twofold role in angiogenesis. First, when released as a free polymer in the extracellular matrix (ECM), HA acts as a signaling molecule triggering multiple cascades that foster smooth muscle cell differentiation, migration, and proliferation thereby contributing to vessel wall thickening. Simultaneously, HA bound to the plasma membrane in the pericellular space functions as a polymer block, participating in vessel formation. Starting with the HA origins in native vascular tissues, the approaches aimed at achieving vascularization in vivo are reviewed. The significance of HA molecular weight (MW) in angiogenesis and the challenges associated with utilizing HA in vascular tissue engineering (VTE) are conscientiously addressed. The review finally focuses on a thorough examination and comparison of the diverse strategies adopted to harness the benefits of HA in the vascularization of bioengineered materials. By providing a nuanced perspective on the multifaceted role of HA in angiogenesis, this review contributes to the ongoing discourse in tissue engineering and advances the collective understanding of optimizing vascularization processes assisted by functional biomaterials.
Collapse
Affiliation(s)
- Julia Simińska-Stanny
- 3BIO-BioMatter, Faculty of Engineering, Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, Brussels, 1050, Belgium
| | - Daria Podstawczyk
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, Wroclaw, 50-373, Poland
| | - Christine Delporte
- Laboratoire de Biochimie physiopathologique et nutritionnelle (LBNP), Faculté de Médecine, Université libre de Bruxelles (ULB), Campus Erasme - CP 611, Route de Lennik 808, Bruxelles, 1070, Belgium
| | - Lei Nie
- College of Life Science, Xinyang Normal University, Xinyang, 464031, China
| | - Armin Shavandi
- 3BIO-BioMatter, Faculty of Engineering, Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, Brussels, 1050, Belgium
| |
Collapse
|
12
|
Miller RC, Temenoff JS. Biomaterials for Cell Manufacturing. ACS Macro Lett 2024; 13:1521-1530. [PMID: 39466845 PMCID: PMC11580378 DOI: 10.1021/acsmacrolett.4c00634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Cell therapies, potent populations of cells used to treat disease and injury, can be strategically manufactured with biomaterial intervention to improve clinical translation. In this viewpoint, we discuss biomaterial design and integration into cell manufacturing steps to achieve three main goals: scale-up, phenotype control, and selection of potent cells. Material properties can be engineered to influence the cell-biomaterial interface and, therefore, impart desirable cell behavior such as growth, secretory activity, and differentiation. Future directions for the field should capitalize on the combinatorial design of biomaterial properties to yield highly specific and potent cell populations. Furthermore, future biomaterials could contribute to novel high-throughput cell separation technologies that can individually select the most therapeutically relevant cells within a produced batch.
Collapse
Affiliation(s)
- Ryan C. Miller
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Tech/Emory University, Atlanta, Georgia 30332, United States
| | - Johnna S. Temenoff
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Tech/Emory University, Atlanta, Georgia 30332, United States
- Parker
H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
13
|
Larijani G, Poostchi M, Faridghiasi F, Pal Singh Chauhan N, Rajaeih S, Amini N, Simorgh S. Electrospun PCL/Alginate/Nanoclay Nerve Conduit with Olfactory Ectomesenchymal Stem Cells for Nerve Regeneration. ACS APPLIED BIO MATERIALS 2024; 7:7522-7534. [PMID: 39415452 DOI: 10.1021/acsabm.4c01113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Biocompatible and biodegradable nerve growth conduits (NGCs) provide a promising alternative to conventional nerve grafting for peripheral nerve regeneration. Incorporating nanoclay (NC) has been shown to increase the hydrophilicity and flexibility of polymeric scaffolds. In the present study, poly caprolactone-alginate (PCL-ALG) conduits with varying percentages of NC (0.1%, 0.2%, and 0.5%) were fabricated using the electrospinning technique. The conduit containing 0.5% NC showed a greater increase in elongation (33%) and porosity, reaching 95% with the lowest contact angle (10°). For in vitro, human olfactory ectomesenchymal stem cells (OE-MSCs) were used as a favorable choice for neuronal differentiation owing to the origin from the neural crest. The viability and proliferation of OE-MSCs were maintained after 5 days on scaffolds with 0.5% NC, as confirmed by the MTT assay, cell adhesion analysis, and live/dead staining. Furthermore, the impact of 0.5% PCL-ALG-NC on the paracrine activity of OE-MSCs was studied for a period of 7 days. Our results indicated that human OE-MSCs, when cocultured with PC12 cells on NGC, have the capability to release nerve growth factor levels of up to 1392.83 pg/mL. In summary, the electrospun PCL-ALG conduit containing an optimal NC dosage (0.5%) and seeded with human OE-MSCs shows promising outcomes as NGC scaffold for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Ghazaleh Larijani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Maryam Poostchi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Biomaterials Group, Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center (MERC), Tehran 3177983634, Iran
| | - Farzaneh Faridghiasi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Narendra Pal Singh Chauhan
- Department of Chemistry, Faculty of Science, Bhupal Nobles' University, Udaipur, Rajasthan 313001, India
| | - Shahin Rajaeih
- ENT and Head and Neck Research Center and Department, the Five Senses Health, Iran University of Medical Sciences, Tehran 1445613131, Iran
| | - Naser Amini
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Sara Simorgh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| |
Collapse
|
14
|
Cruz-Gómez A, Burillo G, Perez-Calixto D, Palomino K, Magaña H. Interpenetrated Polymer Network Systems (PEG/PNIPAAm) Using Gamma Irradiation: Biological Evaluation for Potential Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4998. [PMID: 39459702 PMCID: PMC11509373 DOI: 10.3390/ma17204998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
The potential antimicrobial and antibiofouling properties of previously synthesized PEG/NiPAAm interpenetrated polymer networks (IPNs) were investigated against three of the most common bacteria (E. coli, S. aureus, and S. epidermidis). The main goal was to evaluate the material's biocompatibility and determine its potential use as an antifouling component in medical devices. This was intended to provide an alternative option that avoids drug usage as the primary treatment, thus contributing to the fight against antimicrobial resistance (AMR). Additionally, characterization and mechanical testing of the IPN were carried out to determine its resistance to manipulation processes in medical/surgical procedures. IPNs with different NiPAAm ratios exhibited excellent cytocompatibility with BALB/3T3 murine fibroblast cells, with cell viability values of between 90 and 98%. In addition, the results regarding the adsorption of albumin as a model protein showed a nearly constant adsorption percentage of almost zero. Furthermore, the bacterial inhibition tests yielded promising results, demonstrating effective pathogen growth inhibition after 48 h. These findings suggest the material's suitability for use in biomedical applications.
Collapse
Affiliation(s)
- Angélica Cruz-Gómez
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico; (A.C.-G.); (G.B.)
| | - Guillermina Burillo
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico; (A.C.-G.); (G.B.)
| | - Daniel Perez-Calixto
- Instituto Nacional de Medicina Genómica, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico;
| | - Kenia Palomino
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional Tijuana, Tijuana 22390, Mexico;
| | - Héctor Magaña
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional Tijuana, Tijuana 22390, Mexico;
| |
Collapse
|
15
|
Dan X, Li S, Chen H, Xue P, Liu B, Ju Y, Lei L, Li Y, Fan X. Tailoring biomaterials for skin anti-aging. Mater Today Bio 2024; 28:101210. [PMID: 39285945 PMCID: PMC11402947 DOI: 10.1016/j.mtbio.2024.101210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Skin aging is the phenomenon of degenerative changes in the structure and function of skin tissues over time and is manifested by a gradual loss of skin elasticity and firmness, an increased number of wrinkles, and hyperpigmentation. Skin anti-aging refers to a reduction in the skin aging phenomenon through medical cosmetic technologies. In recent years, new biomaterials have been continuously developed for improving the appearance of the skin through mechanical tissue filling, regulating collagen synthesis and degradation, inhibiting pigmentation, and repairing the skin barrier. This review summarizes the mechanisms associated with skin aging, describes the biomaterials that are commonly used in medical aesthetics and their possible modes of action, and discusses the application strategies of biomaterials in this area. Moreover, the synergistic effects of such biomaterials and other active ingredients, such as stem cells, exosomes, growth factors, and antioxidants, on tissue regeneration and anti-aging are evaluated. Finally, the possible challenges and development prospects of biomaterials in the field of anti-aging are discussed, and novel ideas for future innovations in this area are summarized.
Collapse
Affiliation(s)
- Xin Dan
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Songjie Li
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Han Chen
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ping Xue
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Bo Liu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yikun Ju
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Yang Li
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xing Fan
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
16
|
Patil SJ, Thorat VM, Koparde AA, Bhosale RR, Bhinge SD, Chavan DD, Tiwari DD. Theranostic Applications of Scaffolds in Current Biomedical Research. Cureus 2024; 16:e71694. [PMID: 39559663 PMCID: PMC11571282 DOI: 10.7759/cureus.71694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
Theranostics, a remarkable combination of diagnostics and therapeutics, has given rise to tissue/organ-format theranostic scaffolds that integrate targeted therapy and real-time disease monitoring. The scaffold is a 3D structuring template for cell or tissue attachment and growth. These scaffolds offer unprecedented opportunities for personalized medicine and hold great potential for revolutionizing healthcare. Recent advancements in fabrication techniques have enabled the creation of highly intricate and precisely engineered scaffolds with controllable physical and chemical properties, enhancing their therapeutic potential for tissue engineering and regenerative medicine. This paper proposes a new categorization method for scaffolds in tissue engineering based on the relativity of scaffold design-independent parameters. Five types of scaffolds are defined at different levels, highlighting the importance of understanding and analyzing scaffold types. It possesses the ability to seamlessly integrate diagnostics and therapeutics within a single platform, enhancing the efficacy and precision of personalized medicine. Natural scaffolds derived from biomaterials and synthetic scaffolds fabricated by human intervention are discussed, with synthetic scaffolds offering advantages such as tunable mechanical properties and controlled drug delivery, while natural scaffolds provide inherent biocompatibility and bioactivity, making them ideal for promoting cellular responses. The use of synthetic scaffolds shows great promise in advancing regenerative medicine and improving patient outcomes. The transfer of new technologies and changes in society have accelerated the evolution of health monitoring into the era of personal health monitoring. Using emerging health data, cost-effective analytics, wireless sensor networks, mobile smartphones, and easy internet access, the combination of these technologies is expected to accelerate the transition to personal health monitoring outside of traditional healthcare settings. The main objective of this review article is to provide a comprehensive overview of the theranostic applications of scaffolds in current biomedical research, highlighting their dual role in therapy and diagnostics. The review aims to explore the latest advancements in scaffold design, fabrication, and functionalization, emphasizing how these innovations contribute to improved therapeutic efficacy, targeted drug delivery, and the real-time monitoring of disease progression across various medical fields.
Collapse
Affiliation(s)
- Sarika J Patil
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Vandana M Thorat
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Akshada A Koparde
- Department of Pharmaceutical Chemistry, Krishna Institute of Pharmacy, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Rohit R Bhosale
- Department of Pharmaceutics, Krishna Foundation's Jaywant Institute of Pharmacy, Karad, IND
| | - Somnath D Bhinge
- Department of Pharmaceutical Chemistry, Rajarambapu College of Pharmacy, Kasegaon, IND
| | - Dhanashri D Chavan
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Devkumar D Tiwari
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| |
Collapse
|
17
|
Li Z, Li J, Qu G, Chen K, Liu Y, Li S, Chen C, Zhao Y, Huang J, Wang P, Wu X, Ren J. Multiscale hydrogel regulates mesenchymal stem cell fate for bone regeneration. CELL REPORTS PHYSICAL SCIENCE 2024; 5:102181. [DOI: 10.1016/j.xcrp.2024.102181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
|
18
|
Zhang S, Yu M, Li M, He M, Xie L, Huo F, Tian W. Notch Signaling Hydrogels Enable Rapid Vascularization and Promote Dental Pulp Tissue Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310285. [PMID: 39013081 PMCID: PMC11425206 DOI: 10.1002/advs.202310285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/07/2024] [Indexed: 07/18/2024]
Abstract
Successful dental pulp regeneration is closely associated with rapid revascularization and angiogenesis, processes driven by the Jagged1(JAG1)/Notch signaling pathway. However, soluble Notch ligands have proven ineffective in activating this pathway. To overcome this limitation, a Notch signaling hydrogel is developed by indirectly immobilizing JAG1, aimed at precisely directing the regeneration of vascularized pulp tissue. This hydrogel displays favorable mechanical properties and biocompatibility. Cultivating dental pulp stem cells (DPSCs) and endothelial cells (ECs) on this hydrogel significantly upregulate Notch target genes and key proangiogenic markers expression. Three-dimensional (3D) culture assays demonstrate Notch signaling hydrogels improve effectiveness by facilitating encapsulated cell differentiation, enhancing their paracrine functions, and promoting capillary lumen formation. Furthermore, it effectively communicates with the Wnt signaling pathway, creating an odontoinductive microenvironment for pulp-dentin complex formation. In vivo studies show that short-term transplantation of the Notch signaling hydrogel accelerates angiogenesis, stabilizes capillary-like structures, and improves cell survival. Long-term transplantation further confirms its capability to promote the formation of pulp-like tissues rich in blood vessels and peripheral nerve-like structures. In conclusion, this study introduces a feasible and effective hydrogel tailored to specifically regulate the JAG1/Notch signaling pathway, showing potential in advancing regenerative strategies for dental pulp tissue.
Collapse
Affiliation(s)
- Siyuan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Mei Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Maojiao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine Ministry of Education, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Min He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Li Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Fangjun Huo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine Ministry of Education, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
19
|
Figueroa-Milla AE, DeMaria W, Wells D, Jeon O, Alsberg E, Rolle MW. Vascular tissues bioprinted with smooth muscle cell-only bioinks in support baths mimic features of native coronary arteries. Biofabrication 2024; 16:045033. [PMID: 39121893 DOI: 10.1088/1758-5090/ad6d8f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
This study explores the bioprinting of a smooth muscle cell-only bioink into ionically crosslinked oxidized methacrylated alginate (OMA) microgel baths to create self-supporting vascular tissues. The impact of OMA microgel support bath methacrylation degree and cell-only bioink dispensing parameters on tissue formation, remodeling, structure and strength was investigated. We hypothesized that reducing dispensing tip diameter from 27 G (210μm) to 30 G (159μm) for cell-only bioink dispensing would reduce tissue wall thickness and improve the consistency of tissue dimensions while maintaining cell viability. Printing with 30 G tips resulted in decreased mean wall thickness (318.6μm) without compromising mean cell viability (94.8%). Histological analysis of cell-only smooth muscle tissues cultured for 14 d in OMA support baths exhibited decreased wall thickness using 30 G dispensing tips, which correlated with increased collagen deposition and alignment. In addition, a TUNEL assay indicated a decrease in cell death in tissues printed with thinner (30 G) dispensing tips. Mechanical testing demonstrated that tissues printed with a 30 G dispensing tip exhibit an increase in ultimate tensile strength compared to those printed with a 27 G dispensing tip. Overall, these findings highlight the importance of precise control over bioprinting parameters to generate mechanically robust tissues when using cell-only bioinks dispensed and cultured within hydrogel support baths. The ability to control print dimensions using cell-only bioinks may enable bioprinting of more complex soft tissue geometries to generatein vitrotissue models.
Collapse
Affiliation(s)
- Andre E Figueroa-Milla
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, United States of America
| | - William DeMaria
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, United States of America
| | - Derrick Wells
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Oju Jeon
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Eben Alsberg
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States of America
- Departments of Mechanical & Industrial Engineering, Orthopaedic Surgery, and Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
- Jesse Brown Veterans Affairs Medical Center (JBVAMC), Chicago, IL, United States of America
| | - Marsha W Rolle
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, United States of America
- The Roux Institute at Northeastern University, Portland, ME, United States of America
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States of America
| |
Collapse
|
20
|
Mišković V, Greco I, Minetti C, Cialdai F, Monici M, Gazzi A, Marcellino J, Samad YA, Delogu LG, Ferrari AC, Iorio CS. Hydrogel mechanical properties in altered gravity. NPJ Microgravity 2024; 10:83. [PMID: 39117674 PMCID: PMC11310329 DOI: 10.1038/s41526-024-00388-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/21/2024] [Indexed: 08/10/2024] Open
Abstract
Exposure to altered gravity influences cellular behaviour in cell cultures. Hydrogels are amongst the most common materials used to produce tissue-engineering scaffolds, and their mechanical properties play a crucial role in cell-matrix interaction. However, little is known about the influence of altered gravity on hydrogel properties. Here we study the mechanical properties of Poly (ethylene glycol) diacrylate (PEGDA) and PEGDA incorporated with graphene oxide (GO) by performing tensile tests in micro and hypergravity during a Parabolic flight campaign, and by comparing them to the same tests performed in Earth gravity. We show that gravity levels do not result in a statistically significant difference in Young's modulus.
Collapse
Affiliation(s)
- Vanja Mišković
- Centre for Research and Engineering in Space Technologies, École Polytechnique de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
| | - Immacolata Greco
- Centre for Research and Engineering in Space Technologies, École Polytechnique de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
| | - Christophe Minetti
- Centre for Research and Engineering in Space Technologies, École Polytechnique de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
| | - Francesca Cialdai
- ASAcampus Joint Laboratory, ASA Research Division, Department of Experimental and Clinical Biomedical Sciences « Mario Serio », University of Florence, Florence, Italy
| | - Monica Monici
- ASAcampus Joint Laboratory, ASA Research Division, Department of Experimental and Clinical Biomedical Sciences « Mario Serio », University of Florence, Florence, Italy
| | - Arianna Gazzi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | | - Yarjan Abdul Samad
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
- Department of Aerospace Engineering, Khalifa university of Science and Technology, Abu Dhabi, 127788, UAE
| | - Lucia Gemma Delogu
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Department of Biological Science, Khalifa university of Science and Technology, Abu Dhabi, UAE
| | - Andrea C Ferrari
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Carlo Saverio Iorio
- Centre for Research and Engineering in Space Technologies, École Polytechnique de Bruxelles, Université libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
21
|
Joyce CM, Gordon EB, McGivney A, Li X, Lim T, Cohen MA, Kaplan DL. Methods to Screen the Adhesion of Fish Cells on Plant-, Algal- and Fungal-Derived Biomaterials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39969-39980. [PMID: 39024341 DOI: 10.1021/acsami.4c06543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Cellular agriculture, an alternative and innovative approach to sustainable food production, has gained momentum in recent years. However, there is limited research into the production of cultivated seafood. Here, we investigated the ability of fish mackerel cells (Scomber scombrus) to adhere to plant, algal and fungal-based biomaterial scaffolds, aiming to optimize the cultivation of fish cells for use in cellular agriculture. A mackerel cell line was utilized, and metabolic assays and confocal imaging were utilized to track cell adhesion, growth, and differentiation on the different biomaterials. The mackerel cells adhered and grew on gelatin (positive control), zein, and soy proteins, as well as on alginate, chitosan, and cellulose polysaccharides. The highest adhesion and growth were on the zein and chitosan substrates, apart from the gelatin control. These findings provide a blueprint to enhance scaffold selection and design, contributing to the broader field of cellular agriculture through the development of scalable and eco-conscious solutions for meeting the growing global demand for seafood.
Collapse
Affiliation(s)
- Connor M Joyce
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Edward B Gordon
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Aelish McGivney
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Xinxin Li
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Taehwan Lim
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Malkiel A Cohen
- Wanda Fish Technologies LTD, 7 Pinhas Sapir St., Ness Ziona 7403630, Israel
| | - David L Kaplan
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
22
|
Quadrado RFN, Zhai Z, Zavadinack M, Klassen G, Iacomini M, Edgar KJ, Fajardo AR. All-polysaccharide, self-healing, pH-sensitive, in situ-forming hydrogel of carboxymethyl chitosan and aldehyde-functionalized hydroxyethyl cellulose. Carbohydr Polym 2024; 336:122105. [PMID: 38670749 DOI: 10.1016/j.carbpol.2024.122105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
In situ forming hydrogels are promising for biomedical applications, especially in drug delivery. The precursor solution can be injected at the target site, where it undergoes a sol-gel transition to afford a hydrogel. In this sense, the most significant characteristic of these hydrogels is fast gelation behavior after injection. This study describes an all-polysaccharide, rapidly in situ-forming hydrogel composed of carboxymethyl chitosan (CMCHT) and hydroxyethyl cellulose functionalized with aldehyde groups (HEC-Ald). The HEC-Ald was synthesized through acetal functionalization, followed by acid deprotection. This innovative approach avoids cleavage of pyran rings, as is inherent in the periodate oxidation approach, which is the most common method currently employed for adding aldehyde groups to polysaccharides. The resulting hydrogel exhibited fast stress relaxation, self-healing properties, and pH sensitivity, which allowed it to control the release of an encapsulated model drug in response to the medium pH. Based on the collected data, the HEC-Ald/CMCHT hydrogels show promise as pH-sensitive drug carriers.
Collapse
Affiliation(s)
- Rafael F N Quadrado
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Federal University of Pelotas, 96010-900 Pelotas, RS, Brazil
| | - Zhenghao Zhai
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Matheus Zavadinack
- Department of Biochemistry and Molecular Biology, Paraná Federal University, 81531-980 Curitiba, PR, Brazil
| | - Giseli Klassen
- Department of Basic Pathology, Paraná Federal University, 81531-980 Curitiba, PR, Brazil
| | - Marcello Iacomini
- Department of Biochemistry and Molecular Biology, Paraná Federal University, 81531-980 Curitiba, PR, Brazil
| | - Kevin J Edgar
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA; Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, VA 24061, USA
| | - André R Fajardo
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Federal University of Pelotas, 96010-900 Pelotas, RS, Brazil.
| |
Collapse
|
23
|
Zatorski JM, Lee IL, Ortiz-Cárdenas JE, Ellena JF, Pompano RR. Measurement of covalent bond formation in light-curing hydrogels predicts physical stability under flow. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.30.601353. [PMID: 39005331 PMCID: PMC11244878 DOI: 10.1101/2024.06.30.601353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Photocrosslinking hydrogels are promising for tissue engineering and regenerative medicine, but challenges in reaction monitoring often leave their optimization subject to trial and error. The stability of crosslinked gels under fluid flow, as in the case of a microfluidic device, is particularly challenging to predict, both because of obstacles inherent to solid-state macromolecular analysis that prevent accurate chemical monitoring, and because stability is dependent on size of the patterned features. To solve both problems, we obtained 1H NMR spectra of cured hydrogels which were enzymatically degraded. This allowed us to take advantage of the high-resolution that solution NMR provides. This unique approach enabled the measurement of degree of crosslinking (DoC) and prediction of material stability under physiological fluid flow. We showed that NMR spectra of enzyme-digested gels successfully reported on DoC as a function of light exposure and wavelength within two classes of photocrosslinkable hydrogels: methacryloyl-modified gelatin and a composite of thiol-modified gelatin and norbornene-terminated polyethylene glycol. This approach revealed that a threshold DoC was required for patterned features in each material to become stable, and that smaller features required a higher DoC for stability. Finally, we demonstrated that DoC was predictive of the stability of architecturally complex features when photopatterning, underscoring the value of monitoring DoC when using light-reactive gels. We anticipate that the ability to quantify chemical crosslinks will accelerate the design of advanced hydrogel materials for structurally demanding applications such as photopatterning and bioprinting.
Collapse
Affiliation(s)
- Jonathan M Zatorski
- University of Virginia, Department of Chemistry, 409 McCormick Road, University of Virginia, Charlottesville, VA 22904
| | - Isabella L Lee
- University of Virginia, Department of Chemistry, 409 McCormick Road, University of Virginia, Charlottesville, VA 22904
| | - Jennifer E Ortiz-Cárdenas
- Stanford University, Department of Bioengineering, 443 Via Ortega, Rm 119, Stanford, CA 94305, United States
| | - Jeffrey F Ellena
- University of Virginia, Department of Chemistry, 409 McCormick Road, University of Virginia, Charlottesville, VA 22904
| | - Rebecca R Pompano
- University of Virginia, Department of Chemistry, 409 McCormick Road, University of Virginia, Charlottesville, VA 22904
- Department of Biomedical Engineering, University of Virginia School of Engineering and Applied Sciences, Thornton Hall, 351 McCormick Rd, Charlottesville, VA 22904
- Carter Immunology Center and UVA Cancer Center, University of Virginia, 345 Crispell Dr., MR-6, Charlottesville, VA 22908
| |
Collapse
|
24
|
Xu Z, Wang B, Huang R, Guo M, Han D, Yin L, Zhang X, Huang Y, Li X. Efforts to promote osteogenesis-angiogenesis coupling for bone tissue engineering. Biomater Sci 2024; 12:2801-2830. [PMID: 38683241 DOI: 10.1039/d3bm02017g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Repair of bone defects exceeding a critical size has been always a big challenge in clinical practice. Tissue engineering has exhibited great potential to effectively repair the defects with less adverse effect than traditional bone grafts, during which how to induce vascularized bone formation has been recognized as a critical issue. Therefore, recently many studies have been launched to attempt to promote osteogenesis-angiogenesis coupling. This review summarized comprehensively and explored in depth current efforts to ameliorate the coupling of osteogenesis and angiogenesis from four aspects, namely the optimization of scaffold components, modification of scaffold structures, loading strategies for bioactive substances, and employment tricks for appropriate cells. Especially, the advantages and the possible reasons for every strategy, as well as the challenges, were elaborated. Furthermore, some promising research directions were proposed based on an in-depth analysis of the current research. This paper will hopefully spark new ideas and approaches for more efficiently boosting new vascularized bone formations.
Collapse
Affiliation(s)
- Zhiwei Xu
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Bingbing Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, 100083, China.
| | - Ruoyu Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, 100083, China.
| | - Mengyao Guo
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, 100083, China.
| | - Di Han
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Lan Yin
- Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Xiaoyun Zhang
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Yong Huang
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, 100083, China.
| |
Collapse
|
25
|
Ma Y, Zhang R, Mao X, Li X, Li T, Liang F, He J, Wen L, Wang W, Li X, Zhang Y, Yu H, Lu B, Yu T, Ao Q. Preparation of PLCL/ECM nerve conduits by electrostatic spinning technique and evaluation in vitroand in vivo. J Neural Eng 2024; 21:026028. [PMID: 38572924 DOI: 10.1088/1741-2552/ad3851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
Objective. Artificial nerve scaffolds composed of polymers have attracted great attention as an alternative for autologous nerve grafts recently. Due to their poor bioactivity, satisfactory nerve repair could not be achieved. To solve this problem, we introduced extracellular matrix (ECM) to optimize the materials.Approach.In this study, the ECM extracted from porcine nerves was mixed with Poly(L-Lactide-co-ϵ-caprolactone) (PLCL), and the innovative PLCL/ECM nerve repair conduits were prepared by electrostatic spinning technology. The novel conduits were characterized by scanning electron microscopy (SEM), tensile properties, and suture retention strength test for micromorphology and mechanical strength. The biosafety and biocompatibility of PLCL/ECM nerve conduits were evaluated by cytotoxicity assay with Mouse fibroblast cells and cell adhesion assay with RSC 96 cells, and the effects of PLCL/ECM nerve conduits on the gene expression in Schwann cells was analyzed by real-time polymerase chain reaction (RT-PCR). Moreover, a 10 mm rat (Male Wistar rat) sciatic defect was bridged with a PLCL/ECM nerve conduit, and nerve regeneration was evaluated by walking track, mid-shank circumference, electrophysiology, and histomorphology analyses.Main results.The results showed that PLCL/ECM conduits have similar microstructure and mechanical strength compared with PLCL conduits. The cytotoxicity assay demonstrates better biosafety and biocompatibility of PLCL/ECM nerve conduits. And the cell adhesion assay further verifies that the addition of ECM is more beneficial to cell adhesion and proliferation. RT-PCR showed that the PLCL/ECM nerve conduit was more favorable to the gene expression of functional proteins of Schwann cells. Thein vivoresults indicated that PLCL/ECM nerve conduits possess excellent biocompatibility and exhibit a superior capacity to promote peripheral nerve repair.Significance.The addition of ECM significantly improved the biocompatibility and bioactivity of PLCL, while the PLCL/ECM nerve conduit gained the appropriate mechanical strength from PLCL, which has great potential for clinical repair of peripheral nerve injuries.
Collapse
Affiliation(s)
- Yizhan Ma
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, People's Republic of China
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, People's Republic of China
| | - Runze Zhang
- Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing, People's Republic of China
| | - Xiaoyan Mao
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, People's Republic of China
- China (Nanchang) Intellectual Property Protection Center, Nanchang, People's Republic of China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, People's Republic of China
| | - Ting Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Fang Liang
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, People's Republic of China
| | - Jing He
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, People's Republic of China
| | - Lili Wen
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, People's Republic of China
| | - Weizuo Wang
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, People's Republic of China
| | - Xiao Li
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, People's Republic of China
| | - Yanhui Zhang
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, People's Republic of China
| | - Honghao Yu
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, People's Republic of China
| | - Binhan Lu
- School of Mechanical Engineering and Automation, University of Science and Technology Liaoning, Anshan, People's Republic of China
| | - Tianhao Yu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, People's Republic of China
| | - Qiang Ao
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, People's Republic of China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
26
|
Wang B, Huang Y, Cai Q, Du Z, Li X. Biomaterials for diabetic bone repair: Influencing mechanisms, multi-aspect progress and future prospects. COMPOSITES PART B: ENGINEERING 2024; 274:111282. [DOI: 10.1016/j.compositesb.2024.111282] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
|
27
|
Moon SH, Park TY, Cha HJ, Yang YJ. Photo-/thermo-responsive bioink for improved printability in extrusion-based bioprinting. Mater Today Bio 2024; 25:100973. [PMID: 38322663 PMCID: PMC10844750 DOI: 10.1016/j.mtbio.2024.100973] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Extrusion-based bioprinting has demonstrated significant potential for manufacturing constructs, particularly for 3D cell culture. However, there is a greatly limited number of bioink candidates exploited with extrusion-based bioprinting, as they meet the opposing requirements for printability with indispensable rheological features and for biochemical functionality with desirable microenvironment. In this study, a blend of silk fibroin (SF) and iota-carrageenan (CG) was chosen as a cell-friendly printable material. The SF/CG ink exhibited suitable viscosity and shear-thinning properties, coupled with the rapid sol-gel transition of CG. By employing photo-crosslinking of SF, the printability with Pr value close to 1 and structural integrity of the 3D constructs were significantly improved within a matter of seconds. The printed constructs demonstrated a Young's modulus of approximately 250 kPa, making them suitable for keratinocyte and myoblast cell culture. Furthermore, the high cell adhesiveness and viability (maximum >98%) of the loaded cells underscored the considerable potential of this 3D culture scaffold applied for skin and muscle tissues, which can be easily manipulated using an extrusion-based bioprinter.
Collapse
Affiliation(s)
- Seo Hyung Moon
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Tae Yoon Park
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
- Medical Science and Engineering, School of Convergence Science and Technology, Pohang University of Science, Pohang, 37673, Republic of Korea
| | - Yun Jung Yang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
- Inha University Hospital, Incheon, 22332, Republic of Korea
| |
Collapse
|
28
|
Fragomeni G, De Napoli L, De Gregorio V, Genovese V, Barbato V, Serratore G, Morrone G, Travaglione A, Candela A, Gualtieri R, Talevi R, Catapano G. Enhanced solute transport and steady mechanical stimulation in a novel dynamic perifusion bioreactor increase the efficiency of the in vitro culture of ovarian cortical tissue strips. Front Bioeng Biotechnol 2024; 12:1310696. [PMID: 38390358 PMCID: PMC10882273 DOI: 10.3389/fbioe.2024.1310696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/08/2024] [Indexed: 02/24/2024] Open
Abstract
Introduction: We report the development and preliminary evaluation of a novel dynamic bioreactor to culture ovarian cortical tissue strips that leverages tissue response to enhanced oxygen transport and adequate mechanical stimulation. In vitro multistep ovarian tissue static culture followed by mature oocyte generation, fertilization, and embryo transfer promises to use the reserve of dormant follicles. Unfortunately, static in vitro culture of ovarian tissue does not promote development of primordial to secondary follicles or sustain follicle viability and thereby limits the number of obtainable mature oocytes. Enhancing oxygen transport to and exerting mechanical stimulation on ovarian tissue in a dynamic bioreactor may more closely mimic the physiological microenvironment and thus promote follicle activation, development, and viability. Materials and Methods: The most transport-effective dynamic bioreactor design was modified using 3D models of medium and oxygen transport to maximize strip perifusion and apply tissue fluid dynamic shear stresses and direct compressive strains to elicit tissue response. Prototypes of the final bioreactor design were manufactured with materials of varying cytocompatibility and assessed by testing the effect of leachables on sperm motility. Effectiveness of the bioreactor culture was characterized against static controls by culturing fresh bovine ovarian tissue strips for 7 days at 4.8 × 10-5 m/s medium filtration flux in air at -15% maximal total compressive strain and by assessing follicle development, health, and viability. Results and Conclusions: Culture in dynamic bioreactors promoted effective oxygen transport to tissues and stimulated tissues with strains and fluid dynamic shear stresses that, although non-uniform, significantly influenced tissue metabolism. Tissue strip culture in bioreactors made of cytocompatible polypropylene preserved follicle viability and promoted follicle development better than static culture, less so in bioreactors made of cytotoxic ABS-like resin.
Collapse
Affiliation(s)
- Gionata Fragomeni
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Luigi De Napoli
- Department of Mechanical, Energy and Management Engineering, University of Calabria, Rende, Italy
| | - Vincenza De Gregorio
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy
| | - Vincenzo Genovese
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy
| | - Vincenza Barbato
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy
| | - Giuseppe Serratore
- Department of Mechanical, Energy and Management Engineering, University of Calabria, Rende, Italy
| | - Giuseppe Morrone
- Department of Mechanical, Energy and Management Engineering, University of Calabria, Rende, Italy
| | - Angela Travaglione
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy
| | - Andrea Candela
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy
| | - Roberto Gualtieri
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy
| | - Riccardo Talevi
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy
| | - Gerardo Catapano
- Department of Mechanical, Energy and Management Engineering, University of Calabria, Rende, Italy
| |
Collapse
|
29
|
Galati M, Gatto ML, Bloise N, Fassina L, Saboori A, Visai L, Mengucci P, Iuliano L. Electron Beam Powder Bed Fusion of Ti-48Al-2Cr-2Nb Open Porous Scaffold for Biomedical Applications: Process Parameters, Adhesion, and Proliferation of NIH-3T3 Cells. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:314-322. [PMID: 38389689 PMCID: PMC10880641 DOI: 10.1089/3dp.2022.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Titanium aluminide (TiAl)-based intermetallics, especially Ti-48Al-2Cr-2Nb, are a well-established class of materials for producing bulky components using the electron beam powder bed fusion (EB-PBF) process. The biological properties of Ti-48Al-2Cr-2Nb alloy have been rarely investigated, specifically using complex cellular structures. This work investigates the viability and proliferation of NIH-3T3 fibroblasts on Ti-48Al-2Cr-2Nb dodecahedral open scaffolds manufactured by the EB-PBF process. A process parameter optimization is carried out to produce a fully dense part. Then scaffolds are produced and characterized using different techniques, including scanning electron microscopy and X-ray tomography. In vitro viability tests are performed with NIH-3T3 cells after incubation for 1, 4, and 7 days. The results show that Ti-48Al-2Cr-2Nb represents a promising new entry in the biomaterial field.
Collapse
Affiliation(s)
- Manuela Galati
- Department of Management and Production Engineering (DIGEP), Integrated Additive Manufacturing Center (IAM)—Politecnico di Torino, Torino, Italy
| | - Maria Laura Gatto
- Dipartimento di Scienze e Ingegneria della Materia, dell'Ambiente ed Urbanistica (SIMAU)—Università Politecnica delle Marche, Ancona, Italy
| | - Nora Bloise
- Department of Molecular Medicine (DMM), Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Pavia, Italy
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Pavia, Italy
| | - Lorenzo Fassina
- Department of Electrical, Computer and Biomedical Engineering (DII), Centre for Health Technologies (CHT), University of Pavia, Pavia, Italy
| | - Abdollah Saboori
- Department of Management and Production Engineering (DIGEP), Integrated Additive Manufacturing Center (IAM)—Politecnico di Torino, Torino, Italy
| | - Livia Visai
- Department of Molecular Medicine (DMM), Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Pavia, Italy
- Department of Electrical, Computer and Biomedical Engineering (DII), Centre for Health Technologies (CHT), University of Pavia, Pavia, Italy
| | - Paolo Mengucci
- Dipartimento di Scienze e Ingegneria della Materia, dell'Ambiente ed Urbanistica (SIMAU)—Università Politecnica delle Marche, Ancona, Italy
| | - Luca Iuliano
- Department of Management and Production Engineering (DIGEP), Integrated Additive Manufacturing Center (IAM)—Politecnico di Torino, Torino, Italy
| |
Collapse
|
30
|
Gao Q, Liu J, Wang M, Liu X, Jiang Y, Su J. Biomaterials regulates BMSCs differentiation via mechanical microenvironment. BIOMATERIALS ADVANCES 2024; 157:213738. [PMID: 38154401 DOI: 10.1016/j.bioadv.2023.213738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023]
Abstract
Bone mesenchymal stem cells (BMSCs) are crucial for bone tissue regeneration, the mechanical microenvironment of hard tissues, including bone and teeth, significantly affects the osteogenic differentiation of BMSCs. Biomaterials may mimic the microenvironment of the extracellular matrix and provide mechanical signals to regulate BMSCs differentiation via inducing the secretion of various intracellular factors. Biomaterials direct the differentiation of BMSCs via mechanical signals, including tension, compression, shear, hydrostatic pressure, stiffness, elasticity, and viscoelasticity, which can be transmitted to cells through mechanical signalling pathways. Besides, biomaterials with piezoelectric effects regulate BMSCs differentiation via indirect mechanical signals, such as, electronic signals, which are transformed from mechanical stimuli by piezoelectric biomaterials. Mechanical stimulation facilitates achieving vectored stem cell fate regulation, while understanding the underlying mechanisms remains challenging. Herein, this review summarizes the intracellular factors, including translation factors, epigenetic modifications, and miRNA level, as well as the extracellular factor, including direct and indirect mechanical signals, which regulate the osteogenic differentiation of BMSCs. Besides, this review will also give a comprehensive summary about how mechanical stimuli regulate cellular behaviours, as well as how biomaterials promote the osteogenic differentiation of BMSCs via mechanical microenvironments. The cellular behaviours and activated signal pathways will give more implications for the design of biomaterials with superior properties for bone tissue engineering. Moreover, it will also provide inspiration for the construction of bone organoids which is a useful tool for mimicking in vivo bone tissue microenvironments.
Collapse
Affiliation(s)
- Qianmin Gao
- Institute of Translational Medicine, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China; Organoid Research Centre, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China; National Centre for Translational Medicine (Shanghai) SHU Branch, NO.333 Nanchen Road, Shanghai University, Shanghai 200444, PR China
| | - Jinlong Liu
- Institute of Translational Medicine, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China; Organoid Research Centre, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China; National Centre for Translational Medicine (Shanghai) SHU Branch, NO.333 Nanchen Road, Shanghai University, Shanghai 200444, PR China
| | - Mingkai Wang
- Institute of Translational Medicine, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China; Organoid Research Centre, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China; National Centre for Translational Medicine (Shanghai) SHU Branch, NO.333 Nanchen Road, Shanghai University, Shanghai 200444, PR China
| | - Xiangfei Liu
- Department of Orthopedics, Shanghai Zhongye Hospital, NO. 456 Chunlei Road, Shanghai 200941, PR China.
| | - Yingying Jiang
- Institute of Translational Medicine, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China; Organoid Research Centre, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China; National Centre for Translational Medicine (Shanghai) SHU Branch, NO.333 Nanchen Road, Shanghai University, Shanghai 200444, PR China; Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, NO.1665 Kongjiang Road, Shanghai 200092, PR China.
| |
Collapse
|
31
|
Esmaeili Z, Nokhbedehghan Z, Alizadeh S, majidi J, Chahsetareh H, Daryabari SH, Nazm-Bojnourdi M, Kadkhodaie M, Ghaffari M, Hashemi A, Ghasemi Hamidabadi H, Ahmadzadeh Amiri A, Nasiri H, Dolatshahi-Pirouz A, Gholipourmalekabadi M. Biomimetic amniotic/silicone-based bilayer membrane for corneal tissue engineering. MATERIALS & DESIGN 2024; 237:112614. [DOI: 10.1016/j.matdes.2023.112614] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2025]
|
32
|
Nie R, Zhang QY, Tan J, Feng ZY, Huang K, Sheng N, Jiang YL, Song YT, Zou CY, Zhao LM, Li HX, Wang R, Zhou XL, Hu JJ, Wu CY, Li-Ling J, Xie HQ. EGCG modified small intestine submucosa promotes wound healing through immunomodulation. COMPOSITES PART B: ENGINEERING 2023; 267:111005. [DOI: 10.1016/j.compositesb.2023.111005] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
|
33
|
Uslu E, Rana VK, Guo Y, Stampoultzis T, Gorostidi F, Sandu K, Pioletti DP. Enhancing Robustness of Adhesive Hydrogels through PEG-NHS Incorporation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50095-50105. [PMID: 37871154 PMCID: PMC10623379 DOI: 10.1021/acsami.3c13062] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/25/2023]
Abstract
Tissue wounds are a significant challenge for the healthcare system, affecting millions globally. Current methods like suturing and stapling have limitations as they inadequately cover the wound, fail to prevent fluid leakage, and increase the risk of infection. Effective solutions for diverse wound conditions are still lacking. Adhesive hydrogels, on the other hand, can be a potential alternative for wound care. They offer benefits such as firm sealing without leakage, easy and rapid application, and the provision of mechanical support and flexibility. However, the in vivo durability of hydrogels is often compromised by excessive swelling and unforeseen degradation, which limits their widespread use. In this study, we addressed the durability issues of the adhesive hydrogels by incorporating acrylamide polyethylene glycol N-hydroxysuccinimide (PEG-NHS) moieties (max. 2 wt %) into hydrogels based on hydroxy ethyl acrylamide (HEAam). The results showed that the addition of PEG-NHS significantly enhanced the adhesion performance, achieving up to 2-fold improvement on various soft tissues including skin, trachea, heart, lung, liver, and kidney. We further observed that the addition of PEG-NHS into the adhesive hydrogel network improved their intrinsic mechanical properties. The tensile modulus of these hydrogels increased up to 5-fold, while the swelling ratio decreased up to 2-fold in various media. These hydrogels also exhibited improved durability under the enzymatic and oxidative biodegradation induced conditions without causing any toxicity to the cells. To evaluate its potential for clinical applications, we used PEG-NHS based hydrogels to address tracheomalacia, a condition characterized by inadequate mechanical support of the airway due to weak/malacic cartilage rings. Ex vivo study confirmed that the addition of PEG-NHS to the hydrogel network prevented approximately 90% of airway collapse compared to the case without PEG-NHS. Overall, this study offers a promising approach to enhance the durability of adhesive hydrogels by the addition of PEG-NHS, thereby improving their overall performances for various biomedical applications.
Collapse
Affiliation(s)
- Ece Uslu
- Laboratory
of Biomechanical Orthopaedics, Institute of Bioengineering, School
of Engineering, EPFL, Lausanne 1015, Switzerland
| | - Vijay Kumar Rana
- Laboratory
of Biomechanical Orthopaedics, Institute of Bioengineering, School
of Engineering, EPFL, Lausanne 1015, Switzerland
| | - Yanheng Guo
- Laboratory
of Biomechanical Orthopaedics, Institute of Bioengineering, School
of Engineering, EPFL, Lausanne 1015, Switzerland
| | - Theofanis Stampoultzis
- Laboratory
of Biomechanical Orthopaedics, Institute of Bioengineering, School
of Engineering, EPFL, Lausanne 1015, Switzerland
| | - François Gorostidi
- Airway
Sector, Médecine Hautement Spécialisée, Department
of Otorhinolaryngology, University Hospital
CHUV, Lausanne 1011, Switzerland
| | - Kishore Sandu
- Airway
Sector, Médecine Hautement Spécialisée, Department
of Otorhinolaryngology, University Hospital
CHUV, Lausanne 1011, Switzerland
| | - Dominique P. Pioletti
- Laboratory
of Biomechanical Orthopaedics, Institute of Bioengineering, School
of Engineering, EPFL, Lausanne 1015, Switzerland
| |
Collapse
|
34
|
Tripathi AS, Zaki MEA, Al-Hussain SA, Dubey BK, Singh P, Rind L, Yadav RK. Material matters: exploring the interplay between natural biomaterials and host immune system. Front Immunol 2023; 14:1269960. [PMID: 37936689 PMCID: PMC10627157 DOI: 10.3389/fimmu.2023.1269960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023] Open
Abstract
Biomaterials are widely used for various medical purposes, for instance, implants, tissue engineering, medical devices, and drug delivery systems. Natural biomaterials can be obtained from proteins, carbohydrates, and cell-specific sources. However, when these biomaterials are introduced into the body, they trigger an immune response which may lead to rejection and failure of the implanted device or tissue. The immune system recognizes natural biomaterials as foreign substances and triggers the activation of several immune cells, for instance, macrophages, dendritic cells, and T cells. These cells release pro-inflammatory cytokines and chemokines, which recruit other immune cells to the implantation site. The activation of the immune system can lead to an inflammatory response, which can be beneficial or detrimental, depending on the type of natural biomaterial and the extent of the immune response. These biomaterials can also influence the immune response by modulating the behavior of immune cells. For example, biomaterials with specific surface properties, such as charge and hydrophobicity, can affect the activation and differentiation of immune cells. Additionally, biomaterials can be engineered to release immunomodulatory factors, such as anti-inflammatory cytokines, to promote a tolerogenic immune response. In conclusion, the interaction between biomaterials and the body's immune system is an intricate procedure with potential consequences for the effectiveness of therapeutics and medical devices. A better understanding of this interplay can help to design biomaterials that promote favorable immune responses and minimize adverse reactions.
Collapse
Affiliation(s)
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad lbn Saud Islamic University, Riyadh, Saudi Arabia
| | - Sami A Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad lbn Saud Islamic University, Riyadh, Saudi Arabia
| | - Bidhyut Kumar Dubey
- Department of Pharmaceutical Chemistry, Era College of Pharmacy, Era University, Lucknow, India
| | - Prabhjot Singh
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, India
| | - Laiba Rind
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, India
| | - Rajnish Kumar Yadav
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, India
| |
Collapse
|
35
|
Malhotra D, Fattahi E, Germann N, Flisikowska T, Schnieke A, Becker T. Skin substitutes based on gellan gum with mechanical and penetration compatibility to native human skin. J Biomed Mater Res A 2023; 111:1588-1599. [PMID: 37191205 DOI: 10.1002/jbm.a.37557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/19/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023]
Abstract
The study reports on a simple system to fabricate skin substitutes consisting of a naturally occurring bacterial polysaccharide gellan gum. Gelation was driven by the addition of a culture medium whose cations induced gellan gum crosslinking at physiological temperature, resulting in hydrogels. Human dermal fibroblasts were incorporated in these hydrogels and their mechanical, morphological, and penetration characteristics were studied. The mechanical properties were determined by means of oscillatory shear rheology, and a short linear viscoelastic regime was noted up to less than 1% of strain amplitude. The storage modulus increased with an increasing polymer concentration. The moduli were in the range noted for native human skin. After 2 weeks of fibroblast cultivation, the storage moduli showed signs of deterioration, so that a culture time of 2 weeks was proposed for further studies. Microscopic and fluorescent staining observations were documented. These depicted a crosslinked network structure in the hydrogels with a homogeneous distribution of cells and an assured cell viability of 2 weeks. H&E staining was also performed, which showed some traces of ECM formation in a few sections. Finally, caffeine penetration experiments were carried out with Franz diffusion cells. The hydrogels with a higher concentration of polymer containing cells showed an improved barrier function against caffeine compared to previously studied multicomponent hydrogels as well as commercially available 3D skin models. Therefore, these hydrogels displayed both mechanical and penetration compatibility with the ex vivo native human skin.
Collapse
Affiliation(s)
- Deepika Malhotra
- TUM School of Life Sciences Weihenstephan, Chair of Brewing and Beverage Technology, Fluid Dynamics Group, Technical University of Munich (TUM), Freising, Germany
| | - Ehsan Fattahi
- TUM School of Life Sciences Weihenstephan, Chair of Brewing and Beverage Technology, Fluid Dynamics Group, Technical University of Munich (TUM), Freising, Germany
| | - Natalie Germann
- Faculty 4 - Energy-, Process- and Bioengineering, Chair of Process Systems Engineering, University of Stuttgart, Stuttgart, Germany
| | - Tatiana Flisikowska
- TUM School of Life Sciences Weihenstephan, Chair of Livestock Biotechnology, Technical University of Munich (TUM), Freising, Germany
| | - Angelika Schnieke
- TUM School of Life Sciences Weihenstephan, Chair of Livestock Biotechnology, Technical University of Munich (TUM), Freising, Germany
| | - Thomas Becker
- TUM School of Life Sciences Weihenstephan, Chair of Brewing and Beverage Technology, Fluid Dynamics Group, Technical University of Munich (TUM), Freising, Germany
| |
Collapse
|
36
|
Bond G, Mahjoubnia A, Zhao W, King SD, Chen SY, Lin J. 4D printing of biocompatible, hierarchically porous shape memory polymeric structures. BIOMATERIALS ADVANCES 2023; 153:213575. [PMID: 37557033 PMCID: PMC10529366 DOI: 10.1016/j.bioadv.2023.213575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/25/2023] [Accepted: 07/30/2023] [Indexed: 08/11/2023]
Abstract
Conventional implants tend to have significant limitations, as they are one-size-fits-all, require monitoring, and have the potential for immune rejection. However, 4D Printing presents a method to manufacture highly personalized, shape-changing, minimally invasive biomedical implants. Shape memory polymers (SMPs) with a glass transition temperature (Tg) between room and body temperature (20-38 °C) are particularly desirable for this purpose, as they can be deformed to a temporary shape before implantation, then undergo a shape change within the body. Commonly used SMPs possess either an undesirable Tg or lack the biocompatibility or mechanical properties necessary to match soft biological tissues. In this work, Poly(glycerol dodecanoate) acrylate (PGDA) with engineered pores is introduced to solve these issues. Pores are induced by porogen leaching, where microparticles are mixed with the printing ink and then are dissolved in water after 3D printing, creating a hierarchically porous texture to improve biological activity. With this method, highly complex shapes were printed, including overhanging structures, tilted structures, and a "3DBenchy". The porous SMP has a Tg of 35.6 °C and a Young's Modulus between 0.31 and 1.22 MPa, comparable to soft tissues. A one-way shape memory effect (SME) with shape fixity and recovery ratios exceeding 98 % was also demonstrated. Cultured cells had a survival rate exceeding 90 %, demonstrating cytocompatibility. This novel method creates hierarchically porous shape memory scaffolds with an optimal Tg for reducing the invasiveness of implantation and allows for precise control over elastic modulus, porosity, structure, and transition temperature.
Collapse
Affiliation(s)
- Graham Bond
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia 65211, USA
| | - Alireza Mahjoubnia
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia 65211, USA
| | - Wen Zhao
- Department of Surgery, School of Medicine, University of Missouri, Columbia 65211, USA
| | - Skylar D King
- Department of Surgery, School of Medicine, University of Missouri, Columbia 65211, USA
| | - Shi-You Chen
- Department of Surgery, School of Medicine, University of Missouri, Columbia 65211, USA
| | - Jian Lin
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia 65211, USA.
| |
Collapse
|
37
|
Wan T, Wang YL, Zhang FS, Zhang XM, Zhang YC, Jiang HR, Zhang M, Zhang PX. The Porous Structure of Peripheral Nerve Guidance Conduits: Features, Fabrication, and Implications for Peripheral Nerve Regeneration. Int J Mol Sci 2023; 24:14132. [PMID: 37762437 PMCID: PMC10531895 DOI: 10.3390/ijms241814132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Porous structure is an important three-dimensional morphological feature of the peripheral nerve guidance conduit (NGC), which permits the infiltration of cells, nutrients, and molecular signals and the discharge of metabolic waste. Porous structures with precisely customized pore sizes, porosities, and connectivities are being used to construct fully permeable, semi-permeable, and asymmetric peripheral NGCs for the replacement of traditional nerve autografts in the treatment of long-segment peripheral nerve injury. In this review, the features of porous structures and the classification of NGCs based on these characteristics are discussed. Common methods for constructing 3D porous NGCs in current research are described, as well as the pore characteristics and the parameters used to tune the pores. The effects of the porous structure on the physical properties of NGCs, including biodegradation, mechanical performance, and permeability, were analyzed. Pore structure affects the biological behavior of Schwann cells, macrophages, fibroblasts, and vascular endothelial cells during peripheral nerve regeneration. The construction of ideal porous structures is a significant advancement in the regeneration of peripheral nerve tissue engineering materials. The purpose of this review is to generalize, summarize, and analyze methods for the preparation of porous NGCs and their biological functions in promoting peripheral nerve regeneration to guide the development of medical nerve repair materials.
Collapse
Affiliation(s)
- Teng Wan
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Yi-Lin Wang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Feng-Shi Zhang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Xiao-Meng Zhang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Yi-Chong Zhang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Hao-Ran Jiang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Meng Zhang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Pei-Xun Zhang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| |
Collapse
|
38
|
Sacco AM, Castaldo C, Di Meglio FD, Nurzynska D, Palermi S, Spera R, Gnasso R, Zinno G, Romano V, Belviso I. The Long and Winding Road to Cardiac Regeneration. APPLIED SCIENCES 2023; 13:9432. [DOI: 10.3390/app13169432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Cardiac regeneration is a critical endeavor in the treatment of heart diseases, aimed at repairing and enhancing the structure and function of damaged myocardium. This review offers a comprehensive overview of current advancements and strategies in cardiac regeneration, with a specific focus on regenerative medicine and tissue engineering-based approaches. Stem cell-based therapies, which involve the utilization of adult stem cells and pluripotent stem cells hold immense potential for replenishing lost cardiomyocytes and facilitating cardiac tissue repair and regeneration. Tissue engineering also plays a prominent role employing synthetic or natural biomaterials, engineering cardiac patches and grafts with suitable properties, and fabricating upscale bioreactors to create functional constructs for cardiac recovery. These constructs can be transplanted into the heart to provide mechanical support and facilitate tissue healing. Additionally, the production of organoids and chips that accurately replicate the structure and function of the whole organ is an area of extensive research. Despite significant progress, several challenges persist in the field of cardiac regeneration. These include enhancing cell survival and engraftment, achieving proper vascularization, and ensuring the long-term functionality of engineered constructs. Overcoming these obstacles and offering effective therapies to restore cardiac function could improve the quality of life for individuals with heart diseases.
Collapse
Affiliation(s)
- Anna Maria Sacco
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Clotilde Castaldo
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Franca Di Di Meglio
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Daria Nurzynska
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy
| | - Stefano Palermi
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Rocco Spera
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Rossana Gnasso
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Giorgio Zinno
- Department of Clinical and Surgical Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Veronica Romano
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Immacolata Belviso
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
39
|
Bezold MG, Hanna AR, Dollinger BR, Patil P, Yu F, Duvall CL, Gupta MK. Hybrid Shear-thinning Hydrogel Integrating Hyaluronic Acid with ROS-Responsive Nanoparticles. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2213368. [PMID: 38107427 PMCID: PMC10723243 DOI: 10.1002/adfm.202213368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Indexed: 12/19/2023]
Abstract
Nanoparticle (NP) supra-assembly offers unique opportunities to tune macroscopic hydrogels' mechanical strength, material degradation, and drug delivery properties. Here, synthetic, reactive oxygen species (ROS)-responsive NPs are physically crosslinked with hyaluronic acid (HA) through guest-host chemistry to create shear-thinning NP/HA hydrogels. A library of triblock copolymers composed of poly(propylene sulfide)-bl-poly(N,N-dimethylacrylamide)-bl-poly(N,N-dimethylacrylamide-co-N-(1-adamantyl)acrylamide) are synthesized with varied triblock architectures and adamantane grafting densities and then self-assembled into NPs displaying adamantane on their corona. Self-assembled NPs are mixed with β-cyclodextrin grafted HA to yield eighteen NP/HA hydrogel formulations. The NP/HA hydrogel platform demonstrates superior mechanical strength to HA-only hydrogels, susceptibility to oxidative/enzymatic degradation, and inherent cell-protective, antioxidant function. The performance of NP/HA hydrogels is shown to be affected by triblock architecture, guest/host grafting densities, and HA composition. In particular, the length of the hydrophilic second block and adamantane grafting density of self-assembled NPs significantly impacts hydrogel mechanical properties and shear-thinning behavior, while ROS-reactivity of poly(propylene sulfide) protects cells from cytotoxic ROS and reduces oxidative degradation of HA compared to HA-only hydrogels. This work provides insight into polymer structure-function considerations for designing hybrid NP/HA hydrogels and identifies antioxidant, shear-thinning hydrogels as promising injectable delivery platforms for small molecule drugs and therapeutic cells.
Collapse
Affiliation(s)
- Mariah G. Bezold
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| | - Andrew R. Hanna
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| | - Bryan R. Dollinger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| | - Prarthana Patil
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| | - Fang Yu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| | - Craig L. Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| | - Mukesh K. Gupta
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| |
Collapse
|
40
|
Noroozi R, Arif ZU, Taghvaei H, Khalid MY, Sahbafar H, Hadi A, Sadeghianmaryan A, Chen X. 3D and 4D Bioprinting Technologies: A Game Changer for the Biomedical Sector? Ann Biomed Eng 2023:10.1007/s10439-023-03243-9. [PMID: 37261588 DOI: 10.1007/s10439-023-03243-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/14/2023] [Indexed: 06/02/2023]
Abstract
Bioprinting is an innovative and emerging technology of additive manufacturing (AM) and has revolutionized the biomedical sector by printing three-dimensional (3D) cell-laden constructs in a precise and controlled manner for numerous clinical applications. This approach uses biomaterials and varying types of cells to print constructs for tissue regeneration, e.g., cardiac, bone, corneal, cartilage, neural, and skin. Furthermore, bioprinting technology helps to develop drug delivery and wound healing systems, bio-actuators, bio-robotics, and bio-sensors. More recently, the development of four-dimensional (4D) bioprinting technology and stimuli-responsive materials has transformed the biomedical sector with numerous innovations and revolutions. This issue also leads to the exponential growth of the bioprinting market, with a value over billions of dollars. The present study reviews the concepts and developments of 3D and 4D bioprinting technologies, surveys the applications of these technologies in the biomedical sector, and discusses their potential research topics for future works. It is also urged that collaborative and valiant efforts from clinicians, engineers, scientists, and regulatory bodies are needed for translating this technology into the biomedical, pharmaceutical, and healthcare systems.
Collapse
Affiliation(s)
- Reza Noroozi
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Zia Ullah Arif
- Department of Mechanical Engineering, University of Management & Technology, Lahore, Sialkot Campus, Lahore, 51041, Pakistan
| | - Hadi Taghvaei
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Muhammad Yasir Khalid
- Department of Aerospace Engineering, Khalifa University of Science and Technology, PO Box: 127788, Abu Dhabi, United Arab Emirates
| | - Hossein Sahbafar
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Amin Hadi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ali Sadeghianmaryan
- Postdoctoral Researcher Fellow at Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA.
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK, S7N5A9, Canada.
| | - Xiongbiao Chen
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK, S7N5A9, Canada
| |
Collapse
|
41
|
King JA, Zhang X, Ries ME. The Formation of All-Silk Composites and Time-Temperature Superposition. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103804. [PMID: 37241431 DOI: 10.3390/ma16103804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Extensive studies have been conducted on utilising natural fibres as reinforcement in composite production. All-polymer composites have attracted much attention because of their high strength, enhanced interfacial bonding and recyclability. Silks, as a group of natural animal fibres, possess superior properties, including biocompatibility, tunability and biodegradability. However, few review articles are found on all-silk composites, and they often lack comments on the tailoring of properties through controlling the volume fraction of the matrix. To better understand the fundamental basis of the formation of silk-based composites, this review will discuss the structure and properties of silk-based composites with a focus on employing the time-temperature superposition principle to reveal the corresponding kinetic requirements of the formation process. Additionally, a variety of applications derived from silk-based composites will be explored. The benefits and constraints of each application will be presented and discussed. This review paper will provide a useful overview of research on silk-based biomaterials.
Collapse
Affiliation(s)
- James A King
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Xin Zhang
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Michael E Ries
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
42
|
Dvorakova J, Wiesnerova L, Chocholata P, Kulda V, Landsmann L, Cedikova M, Kripnerova M, Eberlova L, Babuska V. Human cells with osteogenic potential in bone tissue research. Biomed Eng Online 2023; 22:33. [PMID: 37013601 PMCID: PMC10069154 DOI: 10.1186/s12938-023-01096-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Bone regeneration after injury or after surgical bone removal due to disease is a serious medical challenge. A variety of materials are being tested to replace a missing bone or tooth. Regeneration requires cells capable of proliferation and differentiation in bone tissue. Although there are many possible human cell types available for use as a model for each phase of this process, no cell type is ideal for each phase. Osteosarcoma cells are preferred for initial adhesion assays due to their easy cultivation and fast proliferation, but they are not suitable for subsequent differentiation testing due to their cancer origin and genetic differences from normal bone tissue. Mesenchymal stem cells are more suitable for biocompatibility testing, because they mimic natural conditions in healthy bone, but they proliferate more slowly, soon undergo senescence, and some subpopulations may exhibit weak osteodifferentiation. Primary human osteoblasts provide relevant results in evaluating the effect of biomaterials on cellular activity; however, their resources are limited for the same reasons, like for mesenchymal stem cells. This review article provides an overview of cell models for biocompatibility testing of materials used in bone tissue research.
Collapse
Affiliation(s)
- Jana Dvorakova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Lucie Wiesnerova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Petra Chocholata
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Vlastimil Kulda
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Lukas Landsmann
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Miroslava Cedikova
- Biomedical Center, Laboratory of Tumor Biology and Immunotherapy, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Michaela Kripnerova
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Lada Eberlova
- Department of Anatomy, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Vaclav Babuska
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Plzen, Czech Republic.
| |
Collapse
|
43
|
Torres-Mansilla A, Hincke M, Voltes A, López-Ruiz E, Baldión PA, Marchal JA, Álvarez-Lloret P, Gómez-Morales J. Eggshell Membrane as a Biomaterial for Bone Regeneration. Polymers (Basel) 2023; 15:polym15061342. [PMID: 36987123 PMCID: PMC10057008 DOI: 10.3390/polym15061342] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
The physicochemical features of the avian eggshell membrane play an essential role in the process of calcium carbonate deposition during shell mineralization, giving rise to a porous mineralized tissue with remarkable mechanical properties and biological functions. The membrane could be useful by itself or as a bi-dimensional scaffold to build future bone-regenerative materials. This review focuses on the biological, physical, and mechanical properties of the eggshell membrane that could be useful for that purpose. Due to its low cost and wide availability as a waste byproduct of the egg processing industry, repurposing the eggshell membrane for bone bio-material manufacturing fulfills the principles of a circular economy. In addition, eggshell membrane particles have has the potential to be used as bio-ink for 3D printing of tailored implantable scaffolds. Herein, a literature review was conducted to ascertain the degree to which the properties of the eggshell membrane satisfy the requirements for the development of bone scaffolds. In principle, it is biocompatible and non-cytotoxic, and induces proliferation and differentiation of different cell types. Moreover, when implanted in animal models, it elicits a mild inflammatory response and displays characteristics of stability and biodegradability. Furthermore, the eggshell membrane possesses a mechanical viscoelastic behavior comparable to other collagen-based systems. Overall, the biological, physical, and mechanical features of the eggshell membrane, which can be further tuned and improved, make this natural polymer suitable as a basic component for developing new bone graft materials.
Collapse
Affiliation(s)
| | - Maxwell Hincke
- Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H8M5, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H8M5, Canada
| | - Ana Voltes
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 180171 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, University Hospitals of Granada–University of Granada, 18071 Granada, Spain
- BioFab i3D Lab–Biofabrication and 3D (bio)Printing Singular Laboratory, Centre for Biomedical Research (CIBM), University of Granada, 180171 Granada, Spain
| | - Elena López-Ruiz
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 180171 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, University Hospitals of Granada–University of Granada, 18071 Granada, Spain
- BioFab i3D Lab–Biofabrication and 3D (bio)Printing Singular Laboratory, Centre for Biomedical Research (CIBM), University of Granada, 180171 Granada, Spain
- Department of Health Sciences, Campus de las Lagunillas S/N, University of Jaén, 23071 Jaén, Spain
| | - Paula Alejandra Baldión
- Departamento de Salud Oral, Facultad de Odontología, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 180171 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, University Hospitals of Granada–University of Granada, 18071 Granada, Spain
- BioFab i3D Lab–Biofabrication and 3D (bio)Printing Singular Laboratory, Centre for Biomedical Research (CIBM), University of Granada, 180171 Granada, Spain
| | - Pedro Álvarez-Lloret
- Departamento de Geología, Universidad de Oviedo, 33005 Asturias, Spain
- Correspondence: (P.Á.-L.); (J.G.-M.)
| | - Jaime Gómez-Morales
- Laboratorio de Estudios Cristalográficos IACT–CSIC–UGR, Avda. Las Palmeras, No. 4, Armilla, 18100 Granada, Spain
- Correspondence: (P.Á.-L.); (J.G.-M.)
| |
Collapse
|
44
|
Liu H, Gong Y, Zhang K, Ke S, Wang Y, Wang J, Wang H. Recent Advances in Decellularized Matrix-Derived Materials for Bioink and 3D Bioprinting. Gels 2023; 9:gels9030195. [PMID: 36975644 PMCID: PMC10048399 DOI: 10.3390/gels9030195] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
As an emerging 3D printing technology, 3D bioprinting has shown great potential in tissue engineering and regenerative medicine. Decellularized extracellular matrices (dECM) have recently made significant research strides and have been used to create unique tissue-specific bioink that can mimic biomimetic microenvironments. Combining dECMs with 3D bioprinting may provide a new strategy to prepare biomimetic hydrogels for bioinks and hold the potential to construct tissue analogs in vitro, similar to native tissues. Currently, the dECM has been proven to be one of the fastest growing bioactive printing materials and plays an essential role in cell-based 3D bioprinting. This review introduces the methods of preparing and identifying dECMs and the characteristic requirements of bioink for use in 3D bioprinting. The most recent advances in dECM-derived bioactive printing materials are then thoroughly reviewed by examining their application in the bioprinting of different tissues, such as bone, cartilage, muscle, the heart, the nervous system, and other tissues. Finally, the potential of bioactive printing materials generated from dECM is discussed.
Collapse
Affiliation(s)
- Huaying Liu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100091, China
| | - Yuxuan Gong
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100091, China
| | - Kaihui Zhang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100091, China
- College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Shen Ke
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100091, China
| | - Yue Wang
- National Institutes for Food and Drug Control, Beijing 102629, China
| | - Jing Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- Correspondence: (J.W.); (H.W.)
| | - Haibin Wang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100091, China
- Correspondence: (J.W.); (H.W.)
| |
Collapse
|
45
|
Mohammadalipour M, Asadolahi M, Mohammadalipour Z, Behzad T, Karbasi S. Plasma surface modification of electrospun polyhydroxybutyrate (PHB) nanofibers to investigate their performance in bone tissue engineering. Int J Biol Macromol 2023; 230:123167. [PMID: 36621738 DOI: 10.1016/j.ijbiomac.2023.123167] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/18/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Polyhydroxybutyrate (PHB) is a natural-source biopolymer of the polyhydroxyalkanoate (PHA) family. Nanofibrous scaffolds prepared from this biological macromolecule have piqued the interest of researchers in recent years due to their unique properties. Nonetheless, these nanofibers continue to have problems such as low surface roughness and high hydrophobicity. In this research, PHB nanofibers were produced by the electrospinning method. Following that, the surface of nanofibers was modified by atmospheric plasma. Scanning electron microscopy (SEM), water contact angle (WCA), atomic force microscopy (AFM), tensile test, and cell behavior analyses were performed on mats to investigate the performance of treated and untreated samples. The achieved results showed a lower water contact angle (from ≃120° to 43°), appropriate degradation rate (up to ≃20 % weight loss in four months), and outstanding biomineralization (Ca/P ratio of ≃1.86) for the modified sample compared to the neat PHB. Finally, not only the MTT test show better viability of MG63 osteoblast cells, but also Alizarin staining, ALP, and SEM results likewise showed better cell proliferation in the presence of modified mats. These findings back up the claim that plasma surface modification is a quick, environmentally friendly, and low-cost way to improve the performance of nanofibers in bone tissue engineering.
Collapse
Affiliation(s)
| | - Mehrdad Asadolahi
- Department of Textile Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Zahra Mohammadalipour
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Tayebeh Behzad
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Saeed Karbasi
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Biomaterials and Tissue Engineering, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
46
|
Samie M, Khan AF, Rahman SU, Iqbal H, Yameen MA, Chaudhry AA, Galeb HA, Halcovitch NR, Hardy JG. Drug/bioactive eluting chitosan composite foams for osteochondral tissue engineering. Int J Biol Macromol 2023; 229:561-574. [PMID: 36587649 DOI: 10.1016/j.ijbiomac.2022.12.293] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/19/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022]
Abstract
Joint defects associated with a variety of etiologies often extend deep into the subchondral bone leading to functional impairment and joint immobility, and it is a very challenging task to regenerate the bone-cartilage interface offering significant opportunities for biomaterial-based interventions to improve the quality of life of patients. Herein drug-/bioactive-loaded porous tissue scaffolds incorporating nano-hydroxyapatite (nHAp), chitosan (CS) and either hydroxypropyl methylcellulose (HPMC) or Bombyx mori silk fibroin (SF) are fabricated through freeze drying method as subchondral bone substitute. A combination of spectroscopy and microscopy (Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX), and X-ray fluorescence (XRF) were used to analyze the structure of the porous biomaterials. The compressive mechanical properties of these scaffolds are biomimetic of cancellous bone tissues and capable of releasing drugs/bioactives (exemplified with triamcinolone acetonide, TA, or transforming growth factor-β1, TGF-β1, respectively) over a period of days. Mouse preosteoblast MC3T3-E1 cells were observed to adhere and proliferate on the tissue scaffolds as confirmed by the cell attachment, live-dead assay and alamarBlue™ assay. Interestingly, RT-qPCR analysis showed that the TA downregulated inflammatory biomarkers and upregulated the bone-specific biomarkers, suggesting such tissue scaffolds have long-term potential for clinical application.
Collapse
Affiliation(s)
- Muhammad Samie
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan; Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan; Department of Chemistry, Lancaster University, Lancaster, Lancashire LA1 4YB, United Kingdom; Materials Science Institute, Lancaster University, Lancaster, Lancashire LA1 4YW, United Kingdom; Institute of Pharmaceutical Sciences, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa 25100, Pakistan.
| | - Ather Farooq Khan
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan
| | - Saeed Ur Rahman
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa 25100, Pakistan
| | - Haffsah Iqbal
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan
| | - Muhammad Arfat Yameen
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Aqif Anwar Chaudhry
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan
| | - Hanaa A Galeb
- Department of Chemistry, Lancaster University, Lancaster, Lancashire LA1 4YB, United Kingdom; Department of Chemistry, Science and Arts College, Rabigh Campus, King Abdulaziz University, 21577 Jeddah, Saudi Arabia
| | - Nathan R Halcovitch
- Department of Chemistry, Lancaster University, Lancaster, Lancashire LA1 4YB, United Kingdom
| | - John G Hardy
- Department of Chemistry, Lancaster University, Lancaster, Lancashire LA1 4YB, United Kingdom; Materials Science Institute, Lancaster University, Lancaster, Lancashire LA1 4YW, United Kingdom.
| |
Collapse
|
47
|
Review on Bioinspired Design of ECM-Mimicking Scaffolds by Computer-Aided Assembly of Cell-Free and Cell Laden Micro-Modules. J Funct Biomater 2023; 14:jfb14020101. [PMID: 36826900 PMCID: PMC9964438 DOI: 10.3390/jfb14020101] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Tissue engineering needs bioactive drug delivery scaffolds capable of guiding cell biosynthesis and tissue morphogenesis in three dimensions. Several strategies have been developed to design and fabricate ECM-mimicking scaffolds suitable for directing in vitro cell/scaffold interaction, and controlling tissue morphogenesis in vivo. Among these strategies, emerging computer aided design and manufacturing processes, such as modular tissue unit patterning, promise to provide unprecedented control over the generation of biologically and biomechanically competent tissue analogues. This review discusses recent studies and highlights the role of scaffold microstructural properties and their drug release capability in cell fate control and tissue morphogenesis. Furthermore, the work highlights recent advances in the bottom-up fabrication of porous scaffolds and hybrid constructs through the computer-aided assembly of cell-free and/or cell-laden micro-modules. The advantages, current limitations, and future challenges of these strategies are described and discussed.
Collapse
|
48
|
Yang XX, Yip CH, Zhao S, Ho YP, Chan BP. A bio-inspired nano-material recapitulating the composition, ultra-structure, and function of the glycosaminoglycan-rich extracellular matrix of nucleus pulposus. Biomaterials 2023; 293:121991. [PMID: 36586145 DOI: 10.1016/j.biomaterials.2022.121991] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022]
Abstract
The nucleus pulposus (NP) of intervertebral disc represents a soft gel consisting of glycosaminoglycans (GAGs)-rich extracellular matrix (ECM). Significant loss of GAGs and normal functions are the most prevalent changes in degenerated disc. Attempts targeted to incorporate GAGs into collagen fibrous matrices have been made but the efficiency is very low, and the resulting structures showed no similarity with native NP. Inspired by the characteristic composition and structures of the ECM of native NP, here, we hypothesize that by chemically modifying the collagen (Col) and hyaluronic acid (HA) and co-precipitating with GAGs, a bio-inspired nano-material recapitulating the composition, ultra-structure and function of the GAG-rich ECM will be fabricated. Compositionally, the bio-inspired nano-material namely Aminated Collagen-Aminated Hyaluronic Acid-GAG (aCol-aHA-GAG) shows a record high GAG/hydroxyproline ratio up to 39.1:1 in a controllable manner, out-performing that of the native NP. Ultra-structurally, the nano-material recapitulates the characteristic 'nano-beads' (25 nm) and 'bottle-brushes' (133 nm) features as those found in native NP. Functionally, the nano-material supports the viability and maintains the morphological and phenotypic markers of bovine NP cells, and shows comparable mechanical properties of native NP. This work contributes to the development of a compositionally, structurally, and functionally biomimetic nano-material for NP tissue engineering.
Collapse
Affiliation(s)
- Xing-Xing Yang
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Chi-Hung Yip
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Shirui Zhao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Yi-Ping Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Barbara Pui Chan
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region.
| |
Collapse
|
49
|
Li Y, Hu MX, Yan M, Guo YX, Ma XK, Han JZ, Qin YM. Intestinal models based on biomimetic scaffolds with an ECM micro-architecture and intestinal macro-elasticity: close to intestinal tissue and immune response analysis. Biomater Sci 2023; 11:567-582. [PMID: 36484321 DOI: 10.1039/d2bm01051h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The synergetic biological effect of scaffolds with biomimetic properties including the ECM micro-architecture and intestinal macro-mechanical properties on intestinal models in vitro remains unclear. Here, we investigate the profitable role of biomimetic scaffolds on 3D intestinal epithelium models. Gelatin/bacterial cellulose nanofiber composite scaffolds crosslinked by the Maillard reaction are tuned to mimic the chemical component, nanofibrous network, and crypt architecture of intestinal ECM collagen and the stability and mechanical properties of intestinal tissue. In particular, scaffolds with comparable elasticity and viscoelasticity of intestinal tissue possess the highest biocompatibility and best cell proliferation and differentiation ability, which makes the intestinal epithelium models closest to their counterpart intestinal tissues. The constructed duodenal epithelium models and colon epithelium models are utilized to assess the immunobiotics-host interactions, and both of them can sensitively respond to foreign microorganisms, but the secretion levels of cytokines are intestinal cell specific. The results demonstrate that probiotics alleviate the inflammation and cell apoptosis induced by Escherichia coli, indicating that probiotics can protect the intestinal epithelium from damage by inhibiting the adhesion and invasion of E. coli to intestinal cells. The designed biomimetic scaffolds can serve as powerful tools to construct in vitro intestinal epithelium models, providing a convenient platform to screen intestinal anti-inflammatory components and even to assess other physiological functions of the intestine.
Collapse
Affiliation(s)
- Yue Li
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Meng-Xin Hu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Ming Yan
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Ya-Xin Guo
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Xue-Ke Ma
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Jian-Zhong Han
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Yu-Mei Qin
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
50
|
Aguilar VM, Paul A, Lazarko D, Levitan I. Paradigms of endothelial stiffening in cardiovascular disease and vascular aging. Front Physiol 2023; 13:1081119. [PMID: 36714307 PMCID: PMC9874005 DOI: 10.3389/fphys.2022.1081119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
Endothelial cells, the inner lining of the blood vessels, are well-known to play a critical role in vascular function, while endothelial dysfunction due to different cardiovascular risk factors or accumulation of disruptive mechanisms that arise with aging lead to cardiovascular disease. In this review, we focus on endothelial stiffness, a fundamental biomechanical property that reflects cell resistance to deformation. In the first part of the review, we describe the mechanisms that determine endothelial stiffness, including RhoA-dependent contractile response, actin architecture and crosslinking, as well as the contributions of the intermediate filaments, vimentin and lamin. Then, we review the factors that induce endothelial stiffening, with the emphasis on mechanical signals, such as fluid shear stress, stretch and stiffness of the extracellular matrix, which are well-known to control endothelial biomechanics. We also describe in detail the contribution of lipid factors, particularly oxidized lipids, that were also shown to be crucial in regulation of endothelial stiffness. Furthermore, we discuss the relative contributions of these two mechanisms of endothelial stiffening in vasculature in cardiovascular disease and aging. Finally, we present the current state of knowledge about the role of endothelial stiffening in the disruption of endothelial cell-cell junctions that are responsible for the maintenance of the endothelial barrier.
Collapse
Affiliation(s)
- Victor M. Aguilar
- Department of Medicine, Division of Pulmonary and Critical Care, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Amit Paul
- Department of Medicine, Division of Pulmonary and Critical Care, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Dana Lazarko
- Department of Medicine, Division of Pulmonary and Critical Care, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Irena Levitan
- Department of Medicine, Division of Pulmonary and Critical Care, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|