1
|
Paul M, Lee W, Song WJ, Im J. Electrospun polycaprolactone fibers encapsulating omega-3 and montelukast sodium to prevent capsular contracture in breast implant surgery. Int J Pharm 2025:125744. [PMID: 40412454 DOI: 10.1016/j.ijpharm.2025.125744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 05/16/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025]
Abstract
Capsular contracture (CC) is a common complication associated with breast implant surgery and is characterized by excessive fibrotic tissue formation around the implant. However, there is no established gold-standard treatment to prevent CC. This study aimed to prepare fish oil/montelukast sodium (MTKS)-loaded polycaprolactone (PCL) fibers and evaluate their effectiveness in preventing CC. PCL, a biocompatible and biodegradable material, was used to fabricate electrospun fibers incorporating fish oil, a source of omega-3 (ω3) polyunsaturated fatty acids (EPA and DHA), and MTKS, a leukotriene receptor antagonist. MTKS and ω3 were selected as therapeutic agents for their anti-inflammatory and anti-fibrotic properties. The fibers underwent characterization using FT-IR, HPLC, SEM, water contact angle, XRD, and TGA. These methods confirmed structural integrity, encapsulation and stability of fish oil, and optimal hydrophilic surface properties for reducing bacterial adhesion to implants. In vitro drug release studies demonstrated the controlled and prolonged release profile of ω3 and a faster release pattern with MTKS. In vivo experiments using a rat model with mini-implants coated with the fibers revealed a significant reduction in fibrotic capsule tissue formation and inflammatory responses compared to control groups after 90 days. Histological and gene expression analyses confirmed these findings. Second-harmonic generation imaging demonstrated that ω3 and MTKS facilitated favorable collagen organization, leading to late-stage fibrosis with a thinner, more compliant capsule, and enhanced biocompatibility. Our findings suggest that PCL-ω3-MTKS fibers regulate inflammatory and fibrotic pathways, improve collagen organization, and reduce the risk of CC. Additionally, ω3-MTKS demonstrated synergistic efficacy in impeding fibrosis. This innovative strategy offers a promising therapeutic approach to mitigate CC and improve outcomes in breast implant surgeries.
Collapse
Affiliation(s)
- Mohuya Paul
- Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Wonju Lee
- Korea Electrotechnology Research Institute, Ansan 15588, Republic of Korea
| | - Woo Jin Song
- Department of Plastic and Reconstructive Surgery, Soonchunhyang University College of Medicine, Seoul 04401, Republic of Korea.
| | - Jungkyun Im
- Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, Asan 31538, Republic of Korea; Department of Chemical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea.
| |
Collapse
|
2
|
Zabransky DJ, Kartalia E, Lee JW, Leatherman JM, Charmsaz S, Young SE, Chhabra Y, Franch-Expósito S, Kang M, Maru S, Rastkari N, Davis M, Dalton WB, Oshima K, Baretti M, Azad NS, Jaffee EM, Yarchoan M. Tumor-derived CCL2 drives tumor growth and immunosuppression in IDH1- mutant cholangiocarcinoma. Hepatology 2024:01515467-990000000-01100. [PMID: 39626209 DOI: 10.1097/hep.0000000000001185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/12/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND AND AIMS Isocitrate dehydrogenase 1 ( IDH1 )-mutant cholangiocarcinoma (CCA) is a highly lethal subtype of hepatobiliary cancer that is often resistant to immune checkpoint inhibitor therapies. We evaluated the effects of IDH1 mutations in CCA cells on the tumor immune microenvironment and identified opportunities for therapeutic intervention. APPROACH AND RESULTS Analysis of 2606 human CCA tumors using deconvolution of RNA-sequencing data identified decreased CD8+ T cell and increased M2-like tumor-associated macrophage (TAM) infiltration in IDH1 -mutant compared to IDH1 wild-type tumors. To model the tumor immune microenvironment of IDH1 -mutant CCA in vivo, we generated an isogenic cell line panel of mouse SB1 CCA cells containing a heterozygous IDH1 R132C (SB1 mIDH1 ) or control (SB1 WT ) mutation using CRISPR-mediated homology-directed repair. SB1 mIDH1 cells recapitulated features of human IDH1 -mutant CCA including D-2-hydroxyglutarate production and increased M2-like TAM infiltration. SB1 mIDH1 cells and tumors produced increased levels of CCL2, a chemokine involved in the recruitment and polarization of M2-like TAMs, compared to wild-type controls. In vivo neutralization of CCL2 led to decreased M2-like TAM infiltration, reduced tumor size, and improved overall survival in mice harboring SB1 mIDH1 tumors. CONCLUSIONS IDH1- mutant CCA is characterized by an increased abundance of M2-like TAMs. Targeting CCL2 remodels the tumor immune microenvironment and improves outcomes in preclinical models of IDH1 -mutant CCA, highlighting the role of myeloid-targeted immunotherapies in the treatment of this cancer.
Collapse
Affiliation(s)
- Daniel J Zabransky
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emma Kartalia
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jae W Lee
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - James M Leatherman
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Soren Charmsaz
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sara E Young
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yash Chhabra
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | | | | | - Saumya Maru
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Noushin Rastkari
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Davis
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - William Brian Dalton
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kiyoko Oshima
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marina Baretti
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nilofer S Azad
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth M Jaffee
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark Yarchoan
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Wei X, Lei L, Luo L, Zhou Y, Zheng Z, Chen W. Advances in osteoimmunomodulation of biomaterials after intrabone implantation: focus on surface hydrophilicity. J Mater Chem B 2024; 12:11089-11104. [PMID: 39387541 DOI: 10.1039/d4tb01907e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Biomaterials intended for intrabone implantation are extensively utilized in orthopedic and dental applications. Their surface properties, particularly hydrophilicity, significantly influence the biological interactions surrounding the implant, ultimately determining the implant's in vivo fate. Recently, the role of osteoimmunomodulation in these implantable biomaterials has been recognized for its importance in regulating biomaterial-mediated osteogenesis. Consequently, it is imperative to elucidate the correlation between hydrophilicity and the immune response for the development of osteoimmunomodulatory implants. Herein, this review highlights recent advances in osteoimmunomodulation of biomaterials after intrabone implantation from a novel perspective-surface hydrophilicity, and summarizes the series of immune reactions and subsequent bone remodeling that occur in response to hydrophilic implants, focusing on protein adsorption, the behaviors of major immune cells, and osteoimmunomodulation-enhanced angiogenesis and osteogenesis. Hydrophilic biomaterials have the capacity to alter the surrounding immune microenvironment and accelerate the process of material-tissue bonding, thereby facilitating the successful integration of biomaterials with tissue. Collectively, the authors hope that this article provides strategies for modulating hydrophilicity to achieve osteoimmunomodulatory performance and further promotes the development of novel implantable biomaterials for orthopedic and dental applications.
Collapse
Affiliation(s)
- Xinpeng Wei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Linshan Lei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ling Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Ying Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
4
|
Las Heras K, Garcia-Orue I, Rancan F, Igartua M, Santos-Vizcaino E, Hernandez RM. Modulating the immune system towards a functional chronic wound healing: A biomaterials and Nanomedicine perspective. Adv Drug Deliv Rev 2024; 210:115342. [PMID: 38797316 DOI: 10.1016/j.addr.2024.115342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
Chronic non-healing wounds persist as a substantial burden for healthcare systems, influenced by factors such as aging, diabetes, and obesity. In contrast to the traditionally pro-regenerative emphasis of therapies, the recognition of the immune system integral role in wound healing has significantly grown, instigating an approach shift towards immunological processes. Thus, this review explores the wound healing process, highlighting the engagement of the immune system, and delving into the behaviors of innate and adaptive immune cells in chronic wound scenarios. Moreover, the article investigates biomaterial-based strategies for the modulation of the immune system, elucidating how the adjustment of their physicochemical properties or their synergistic combination with other agents such as drugs, proteins or mesenchymal stromal cells can effectively modulate the behaviors of different immune cells. Finally this review explores various strategies based on synthetic and biological nanostructures, including extracellular vesicles, to finely tune the immune system as natural immunomodulators or therapeutic nanocarriers with promising biophysical properties.
Collapse
Affiliation(s)
- Kevin Las Heras
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Itxaso Garcia-Orue
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain
| | - Fiorenza Rancan
- Department of Dermatology, Venereology und Allergology,Clinical Research Center for Hair and Skin Science, Charité - Universitätsmedizin Berlin
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain.
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
5
|
Wang Y, Vizely K, Li CY, Shen K, Shakeri A, Khosravi R, Smith JR, Alteza EAII, Zhao Y, Radisic M. Biomaterials for immunomodulation in wound healing. Regen Biomater 2024; 11:rbae032. [PMID: 38779347 PMCID: PMC11110865 DOI: 10.1093/rb/rbae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 05/25/2024] Open
Abstract
The substantial economic impact of non-healing wounds, scarring, and burns stemming from skin injuries is evident, resulting in a financial burden on both patients and the healthcare system. This review paper provides an overview of the skin's vital role in guarding against various environmental challenges as the body's largest protective organ and associated developments in biomaterials for wound healing. We first introduce the composition of skin tissue and the intricate processes of wound healing, with special attention to the crucial role of immunomodulation in both acute and chronic wounds. This highlights how the imbalance in the immune response, particularly in chronic wounds associated with underlying health conditions such as diabetes and immunosuppression, hinders normal healing stages. Then, this review distinguishes between traditional wound-healing strategies that create an optimal microenvironment and recent peptide-based biomaterials that modulate cellular processes and immune responses to facilitate wound closure. Additionally, we highlight the importance of considering the stages of wounds in the healing process. By integrating advanced materials engineering with an in-depth understanding of wound biology, this approach holds promise for reshaping the field of wound management and ultimately offering improved outcomes for patients with acute and chronic wounds.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Katrina Vizely
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Chen Yu Li
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Karen Shen
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Amid Shakeri
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Ramak Khosravi
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - James Ryan Smith
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | | | - Yimu Zhao
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| |
Collapse
|
6
|
Morrison RA, Brookes S, Puls TJ, Cox A, Gao H, Liu Y, Voytik-Harbin SL. Engineered collagen polymeric materials create noninflammatory regenerative microenvironments that avoid classical foreign body responses. Biomater Sci 2023; 11:3278-3296. [PMID: 36942875 PMCID: PMC10152923 DOI: 10.1039/d3bm00091e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/26/2023] [Indexed: 03/23/2023]
Abstract
The efficacy and longevity of medical implants and devices is largely determined by the host immune response, which extends along a continuum from pro-inflammatory/pro-fibrotic to anti-inflammatory/pro-regenerative. Using a rat subcutaneous implantation model, along with histological and transcriptomics analyses, we characterized the tissue response to a collagen polymeric scaffold fabricated from polymerizable type I oligomeric collagen (Oligomer) in comparison to commercial synthetic and collagen-based products. In contrast to commercial biomaterials, no evidence of an immune-mediated foreign body reaction, fibrosis, or bioresorption was observed with Oligomer scaffolds for beyond 60 days. Oligomer scaffolds were noninflammatory, eliciting minimal innate inflammation and immune cell accumulation similar to sham surgical controls. Genes associated with Th2 and regulatory T cells were instead upregulated, implying a novel pathway to immune tolerance and regenerative remodeling for biomaterials.
Collapse
Affiliation(s)
- Rachel A Morrison
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Sarah Brookes
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | | | - Abigail Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Hongyu Gao
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yunlong Liu
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sherry L Voytik-Harbin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
7
|
Pantović Pavlović MR, Ignjatović NL, Panić VV, Mirkov II, Kulaš JB, Malešević AL, Pavlović MM. Immunomodulatory Effects Mediated by Nano Amorphous Calcium Phosphate/Chitosan Oligosaccharide Lactate Coatings Decorated with Selenium on Titanium Implants. J Funct Biomater 2023; 14:jfb14040227. [PMID: 37103318 PMCID: PMC10143504 DOI: 10.3390/jfb14040227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/11/2023] [Accepted: 04/16/2023] [Indexed: 04/28/2023] Open
Abstract
The aim of this work is in situ anodization/anaphoretic deposition of a nano amorphous calcium phosphate (ACP)/chitosan oligosaccharide lactate (ChOL) multifunctional hybrid coating decorated with selenium (Se) on a titanium substrate and in vivo investigation of its immunomodulatory and anti-inflammatory effect. Investigating phenomena at the implant-tissue interface of interest for controlled inflammation and immunomodulation was also the aim of the research. In our earlier research, we designed coatings based on ACP and ChOL on titanium with anticorrosive, antibacterial and biocompatible properties, while in the presented results we show that selenium addition makes this coating an immunomodulator. The immunomodulatory effect of the novel hybrid coating is characterized by the examination of the functional aspects in the tissue around the implant (in vivo): proinflammatory cytokines' gene expression, M1 (iNOS) and M2 (Arg1) macrophages, fibrous capsule formation (TGF-β) and vascularization (VEGF). The EDS, FTIR and XRD analyses prove the formation of a ACP/ChOL/Se multifunctional hybrid coating on Ti and the presence of Se. A higher M2/M1 macrophage ratio in the ACP/ChOL/Se-coated implants compared to pure titanium implants (a higher level of Arg1 expression) is noted at all time points examined (after 7, 14 and 28 days). Lower inflammation measured by gene expression of proinflammatory cytokines IL-1β and TNF, lower expression of TGF-β in the surrounding tissue and higher IL-6 expression (solely at day 7 post-implantation) is noted in presence of the ACP/ChOL/Se-coated implants.
Collapse
Affiliation(s)
- Marijana R Pantović Pavlović
- Department of Electrochemistry, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
- Center of Excellence in Chemistry and Environmental Engineering-ICTM, University of Belgrade, 11000 Belgrade, Serbia
| | - Nenad L Ignjatović
- Institute of Technical Science of the Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia
| | - Vladimir V Panić
- Department of Electrochemistry, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
- Center of Excellence in Chemistry and Environmental Engineering-ICTM, University of Belgrade, 11000 Belgrade, Serbia
- Department of Chemical-Technological Sciences, State University of Novi Pazar, 36300 Novi Pazar, Serbia
| | - Ivana I Mirkov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic"-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena B Kulaš
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic"-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Anastasija Lj Malešević
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic"-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Miroslav M Pavlović
- Department of Electrochemistry, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
- Center of Excellence in Chemistry and Environmental Engineering-ICTM, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
8
|
Chen B, Liang Y, Song Y, Liang Y, Jiao J, Bai H, Li Y. Photothermal-Controlled Release of IL-4 in IL-4/PDA-Immobilized Black Titanium Dioxide (TiO 2) Nanotubes Surface to Enhance Osseointegration: An In Vivo Study. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5962. [PMID: 36079344 PMCID: PMC9457063 DOI: 10.3390/ma15175962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Host immune response has gradually been accepted as a critical factor in achieving successful implant osseointegration. The aim of this study is to create a favorable immune microenvironment by the dominant release of IL-4 during the initial few days after implant insertion to mitigate early inflammatory reactions and facilitate osseointegration. Herein, the B-TNT/PDA/IL-4 substrate was established by immobilizing an interleukin-4 (IL-4)/polydopamine (PDA) coating on a black TiO2 nanotube (B-TNT) surface, achieving on-demand IL-4 release under near infrared (NIR) irradiation. Gene Ontology (GO) enrichment analyses based on high-throughput DNA microarray data revealed that IL-4 addition inhibited osteoclast differentiation and function. Animal experiment results suggested that the B-TNT/PDA/IL-4+Laser substrate induced the least inflammatory, tartrate-resistant acid phosphatase, inducible nitric oxide synthase and the most CD163 positive cells, compared to the Ti group at 7 days post-implantation. In addition, 28 days post-implantation, micro-computed tomography results showed the highest bone volume/total volume, trabecular thickness, trabecular number and the lowest trabecular separation, while Hematoxylin-eosin and Masson-trichrome staining revealed the largest amount of new bone formation for the B-TNT/PDA/IL-4+Laser group. This study revealed the osteoimmunoregulatory function of the novel B-TNT/PDA/IL-4 surface by photothermal release of IL-4 at an early period post-implantation, thus paving a new way for dental implant surface modification.
Collapse
Affiliation(s)
- Bo Chen
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China
| | - Yu Liang
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China
| | - Yunjia Song
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China
| | - Yunkai Liang
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China
| | - Jian Jiao
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China
| | - Hong Bai
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Ying Li
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
9
|
Li T, Zhang YS, Wan M, Wu W, Yao YF, Li WJ. Ganoderma atrum polysaccharide modulates the M1/M2 polarization of macrophages linked to the Notch signaling pathway. Food Funct 2022; 13:4216-4228. [PMID: 35332895 DOI: 10.1039/d1fo04309a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Macrophages could be polarized into two major sub-populations including classically activated (M1) and alternatively activated (M2) macrophages. The present study aimed to investigate the effects of Ganoderma atrum polysaccharide (PSG-1) on the regulation of macrophage polarization and further explored the associated molecular mechanisms. In this work, a lipopolysaccharide (LPS) plus IFN-γ and IL-4 were used to establish an in vitro model of two extreme states, namely pro-inflammatory M1 and anti-inflammatory M2. The results showed that PSG-1 had effects on the behavior modification of macrophage polarization by reducing CD80 expression in LPS plus IFN-γ-induced M1 macrophages, and attenuating CD23 expression in IL-4-induced M2 macrophages. Further study revealed that PSG-1-modulated M1 and M2 macrophage polarization was associated with controlling phagocytosis, reactive oxygen species generation, NO and cytokines (IL-1β, IL-6 and IL-10). Subsequently, the treatment of M1 macrophages with a combination of PSG-1 and a Notch-response inhibitor (DAPT) did not alter CD80 expression compared with DAPT alone, while several pro-inflammatory parameters were considerably decreased, suggesting that the Notch signaling pathway partly mediated the effects of PSG-1 on modulating macrophage polarization. Together, our findings suggested that PSG-1 could repair the chaos in the polarization of M1/M2 macrophages and the molecular mechanism linked to the Notch signaling pathway.
Collapse
Affiliation(s)
- Teng Li
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Yan-Song Zhang
- Research Institute of Food Science & Engineering Technology, Hezhou University, Hezhou 542899, China
| | - Min Wan
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Wei Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Yu-Fei Yao
- Department of Critical Care Medicine, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China.
| | - Wen-Juan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
10
|
Interpenetrating gallol functionalized tissue adhesive hyaluronic acid hydrogel polarizes macrophages to an immunosuppressive phenotype. Acta Biomater 2022; 142:36-48. [PMID: 35085799 DOI: 10.1016/j.actbio.2022.01.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/20/2022]
Abstract
Innovative scaffold designs that modulate the local inflammatory microenvironment through favorable macrophage polarization and suppressing oxidative stress are needed for successful clinical translation of regenerative cell therapies and graft integration. We herein report derivation of a hydrazone-crosslinked gallol functionalized hyaluronic acid (HA-GA)-based hydrogel that displayed outstanding viscoelastic properties and immunomodulatory characteristics. Grafting of 6% gallol (GA) to a HA-backbone formed an interpenetrative network by promoting an additional crosslink between the gallol groups in addition to hydrazone crosslinking. This significantly enhanced the mechanical stability and displayed shear-thinning/self-healing characteristics, facilitated tissue adhesive properties to porcine tissue and also displayed radical scavenging properties, protecting encapsulated fibroblasts from peroxide challenge. The THP-1 human macrophage cell line or primary bone-marrow-derived murine macrophages cultured within HA-GA gels displayed selective polarization to a predominantly anti-inflammatory phenotype by upregulating IL4ra, IL-10, TGF-β, and TGF-βR1 expression when compared with HA-HA gels. Conversely, culturing of pro-inflammatory activated primary murine macrophages in HA-GA gels resulted in a significant reduction of pro-inflammatory TNF-α, IL-1β, SOCS3 and IL-6 marker expression, and upregulated expression of anti-inflammatory cytokines including TGF-β. Finally, when the gels were implanted subcutaneously into healthy mice, we observed infiltration of pro-inflammatory myeloid cells in HA-HA gels, while immunosuppressive phenotypes were observed within the HA-GA gels. Taken together these data suggest that HA-GA gels are an ideal injectable scaffold for viable immunotherapeutic interventions. STATEMENT OF SIGNIFICANCE: Host immune response against the implanted scaffolds that are designed to deliver stem cells or therapeutic proteins in vivo significantly limits the functional outcome. For this reason, we have designed immunomodulatory injectable scaffolds that can favorably polarize the recruited macrophages and impart antioxidant properties to suppress oxidative stress. Specifically, we have tailored a hyaluronic acid-based extracellular matrix mimetic injectable scaffold that is grafted with immunomodulatory gallol moiety. Gallol functionalization of hydrogel not only enhanced the mechanical properties of the scaffold by forming an interpenetrating network but also induced antioxidant properties, tissue adhesive properties, and polarized primary murine macrophages to immunosuppressive phenotype. We believe such immunoresponsive implants will pave the way for developing the next-generation of biomaterials for regenerative medicine applications.
Collapse
|
11
|
Berger R, Ribas Filho JM, Souza MAD, Paula PHD, Doubek JGC, Pires RDCES, Nassif PAN, Silva EN. TGF-β1 and CD68 immunoexpression in capsules formed by textured implants with and without mesh coverage: a study on female rats. Acta Cir Bras 2022; 37:e370201. [PMID: 35475808 PMCID: PMC9020789 DOI: 10.1590/acb370201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/04/2022] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To evaluate fibrosis formation and number of macrophages in capsules formed around textured implants without and with mesh coverage. METHODS Fibrosis was analyzed through transforming growth factor-beta 1 (TGF-β1) immunomarker expression and the number of macrophages through CD68 percentage of cells in magnified field. Sixty female Wistar rats were distributed into two groups of 30 rats (unmeshed and meshed). Each group was then subdivided into two subgroups for postoperative evaluation after 30 and 90 days. The p value was adjusted by Bonferroni lower than 0.012. RESULTS No difference was observed in fibrosis between meshed and unmeshed groups (30 days p = 0.436; 90 days p = 0.079) and from 30 to 90 days in the unmeshed group (p = 0.426). The meshed group showed higher fibrosis on the 90th day (p = 0.001). The number of macrophages was similar between groups without and with mesh coverage (30 days p = 0.218; 90 days p = 0.044), and similar between subgroups 30 and 90 days (unmeshed p = 0.085; meshed p = 0.059). CONCLUSIONS In the meshed group, fibrosis formation was higher at 90 days and the mesh-covered implants produced capsules similar to microtextured ones when analyzing macrophages. Due to these characteristics, mesh coating did not seem to significantly affect the local fibrosis formation.
Collapse
|
12
|
Hastreiter AA, Paredes LC, Saraiva Camara NO. Metabolic requirement for macrophages. MACROPHAGES IN THE HUMAN BODY 2022:49-66. [DOI: 10.1016/b978-0-12-821385-8.00010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Nouri-Goushki M, Isaakidou A, Eijkel BIM, Minneboo M, Liu Q, Boukany PE, Mirzaali MJ, Fratila-Apachitei LE, Zadpoor AA. 3D printed submicron patterns orchestrate the response of macrophages. NANOSCALE 2021; 13:14304-14315. [PMID: 34190291 PMCID: PMC8412028 DOI: 10.1039/d1nr01557e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/16/2021] [Indexed: 05/12/2023]
Abstract
The surface topography of engineered extracellular matrices is one of the most important physical cues regulating the phenotypic polarization of macrophages. However, not much is known about the ways through which submicron (i.e., 100-1000 nm) topographies modulate the polarization of macrophages. In the context of bone tissue regeneration, it is well established that this range of topographies stimulates the osteogenic differentiation of stem cells. Since the immune response affects the bone tissue regeneration process, the immunomodulatory consequences of submicron patterns should be studied prior to their clinical application. Here, we 3D printed submicron pillars (using two-photon polymerization technique) with different heights and interspacings to perform the first ever systematic study of such effects. Among the studied patterns, the highest degree of elongation was observed for the cells cultured on those with the tallest and densest pillars. After 3 days of culture with inflammatory stimuli (LPS/IFN-γ), sparsely decorated surfaces inhibited the expression of the pro-inflammatory cellular marker CCR7 as compared to day 1 and to the other patterns. Furthermore, sufficiently tall pillars polarized the M1 macrophages towards a pro-healing (M2) phenotype, as suggested by the expression of CD206 within the first 3 days. As some of the studied patterns are known to be osteogenic, the osteoimmunomodulatory capacity of the patterns should be further studied to optimize their bone tissue regeneration performance.
Collapse
Affiliation(s)
- M Nouri-Goushki
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands.
| | - A Isaakidou
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands.
| | - B I M Eijkel
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands.
| | - M Minneboo
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands.
| | - Q Liu
- Department of Chemical Engineering, Delft University of Technology (TU Delft), van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - P E Boukany
- Department of Chemical Engineering, Delft University of Technology (TU Delft), van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - M J Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands.
| | - L E Fratila-Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands.
| | - A A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands.
| |
Collapse
|
14
|
Raj R, Shenoy SJ, Mony MP, Pratheesh KV, Nair RS, Geetha CS, Sobhan PK, Purnima C, Anilkumar TV. Surface Modification of Polypropylene Mesh with a Porcine Cholecystic Extracellular Matrix Hydrogel for Mitigating Host Tissue Reaction. ACS APPLIED BIO MATERIALS 2021; 4:3304-3319. [DOI: 10.1021/acsabm.0c01627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Reshmi Raj
- Division of Experimental Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Thiruvananthapuram 695012, India
| | - Sachin J. Shenoy
- Division of In Vivo Models and Testing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Thiruvananthapuram 695012, India
| | - Manjula P. Mony
- Division of Experimental Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Thiruvananthapuram 695012, India
| | - Kanakarajan V. Pratheesh
- Division of Experimental Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Thiruvananthapuram 695012, India
| | - Reshma S. Nair
- Division of Experimental Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Thiruvananthapuram 695012, India
| | - Chandrika S. Geetha
- Division of Experimental Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Thiruvananthapuram 695012, India
| | - Praveen K. Sobhan
- Division of Tissue Culture, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Thiruvananthapuram 695012, India
| | - Chandramohanan Purnima
- Division of Experimental Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Thiruvananthapuram 695012, India
| | - Thapasimuthu V. Anilkumar
- Division of Experimental Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Thiruvananthapuram 695012, India
- School of Biology, Indian Institute of Science Education and Research—Thiruvananthapuram, Maruthamala, Vithura 695551, India
| |
Collapse
|
15
|
Quell KM, Dutta K, Korkmaz ÜR, Nogueira de Almeida L, Vollbrandt T, König P, Lewkowich I, Deepe GS, Verschoor A, Köhl J, Laumonnier Y. GM-CSF and IL-33 Orchestrate Polynucleation and Polyploidy of Resident Murine Alveolar Macrophages in a Murine Model of Allergic Asthma. Int J Mol Sci 2020; 21:ijms21207487. [PMID: 33050608 PMCID: PMC7589978 DOI: 10.3390/ijms21207487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
Allergic asthma is a chronical pulmonary disease with high prevalence. It manifests as a maladaptive immune response to common airborne allergens and is characterized by airway hyperresponsiveness, eosinophilia, type 2 cytokine-associated inflammation, and mucus overproduction. Alveolar macrophages (AMs), although contributing to lung homeostasis and tolerance to allergens at steady state, have attracted less attention compared to professional antigen-presenting and adaptive immune cells in their contributions. Using an acute model of house dust mite-driven allergic asthma in mice, we showed that a fraction of resident tissue-associated AMs, while polarizing to the alternatively activated M2 phenotype, exhibited signs of polynucleation and polyploidy. Mechanistically, in vitro assays showed that only Granulocyte-Macrophage Colony Stimulating Factor and interleukins IL-13 and IL-33, but not IL-4 or IL-5, participate in the establishment of this phenotype, which resulted from division defects and not cell-cell fusion as shown by microscopy. Intriguingly, mRNA analysis of AMs isolated from allergic asthmatic lungs failed to show changes in the expression of genes involved in DNA damage control except for MafB. Altogether, our data support the idea that upon allergic inflammation, AMs undergo DNA damage-induced stresses, which may provide new unconventional therapeutical approaches to treat allergic asthma.
Collapse
Affiliation(s)
- Katharina M. Quell
- Institute for Systemic Inflammation Research, University of Lübeck, 23538 Lübeck, Germany; (K.M.Q.); (K.D.); (Ü.R.K.); (L.N.d.A.); (J.K.)
| | - Kuheli Dutta
- Institute for Systemic Inflammation Research, University of Lübeck, 23538 Lübeck, Germany; (K.M.Q.); (K.D.); (Ü.R.K.); (L.N.d.A.); (J.K.)
| | - Ülkü R. Korkmaz
- Institute for Systemic Inflammation Research, University of Lübeck, 23538 Lübeck, Germany; (K.M.Q.); (K.D.); (Ü.R.K.); (L.N.d.A.); (J.K.)
| | - Larissa Nogueira de Almeida
- Institute for Systemic Inflammation Research, University of Lübeck, 23538 Lübeck, Germany; (K.M.Q.); (K.D.); (Ü.R.K.); (L.N.d.A.); (J.K.)
| | - Tillman Vollbrandt
- Cell Analysis Core Facility, University of Lübeck, 23538 Lübeck, Germany;
| | - Peter König
- Institute of Anatomy, University of Lübeck, 23538 Lübeck, Germany;
- Airway Research Center North, Member of the German Center for Lung Research (DZL), 23538 Lübeck, Germany
| | - Ian Lewkowich
- Division of Immunobiology, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA;
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| | - George S. Deepe
- College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA;
| | - Admar Verschoor
- Department of Infectious Diseases and Microbiology, University of Lübeck, 23538 Lübeck, Germany;
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, 23538 Lübeck, Germany; (K.M.Q.); (K.D.); (Ü.R.K.); (L.N.d.A.); (J.K.)
- Airway Research Center North, Member of the German Center for Lung Research (DZL), 23538 Lübeck, Germany
- Division of Immunobiology, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA;
| | - Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, 23538 Lübeck, Germany; (K.M.Q.); (K.D.); (Ü.R.K.); (L.N.d.A.); (J.K.)
- Airway Research Center North, Member of the German Center for Lung Research (DZL), 23538 Lübeck, Germany
- Correspondence: ; Tel.: +49-451-31018940; Fax: +49-451-31018904
| |
Collapse
|