1
|
Nguyen VN, Nguyen MV, Pham Thi H, Vu AT, Nguyen TX. Recent advances in near-infrared organic photosensitizers for photodynamic cancer therapy. Biomater Sci 2025; 13:1179-1188. [PMID: 39868556 DOI: 10.1039/d4bm01457j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
With the advancement of photodynamic therapy, various photosensitizers have been developed to enhance the efficacy of cancer treatment while minimizing side effects. Recently, near-infrared organic fluorophores have gained significant attention as promising photodynamic agents for cancer therapy due to their tunable photophysical properties, structural versatility, good biocompatibility, high biosafety, and synthetic flexibility. In particular, near-infrared organic photosensitizers offer several notable advantages, including deep tissue penetration, a low fluorescence background for bioimaging, and reduced damage to biological tissues compared to traditional visible-spectrum photosensitizers. In this minireview, we will discuss the current developments in near-infrared organic photosensitizers for photodynamic cancer therapy. Furthermore, we will briefly highlight the challenges and prospects in this field. This minireview aims to encourage more researchers to develop advanced near-infrared organic photosensitizers and facilitate their transition from laboratory research to preclinical studies and ultimately to clinical use.
Collapse
Affiliation(s)
- Van-Nghia Nguyen
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Ha Noi, Vietnam.
| | - Minh Viet Nguyen
- VNU-Key Laboratory of Advanced Materials for Green Growth, Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, Vietnam.
| | - Huong Pham Thi
- Laboratory of Environmental Science and Climate Change, Institute for Computation Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam.
- Faculty of Environment, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Anh-Tuan Vu
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Ha Noi, Vietnam.
| | - Truong Xuan Nguyen
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Ha Noi, Vietnam.
| |
Collapse
|
2
|
Bhattacharya A, Dasgupta AK. Multifaceted perspectives of detecting and targeting solid tumors. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:1-66. [PMID: 39396844 DOI: 10.1016/bs.ircmb.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Solid tumors are the most prevalent form of cancer. Considerable technological and medical advancements had been achieved for the diagnosis of the disease. However, detection of the disease in an early stage is of utmost importance, still far from reality. On the contrary, the treatment and therapeutic area to combat solid tumors are still in its infancy. Conventional treatments like chemotherapy and radiation therapy pose challenges due to their indiscriminate impact on healthy and cancerous cells. Contextually, efficient drug targeting is a pivotal approach in solid tumor treatment. This involves the precise delivery of drugs to cancer cells while minimizing harm to healthy cells. Targeted drugs exhibit superior efficacy in eradicating cancer cells while impeding tumor growth and mitigate side effects by optimizing absorption which further diminishes the risk of resistance. Furthermore, tailoring targeted therapies to a patient's tumor-specific molecular profile augments treatment efficacy and reduces the likelihood of relapse. This chapter discuss about the distinctive characteristics of solid tumors, the possibility of early detection of the disease and potential therapeutic angle beyond the conventional approaches. Additionally, the chapter delves into a hitherto unknown attribute of magnetic field effect to target cancer cells which exploit the relatively less susceptibility of normal cells compared to cancer cells to magnetic fields, suggesting a future potential of magnetic nanoparticles for selective cancer cell destruction. Lastly, bioinformatics tools and other unconventional methodologies such as AI-assisted codon bias analysis have a crucial role in comprehending tumor biology, aiding in the identification of futuristic targeted therapies.
Collapse
Affiliation(s)
- Abhishek Bhattacharya
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Anjan Kr Dasgupta
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, India.
| |
Collapse
|
3
|
Akbarzadeh F, Khoshgard K. Enhancement of the effect of novel targeted 5-aminolevulinic acid conjugated bismuth oxide nanoparticles-based photodynamic therapy by simultaneous radiotherapy on KB cells. Photodiagnosis Photodyn Ther 2024; 46:104025. [PMID: 38403143 DOI: 10.1016/j.pdpdt.2024.104025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/30/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND Selective accumulation of photosensitizers into cancerous cells is one of the most important factors affecting photodynamic therapy (PDT) efficacy. 5-aminolevulinic acid (5-ALA) is the precursor of a strong photosensitizer, protoporphyrin-IX; but it has poor permeability into the cells. Folate receptors are overexpressed on the surface of many tumor cells. In the present study, folic acid (FA) and 5-ALA conjugated bismuth oxide nanoparticles were synthesized; and used in PDT, radiotherapy (RT), and concurrent PDT & RT against nasopharyngeal carcinoma (KB cell line). METHODS The KB cells were incubated with the synthesized nanoparticles (NPs) for 2 h; then illuminated using a custom-made LED lamp at the light dose of 26 J/cm2. Irradiation of the cells was carried out using X-ray 6 MV (2 Gy); and synergistic effect of the simultaneous RT and PDT treatments was evaluated using fractional product values. Efficacy of the treatments was determined using MTT and Caspase-3 enzyme activity assays. RESULTS Targeting of folic acid receptors enables the selective endocytosis of the conjugated NPs. RT results in the presence of Bi2O3 NPs showed a significant radiosensitizer potential of these NPs. Fractional product values of 1.49±0.05, 1.36±0.06, and 1.05±0.06 obtained in the presence of FA-5-ALA conjugated NPs, 5-ALA conjugated NPs, and in the absence of the NPs, respectively. Therefore, simultaneous RT and PDT in the presence of these conjugated NPs is superior to RT in the presence of the NPs. CONCLUSION Simultaneous PDT and RT in the presence of FA-5-ALA conjugated bismuth oxide NPs can be introduced as a promising therapeutic approach in controlling KB cancer cells.
Collapse
Affiliation(s)
- Fatemeh Akbarzadeh
- Students Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Karim Khoshgard
- Department of Medical Physics, School of Medicine, Kermanshah University of Medical Sciences, Sorkheh-Lizhe Blvd, Kermanshah, P.O.Box:1568, Iran.
| |
Collapse
|
4
|
Chang X, Zhu Z, Weng L, Tang X, Liu T, Zhu M, Liu J, Tang W, Zhang Y, Chen X. Selective Manipulation of the Mitochondria Oxidative Stress in Different Cells Using Intelligent Mesoporous Silica Nanoparticles to Activate On-Demand Immunotherapy for Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307310. [PMID: 38039438 DOI: 10.1002/smll.202307310] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/03/2023] [Indexed: 12/03/2023]
Abstract
Herein, the vitamin K2 (VK2)/maleimide (MA) coloaded mesoporous silica nanoparticles (MSNs), functional molecules including folic acid (FA)/triphenylphosphine (TPP)/tetrapotassium hexacyanoferrate trihydrate (THT), as well as CaCO3 are explored to fabricate a core-shell-corona nanoparticle (VMMFTTC) for on-demand anti-tumor immunotherapy. After application, the tumor-specific acidic environment first decomposed CaCO3 corona, which significantly levitates the pH value of tumor tissue to convert M2 type macrophage to the antitumor M1 type. The resulting VMMFTT would then internalize in both tumor cells and macrophages via FA-assisted endocytosis and free endocytosis, respectively. These distinct processes generate different amount of VMMFTT in above two cells followed by 1) TPP-induced accumulation in the mitochondria, 2) THT-mediated effective capture of various signal ions to cut off signal transmission and further inhibit glutathione (GSH) generation, 3) ions catalyzed reactive oxygen species (ROS) production through Fenton reaction, 4) sustained release of VK2 and MA to further enhance the ROS production and GSH depletion, which caused significant apoptosis of tumor cells and additional M2-to-M1 macrophage polarization via different processes of oxidative stress. Moreover, the primary tumor apoptosis further matures surrounding immature dendritic cells and activates T cells to continuously promote the antitumor immunotherapy.
Collapse
Affiliation(s)
- Xiaowei Chang
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zeren Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Lin Weng
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaoyu Tang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Tao Liu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Man Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Jie Liu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wenjun Tang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Xin Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
5
|
Ranjbari F, Fathi F. Recent Advances in Chemistry, Mechanism, and Applications of Quantum Dots in Photodynamic and Photothermal Therapy. Anticancer Agents Med Chem 2024; 24:733-744. [PMID: 38409708 DOI: 10.2174/0118715206295598240215112910] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/28/2024]
Abstract
Semiconductor quantum dots (QD) are a kind of nanoparticle with unique optical properties that have attracted a lot of attention in recent years. In this paper, the characteristics of these nanoparticles and their applications in nanophototherapy have been reviewed. Phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), has gained special importance because of its high accuracy and local treatment due to the activation of the drug at the tumor site. PDT is a new way of cancer treatment that is performed by activating light-sensitive compounds named photosensitizers (PS) by light. PSs cause the destruction of diseased tissue through the production of singlet oxygen. PTT is another non-invasive method that induces cell death through the conversion of near-infrared light (NIR) into heat in the tumor situation by the photothermal agent (PA). Through using energy transfer via the FRET (Förster resonance energy transfer) process, QDs provide light absorption wavelength for both methods and cover the optical weaknesses of phototherapy agents.
Collapse
Affiliation(s)
- Faride Ranjbari
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farzaneh Fathi
- Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
6
|
Zhang X, Zhang X, Guo H, Jia S, Li Y, Xing S, Chang J, Wang S. A Photo-Activated Continuous Reactive Oxygen Species Nanoamplifier for Dual-Dynamic Cascade Cancer Therapy. Adv Healthc Mater 2023; 12:e2301469. [PMID: 37571991 DOI: 10.1002/adhm.202301469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/14/2023] [Indexed: 08/14/2023]
Abstract
The special redox homeostasis of tumor cells makes reactive oxygen species (ROS)-based approaches a promising cancer therapeutic strategy. Among these approaches, photodynamic therapy is the most widely studied ROS-based treatment due to its ability to achieve targeted therapy by local light irradiation. However, achieving efficient and continuous ROS generation without prolonged laser exposure is still challenging. In this work, a photo-activated continuous ROS nanoamplifier is proposed for photodynamic-chemodynamic cascade therapy. Upon local laser irradiation, the nanoamplifier can continuously amplify cellular oxidative stress through a positive feedback loop of "light-triggered ROS generation, ROS-responsive prodrug activation, and Fenton reaction-mediated ROS cyclic regenerative amplification", avoiding tissue damage caused by excessive laser exposure. This strategy provides a potential pathway to overcome the limitations of ROS-based therapeutic approaches.
Collapse
Affiliation(s)
- Xu Zhang
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Xinlu Zhang
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Haizhen Guo
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Shitian Jia
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Yong Li
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Suixin Xing
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Jin Chang
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Sheng Wang
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
7
|
Sharma B, Jain A, Rawson FJ, Chaudhary GR, Pérez-García L, Kaur G. Biocompatible metallosurfactant-based nanocolloid-loaded Rose Bengal with excellent singlet oxygen-induced phototoxicity efficiency against cancer cells. J Mater Chem B 2023. [PMID: 37191118 DOI: 10.1039/d2tb02730e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Photodynamic therapy (PDT) is facing challenges such as poor solubility, precise delivery, self-aggregation, and photobleaching of photosensitizers with cancer cells due to their less tendency to accumulate in tumor tissues. To address these challenges, we have explored a Rose Bengal (RB)-loaded metallocatanionic vesicles (MCVs) nanosystem for the phototoxicity of cancer cells. Different sets of MCVs were prepared by two different cationic single-chain metallosurfactants, i.e., hexadecylpyridinium trichlorocuprate (CuCPC I) and hexadecylpyridinium trichloroferrate (FeCPC I) in combination with anionic double-chain sodium bis(2-ethylhexyl)sulfosuccinate (AOT) surfactant in phosphate buffer saline of pH 7.4. The RB-loaded CuCPC I:AOT and FeCPC I:AOT vesicles enhanced the maximum singlet oxygen (1O2) generation by 1-fold and 3-fold, respectively, compared to pure RB. Upon irradiation with a 532 nm laser for 10 min, these RB-loaded CuCPC I:AOT and FeCPC I:AOT MCVs significantly decreased the metabolic activity of U-251 cells by 70% and 85% at MCVs concentration of 0.75 μM, respectively. Furthermore, RB-loaded MCVs showed the highest intracellular 1O2-mediated membrane damage and cell-killing effect as confirmed by singlet oxygen sensor green and differential nuclear staining assay, which is attributed to the cellular uptake profile of different RB-loaded MCVs fractions. Caspase 3/7 assay confirmed the apoptotic pathway of cell death by activating caspase. Therefore, the photoactivation of RB-loaded MCVs led to a significant reduction in the viability of U-251 cells (maximum 85%), which resulted in cell death. Our study demonstrated the advantage of using these dual-charge and biocompatible metallocatanionic vesicles as a promising delivery system of photodynamic therapy that can enhance 1O2 generation from PS and can be further utilized in photomedicine.
Collapse
Affiliation(s)
- Bunty Sharma
- Department of Chemistry, Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh-160014, India.
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Akhil Jain
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Frankie J Rawson
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Ganga Ram Chaudhary
- Department of Chemistry, Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh-160014, India.
| | - Lluïsa Pérez-García
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Avda. Joan XXIII 27-31, Universitat de Barcelona, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia UB (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Gurpreet Kaur
- Department of Chemistry, Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh-160014, India.
| |
Collapse
|
8
|
Peng J, Du K, Sun J, Yang X, Wang X, Zhang X, Song G, Feng F. Photocatalytic Generation of Hydrogen Radical (H⋅) with GSH for Photodynamic Therapy. Angew Chem Int Ed Engl 2023; 62:e202214991. [PMID: 36537886 DOI: 10.1002/anie.202214991] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 01/26/2023]
Abstract
As a reactive hydrogen species, the hydrogen radical (H⋅) scarcely sees applications in tumor biological therapy due to the very limited bio-friendly sources of H⋅. In this work, we report that TAF can act as an organic photosensitizer as well as an efficient photocatalytic H⋅ generator with reduced glutathione (GSH) as a fuel. The photoactivation of TAF leads to cell death in two ways including triple amplification of oxidative stress via ferroptosis-apoptosis under normoxia and apoptosis through biological reductions under hypoxia. TAF presents excellent biosafety with ultrahigh photocytotoxicity index at an order of magnitude of 102 -103 on both normoxic and hypoxic cells. The in vitro data suggest that H⋅ therapy is promising to overcome the challenge of tumor hypoxia at low doses of both photocatalyst and light. In addition, the capability of near-infrared two-photon excitation would benefit broad biological applications.
Collapse
Affiliation(s)
- Jinlei Peng
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China
| | - Ke Du
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China
| | - Jian Sun
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China.,Current address: Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xianli Yang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China
| | - Xia Wang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China
| | - Xiaoran Zhang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China
| | - Gang Song
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China.,Current address: Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Fude Feng
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China
| |
Collapse
|
9
|
Peng J, Du K, Sun J, Yang X, Wang X, Zhang X, Song G, Feng F. Photocatalytic Generation of Hydrogen Radical (H⋅) with GSH for Photodynamic Therapy. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202214991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jinlei Peng
- MOE Key Laboratory of High Performance Polymer Materials and Technology Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Ke Du
- MOE Key Laboratory of High Performance Polymer Materials and Technology Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Jian Sun
- MOE Key Laboratory of High Performance Polymer Materials and Technology Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
- Current address: Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xianli Yang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials Chemistry and Biomedicine Innovation Center School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Xia Wang
- MOE Key Laboratory of High Performance Polymer Materials and Technology Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Xiaoran Zhang
- MOE Key Laboratory of High Performance Polymer Materials and Technology Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Gang Song
- MOE Key Laboratory of High Performance Polymer Materials and Technology Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
- Current address: Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Fude Feng
- MOE Key Laboratory of High Performance Polymer Materials and Technology Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| |
Collapse
|
10
|
Le XT, Lee J, Nguyen NT, Lee WT, Lee ES, Oh KT, Choi HG, Shin BS, Youn YS. Combined phototherapy with metabolic reprogramming-targeted albumin nanoparticles for treating breast cancer. Biomater Sci 2022; 10:7117-7132. [PMID: 36350285 DOI: 10.1039/d2bm01281b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Triple-negative breast cancer (TNBC) is characterized by rapid tumor growth and resistance to cancer therapy, and has a poor prognosis. Accumulating data have revealed that cancer metabolism relies on both the Warburg effect and oxidative phosphorylation (OXPHOS), which are strongly related to the high proliferation and chemoresistance of cancer cells. Phototherapy is considered as a non-invasive method to precisely control drug activity with reduced side effects. Herein, our group introduced an Abraxane-like nanoplatform, named LCIR NPs, which significantly eradicates cancer cells via synergism between metabolic reprogramming and phototherapy effects. Endowed with mitochondria-targeting residues, the nanoparticles efficiently inhibited mitochondrial complexes I and IV as well as hexokinase II, leading to the depletion of intracellular ATP. Consequently, the photodynamic and photothermal effect triggered by NIR irradiation was enhanced due to the alleviation of hypoxia and the thermoresistance mechanism that rely on mitochondrial metabolism. In vivo experiments showed that the tumor size of mice that received the combination treatment was only 50.7 mm3, which was 21 times smaller than that of the untreated group and was much lower than those of other single treatments after 21 days. Additionally, almost no systemic undesired toxicity was detected during the observation period. We believe that the concept of LCIR as presented here offers a potential platform to overcome the resistance to conventional therapies by the incorporation with the energy metabolism inhibition approach.
Collapse
Affiliation(s)
- Xuan Thien Le
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea.
| | - Junyeong Lee
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea.
| | - Nguyen Thi Nguyen
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea.
| | - Woo Tak Lee
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea.
| | - Eun Seong Lee
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55, Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Beom Soo Shin
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea.
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea.
| |
Collapse
|
11
|
Sun T, Yue Z, Song Y, Ni J, Wang W, Zhao J, Li J, Sun Y, Li B. One‐Pot Synthesis of POM‐CaO
2
@ZIF‐8 Nanoparticles with Self‐Supply of H
2
O
2
for Electrically‐Enhanced Chemodynamic Therapy. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tiedong Sun
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization Northeast Forestry University Harbin China
- Post‐doctoral Mobile Research Station of Forestry Engineering Northeast Forestry University Harbin China
| | - Zhengya Yue
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization Northeast Forestry University Harbin China
| | - Yan Song
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization Northeast Forestry University Harbin China
| | - Jiatong Ni
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization Northeast Forestry University Harbin China
| | - Wenxin Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization Northeast Forestry University Harbin China
| | - Junge Zhao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization Northeast Forestry University Harbin China
| | - Jialun Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization Northeast Forestry University Harbin China
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology; Harbin University of Commerce Harbin China
| | - Bin Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization Northeast Forestry University Harbin China
- Post‐doctoral Mobile Research Station of Forestry Engineering Northeast Forestry University Harbin China
| |
Collapse
|
12
|
Shi J, Nie W, Zhao X, Yang X, Cheng H, Zhou T, Zhang Y, Zhang K, Liu J. An Intracellular Self-Assembly-Driven Uninterrupted ROS Generator Augments 5-Aminolevulinic-Acid-Based Tumor Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201049. [PMID: 35488781 DOI: 10.1002/adma.202201049] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Free radical therapy based on 5-aminolevulinic acid (ALA, a precursor of the photosensitizer protoporphyrin IX (PpIX)) has been approved by the US Food and Drug Administration for clinical tumor treatment. However, PpIX can be quickly converted into photoinactive heme, leading to unexpectedly paused production of free radicals and severely hindering its therapeutic benefits. Here, inspired by the natural biotransformation of ALA (ALA-PpIX-heme), an uninterrupted reactive oxygen species generator (URG) that converts useless heme to peroxidase mimics via intracellular self-assembly is developed. The URG is prepared by enwrapping ALA-loaded polyamide-amine dendrimers in red blood cell membrane vesicles with a further surface modification of G-quadruplex-structured AS1411. The URGs realize "1 O2 -•OH" uninterrupted generation through "recycling waste" in two steps: i) PpIX generates 1 O2 under laser irradiation; and ii) the photoinactive metabolite heme self-assembled with AS1411 to catalyze H2 O2 conversion into •OH. Interestingly, the specific generation of 1 O2 in mitochondria and •OH in nuclei further augments the free-radical-induced damage. It is demonstrated that URG can continuously produce free radicals for 6 h postirradiation, and shows 3.3-times more than that of the nonassembly group, achieving nearly 80% regression of tumors in vivo.
Collapse
Affiliation(s)
- Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan Province, 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Science and Technology, Department of Henan Province, Zhengzhou, 450001, China
| | - Weimin Nie
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiu Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xinyuan Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hui Cheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Tonghai Zhou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yun Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan Province, 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Science and Technology, Department of Henan Province, Zhengzhou, 450001, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan Province, 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Science and Technology, Department of Henan Province, Zhengzhou, 450001, China
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan Province, 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Science and Technology, Department of Henan Province, Zhengzhou, 450001, China
| |
Collapse
|
13
|
Xu Z, Mei L, Shi Y, Yun M, Luan Y, Miao Z, Liu Z, Li XM, Jiao M. Multivalent Phthalocyanine-Based Cationic Polymers with Enhanced Photodynamic Activity for the Bacterial Capture and Bacteria-Infected Wound Healing. Biomacromolecules 2022; 23:2778-2784. [PMID: 35666672 DOI: 10.1021/acs.biomac.2c00145] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The solubility and photosensitive activity of phthalocyanine are crucial to photodynamic antibacterial performance. However, highly conjugated phthalocyanine with high singlet oxygen generation efficiency tends to aggregate in aqueous environments, leading to poor solubility and photodynamic antibacterial activity. Herein, we propose a novel photodynamic antibacterial therapeutic platform by a phthalocyanine-based polymeric photosensitizer for the efficient healing of a bacteria-infected wound. A prepared phthalocyanine-based chain-transfer agent and a tertiary amino group-containing monomer are applied in the reversible addition-fragmentation chain-transfer polymerization for the preparation of the polymeric photosensitizer, which is subsequently quaternized to obtain a positively charged surface. This water-soluble phthalocyanine-based polymer can strongly concentrate on bacterial membranes via electrostatic interaction. The formed singlet oxygen by the phthalocyanine-based polymer after 680 nm light irradiation plays an essential role in killing the Gram-positive and Gram-negative bacteria. The study of antibacterial action indicates that this nanocomposite can cause irreversible damage to the bacterial membranes, which can cause cytoplasm leakage and bacterial death. Moreover, this therapeutic platform has excellent biocompatibility and the capacity to heal the wounds of bacterial infections. Experimental results indicate that the design strategy of this phthalocyanine-based polymer can extend the application of the hydrophobic photosensitizer in the biomedical field.
Collapse
Affiliation(s)
- Zhenlong Xu
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Lin Mei
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Yanmei Shi
- Academy of traditional Chinese medicine, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Mengyao Yun
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Yidan Luan
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Zhiqiang Miao
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Zhimin Liu
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Xiu-Min Li
- Department of Microbiology and immunology, New York Medical College, Valhalla, New York 10595, United States
| | - Mingli Jiao
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| |
Collapse
|
14
|
Yang Z, Wang X, Liang G, Yang A, Li J. Photocontrolled chondrogenic differentiation and long-term tracking of mesenchymal stem cells in vivo by upconversion nanoparticles. J Mater Chem B 2022; 10:518-536. [PMID: 34984430 DOI: 10.1039/d1tb02074a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem cells (MSCs) have multiple differentiation potentials and their clinical application is limited by controlled cell differentiation and long-term tracing in vivo. Here, we developed an upconversion nanoparticle (UCNP)-based nanoplatform for the photocontrolled chondrogenic differentiation and long-term tracking of MSCs in vivo. The UCNP nanoplatform could convert 980 nm near-infrared (NIR) light into UV/blue light (365/475 nm) and green/red light (545/647 nm) through Tm/Er doping. Then, the upconverted UV/blue light was used to drive the photosensitive molecule azobenzene (azo) that was modified in mesoporous silica to constantly change its conformation to trigger the release of kartogenin (KGN) from the UCNPs to induce the chondrogeni differentiation of MSCs, achieving photocontrolled cell differentiation. Both in vitro and in vivo experiments demonstrated the effective induction of chondrogenic differentiation in MSCs by NIR light with the UCNP nanoplatform incubation. In addition, after inducing differentiation, the UCNP nanoplatform that remained in the cytoplasm was used as a nanoprobe to monitor the MSCs in vitro and in vivo using the upconverted green/red light under the NIR light. Therefore, the UCNP nanoplatform displayed potential to be a powerful tool for the control of cell differentiation and the simultaneous long-term tracking of MSCs in vivo for regenerative medicine.
Collapse
Affiliation(s)
- Zihan Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China. .,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xichao Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China. .,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Guohai Liang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China. .,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Anli Yang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jinming Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China. .,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
15
|
Zhang HX, Lin HH, Su D, Yang DC, Liu JY. Enzyme-Activated Multifunctional Prodrug Combining Site-Specific Chemotherapy with Light-Triggered Photodynamic Therapy. Mol Pharm 2022; 19:630-641. [PMID: 35034440 DOI: 10.1021/acs.molpharmaceut.1c00761] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Combination treatments are more effective than conventional monotherapy in combating cancer. Herein, a multifunctional prodrug BDP-L-CPT was rationally engineered and prepared by the conjugation of a boron dipyrromethene (BDP)-based photosensitizer (PS) to the active site of the chemotherapeutic drug camptothecin (CPT) via a phenyl benzoate group. After modification, the cytotoxicity of CPT was locked. Moreover, the fluorescence emission at 430 nm from the CPT component in the prodrug was substantially inhibited through the intramolecular fluorescence resonance energy transfer process. The phenyl benzoate linker in BDP-L-CPT could be selectively cleaved by exogenous carboxylesterase in phosphate-buffered saline solution and endogenous carboxylesterase overexpressed in cancer cells, which was followed by self-immolation to release free CPT. The drug release process could be monitored by the turn-on of CPT fluorescence in solution and cells. Owing to the combination of site-specific chemotherapy with light-driven photodynamic therapy, the IC50 values of the prodrug BDP-L-CPT against HepG2 human hepatocellular carcinoma and HeLa human cervical carcinoma cells were lower than those of the controls, BDP-COOH and CPT. The combined antitumor effects of the prodrug BDP-L-CPT were also observed in the mice bearing H22 tumors. Furthermore, BDP-L-CPT had a more prolonged blood circulation time in mice than CPT, which is beneficial to persistent therapy. This study may provide a promising strategy for a selective combination cancer treatment by conjugating a prodrug to a PS.
Collapse
Affiliation(s)
- Hong-Xia Zhang
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Hao-Hua Lin
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Dan Su
- Department of Medical Chemistry, XinYang Vocational and Technical College, Xinyang 464100, China
| | - De-Chao Yang
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jian-Yong Liu
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China.,Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou 350108, China.,State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
16
|
Sharma B, Jain A, Perez-Garcia L, Watts JA, Rawson FJ, Chaudhary GR, Kaur G. Metallocatanionic vesicles mediated enhanced singlet oxygen generation and photodynamic therapy of cancer cells. J Mater Chem B 2022; 10:2160-2170. [DOI: 10.1039/d2tb00011c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In clinics, photodynamic therapy (PDT) is established as a non-invasive therapeutic modality for certain types of cancers and skin diseases. However, due to poor water solubility, photobleaching, and dark toxicity...
Collapse
|
17
|
Sun Y, Ma X, Hu H. Application of Nano-Drug Delivery System Based on Cascade Technology in Cancer Treatment. Int J Mol Sci 2021; 22:5698. [PMID: 34071794 PMCID: PMC8199020 DOI: 10.3390/ijms22115698] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 02/07/2023] Open
Abstract
In the current cancer treatment, various combination therapies have been widely used, such as photodynamic therapy (PDT) combined with chemokinetic therapy (CDT). However, due to the complexity of the tumor microenvironment (TME) and the limitations of treatment, the efficacy of current treatment options for some cancers is unsatisfactory. Nowadays, cascade technology has been used in cancer treatment and achieved good therapeutic effect. Cascade technology based on nanotechnology can trigger cascade reactions under specific tumor conditions to achieve precise positioning and controlled release, or amplify the efficacy of each drug to improve anticancer efficacy and reduce side effects. Compared with the traditional treatment, the application of cascade technology has achieved the controllability, specificity, and effectiveness of cancer treatment. This paper reviews the application of cascade technology in drug delivery, targeting, and release via nano-drug delivery systems in recent years, and introduces their application in reactive oxygen species (ROS)-induced cancer treatment. Finally, we briefly describe the current challenges and prospects of cascade technology in cancer treatment in the future.
Collapse
Affiliation(s)
- Ying Sun
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China;
| | - Xiaoli Ma
- Qingdao Institute of Measurement Technology, Qingdao 266000, China;
| | - Hao Hu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China;
| |
Collapse
|
18
|
Gangadhar PS, Reddy G, Prasanthkumar S, Giribabu L. Phenothiazine functional materials for organic optoelectronic applications. Phys Chem Chem Phys 2021; 23:14969-14996. [PMID: 34231592 DOI: 10.1039/d1cp01185e] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phenothiazine (PTZ) is one of the most extensively investigated S, N heterocyclic aromatic hydrocarbons due to its unique optical, electronic properties, flexibility of functionalization, low cost, and commercial availability. Hence, PTZ and its derivative materials have been attractive in various optoelectronic applications in the last few years. In this prospective, we have focused on the most significant characteristics of PTZ and highlighted how the structural modifications such as different electron donors or acceptors, length of the π-conjugated system or spacers, polar or non-polar chains, and other functional groups influence the optoelectronic properties. This prospective provides a recent account of the advances in phenothiazine derivative materials as an active layer(s) for optoelectronic (viz. dye sensitized solar cells (DSSCs), perovskite solar cells (PSCs), organic solar cells (OSCs), organic light-emitting diodes (OLEDs), organic field-effect transistor (OFETs), chemosensing, nonlinear optical materials (NLOs), and supramolecular self-assembly applications. Finally, future prospects are discussed based on the structure-property relationship in PTZ-derivative materials. This overview will pave the way for researchers to design and develop new PTZ-functionalized structures and use them for various organic optoelectronic applications.
Collapse
Affiliation(s)
- Palivela Siva Gangadhar
- Polymers & Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, TS, India. and Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Govind Reddy
- Polymers & Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, TS, India.
| | - Seelam Prasanthkumar
- Polymers & Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, TS, India. and Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Lingamallu Giribabu
- Polymers & Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, TS, India. and Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|