1
|
Meng Y, Wang Y, Wang S, Jiang M, Zhang DW, Zhuang J, Wang J. Photocurrent Polarity-Switchable Imaging of Single Living Cells by Light-Addressable Electrochemical Sensor. Anal Chem 2024; 96:19988-19995. [PMID: 39637385 DOI: 10.1021/acs.analchem.4c04565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The light-addressable electrochemical sensor (LAES) is a powerful tool for single-cell imaging due to its label-free and probe-free advantages. In this work, we report a photocurrent polarity-switchable LAES using a single-phase photoelectrode of a BiFeO3 thin film for living cell imaging. The proposed BiFeO3 could show both p- and n-type photocurrent behavior by simply altering the external bias voltage. LAES imaging of the same individual MCF-7 cells was performed in anodic and cathodic modes. Decreases in both photocurrents were observed due to the hindering effect of the adherent cells on local photoinduced Faraday currents. Furthermore, the dynamic photocurrent changes on cells after trypsin treatment were imaged and studied at anode and cathode polarities. Both polarities showed an increase in local photocurrents on cells as the cell-substrate junction weakened, and this change displayed heterogeneous characteristics. This is the first time that LAES cell imaging was achieved in a p-type mode. Meanwhile, our photocurrent polarity-switchable imaging approach overcomes the limitations of conventional photoelectrodes, which have been confined to single-polarity operation. We believe this work has the potential to significantly broaden the application scope of LAES in single-cell visualization and analysis, offering great insights into cellular behavior and function.
Collapse
Affiliation(s)
- Yao Meng
- Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Medical Engineering, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yaqiong Wang
- Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Sen Wang
- School of Future Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Institute of Medical Engineering, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an 710061, China
| | - Mingrui Jiang
- Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Medical Engineering, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an 710061, China
| | - De-Wen Zhang
- Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- School of Future Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Institute of Medical Engineering, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jian Zhuang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jian Wang
- Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Medical Engineering, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
2
|
Zhao S, Yue Z, Zhu D, Harberts J, Blick RH, Zierold R, Lisdat F, Parak WJ. Quantum Dot/TiO 2 Nanocomposite-Based Photoelectrochemical Sensor for Enhanced H 2O 2 Detection Applied for Cell Monitoring and Visualization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401703. [PMID: 39210661 DOI: 10.1002/smll.202401703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/08/2024] [Indexed: 09/04/2024]
Abstract
This work exploits the possibility of using CdSe/ZnS quantum dot (QD)-electrodes to monitor the metabolism of living cells based on photoelectrochemical (PEC) measurements. To realize that, the PEC setup is improved with respect to an enhanced photocurrent signal, better stability, and an increased signal-to-noise ratio, but also for a better biocompatibility of the sensor surface on which cells have been grown. To achieve this, a QD-TiO2 heterojunction is introduced with the help of atomic layer deposition (ALD). The heterojunction reduces the charge carrier recombination inside the semiconductor nanoparticles and improves the drift behavior. The PEC performance is carefully analyzed by adjusting the TiO2 thickness and combining this strategy with multilayer immobilizations of QDs. The optimal thickness of this coating is ≈5 nm; here, photocurrent generation can be enhanced significantly (e.g., for a single QD layer electrode by more than one order of magnitude at 0 V vs Ag/AgCl). The resulting optimized electrode is used for hydrogen peroxide (H2O2) sensing with a good sensitivity down to µmolar concentrations, reusability, stability, response rate, and repeatability. Finally, the sensing system is applied to monitor the activity of cells directly grown on top of the electrode surface.
Collapse
Grants
- F2021203102 Hebei Natural Science Foundation, Science Research Project of Hebei Education Department, S&T Program of Hebei
- C20210324 Hebei Natural Science Foundation, Science Research Project of Hebei Education Department, S&T Program of Hebei
- F2023203085 Hebei Natural Science Foundation, Science Research Project of Hebei Education Department, S&T Program of Hebei
- F2024203033 Hebei Natural Science Foundation, Science Research Project of Hebei Education Department, S&T Program of Hebei
- ZD2022108 Hebei Natural Science Foundation, Science Research Project of Hebei Education Department, S&T Program of Hebei
- 236Z1705G Hebei Natural Science Foundation, Science Research Project of Hebei Education Department, S&T Program of Hebei
- China Scholarship Council
- Deutsche Forschungsgemeinschaft
- EXC 2056 Cluster of Excellence "Advanced Imaging of Matter"
- 390715994 Cluster of Excellence "Advanced Imaging of Matter"
- 192346071 the SFB986 "Tailor-Made Multi-Scale Materials Systems"
- 61871240 National Natural Science Foundation of China
Collapse
Affiliation(s)
- Shuang Zhao
- Fachbereich Physik, CHyN, Universität Hamburg, Hamburg, 22761, Germany
- Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Zhao Yue
- Department of Microelectronics, Nankai University, Tianjin, 30071, China
| | - Dingcheng Zhu
- Fachbereich Physik, CHyN, Universität Hamburg, Hamburg, 22761, Germany
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jann Harberts
- Fachbereich Physik, CHyN, Universität Hamburg, Hamburg, 22761, Germany
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, 3052, VIC, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, 3168, VIC, Australia
| | - Robert H Blick
- Fachbereich Physik, CHyN, Universität Hamburg, Hamburg, 22761, Germany
| | - Robert Zierold
- Fachbereich Physik, CHyN, Universität Hamburg, Hamburg, 22761, Germany
| | - Fred Lisdat
- Biosystems Technology, Institute of Life Sciences and Biomedical Technologies, Technical University of Applied Sciences Wildau, Wildau, 15745, Germany
| | - Wolfgang J Parak
- Fachbereich Physik, CHyN, Universität Hamburg, Hamburg, 22761, Germany
| |
Collapse
|
3
|
Yang Q, Liao J, Feng L, Wang S, Zhao Z, Wang J, Bu Y, Zhuang J, Zhang DW. One-step construction of multiplexed enzymatic biosensors using light-addressable electrochemistry on a single silicon photoelectrode. Biosens Bioelectron 2024; 253:116194. [PMID: 38467100 DOI: 10.1016/j.bios.2024.116194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
The multiplexed detection of metabolites in parallel within a single biosensor plate is sufficiently valuable but also challenging. Herein, we combine the inherent light addressability of silicon with the high selectivity of enzymes, for the construction of multiplexed photoelectrochemical enzymatic biosensors. To conduct a stable electrochemistry and reagentless biosensing on silicon, a new strategy involving the immobilization of both redox mediators and enzymes using an amide bond-based hydrogel membrane was proposed. The membrane characterization results demonstrated a covalent coupling of ferrocene mediator to hydrogel, in which the mediator acted as not only a signal generator but also a renewable sacrifice agent. By adding corresponding enzymes on different spots of hydrogel membrane modified silicon and recording local photocurrents with a moveable light pointer, this biosensor setup was used successfully to detect multiple metabolites, such as lactate, glucose, and sarcosine, with good analytical performances. The limits of detection of glucose, sarcosine and lactate were found to be 179 μM, 16 μM, and 780 μM with the linear ranges of 0.5-2.5 mM, 0.3-1.5 mM, and 1.0-3.0 mM, respectively. We believe this proof-of-concept study provides a simple and rapid one-step immobilization approach for the fabrication of reagentless enzymatic assays with silicon-based light-addressable electrochemistry.
Collapse
Affiliation(s)
- Qiaoyu Yang
- Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Institute of Medical Engineering, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jiaming Liao
- Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Institute of Medical Engineering, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Luyao Feng
- Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Institute of Medical Engineering, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Sen Wang
- School of Future Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Institute of Medical Engineering, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhibin Zhao
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jian Wang
- Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Institute of Medical Engineering, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Yazhong Bu
- Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Institute of Medical Engineering, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Jian Zhuang
- Key Laboratory of Education Ministry for Modern Design Rotor-Bearing System, Xi'an Jiaotong University, Xi'an, 710049, China; School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - De-Wen Zhang
- Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; School of Future Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Institute of Medical Engineering, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
4
|
Pang Y, Xiao Z, Deng Y, Zhou X, Wang Y, Yuan Y, Zhang Y. Electrochemical Synthesis of Shape‐controlled Cu−Ni Nanocomposite and its Application for Nonenzymatic Glucose Sensing at Nanomolar Level. ELECTROANAL 2023; 35. [DOI: 10.1002/elan.202200374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Indexed: 01/06/2025]
Abstract
AbstractThe electrodeposition method was firstly applied to obtain uniform cube‐shaped copper nanoparticles on conductive glass (ITO), and then a layer of tiny nickel nanoparticles. A bimetallic composite electrode (Cu−Ni/ITO), characterized by TEM, XPS and XRD, was prepared to construct the non‐enzyme electrochemical glucose sensor with high catalytic activity. The catalytic performance of Cu−Ni/ITO had been greatly improved, probably due to the synergistic bimetallic catalysis effect. The electrode had a satisfactory linear response in the range of 2.5×10−7 M to 2.6×10−3 M, with detection limit as low as 67 nM. Besides, Cu−Ni/ITO had good anti‐interference ability and reproducibility, indicating the promising application for glucose detection in practical samples.
Collapse
Affiliation(s)
- Yuanhao Pang
- College of chemistry and bioengineering Guilin University of Technology 12 Jiangan Road Guilin 541004 P. R. China
| | - Zhourui Xiao
- College of chemistry and bioengineering Guilin University of Technology 12 Jiangan Road Guilin 541004 P. R. China
| | - Yanan Deng
- College of chemistry and bioengineering Guilin University of Technology 12 Jiangan Road Guilin 541004 P. R. China
| | - Xueying Zhou
- College of chemistry and bioengineering Guilin University of Technology 12 Jiangan Road Guilin 541004 P. R. China
| | - Yu Wang
- College of chemistry and bioengineering Guilin University of Technology 12 Jiangan Road Guilin 541004 P. R. China
| | - Yali Yuan
- College of chemistry and bioengineering Guilin University of Technology 12 Jiangan Road Guilin 541004 P. R. China
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection Guilin University of Technology 12 Jiangan Road Guilin 541004 P. R. China
| | - Yun Zhang
- College of chemistry and bioengineering Guilin University of Technology 12 Jiangan Road Guilin 541004 P. R. China
| |
Collapse
|
5
|
Zhao S, Riedel M, Patarroyo J, Bastús NG, Puntes V, Yue Z, Lisdat F, Parak WJ. Tailoring of the photocatalytic activity of CeO 2 nanoparticles by the presence of plasmonic Ag nanoparticles. NANOSCALE 2022; 14:12048-12059. [PMID: 35946341 DOI: 10.1039/d2nr01318e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The present study investigates basic features of a photoelectrochemical system based on CeO2 nanoparticles fixed on gold electrodes. Since photocurrent generation is limited to the absorption range of the CeO2 in the UV range, the combination with metal nanoparticles has been studied. It can be shown that the combination of silver nanoparticles with the CeO2 can shift the excitation range into the visible light wavelength range. Here a close contact between both components has been found to be essential and thus, hybrid CeO2@Ag nanoparticles have been prepared and analyzed. We have collected arguments that electron transfer occurs between both compositional elements of the hybrid nanoparticles.The photocurrent generation can be rationalized on the basis of an energy diagram underlying the necessity of surface plasmon excitation in the metal nanoparticles, which is also supported by wavelength-dependent photocurrent measurements. However, electrochemical reactions seem to occur at the CeO2 surface and consequently, the catalytic properties of this material can be exploited as exemplified with the photoelectrochemical reduction of hydrogen peroxide. It can be further demonstrated that the layer-by layer technique can be exploited to create a multilayer system on top of a gold electrode which allows the adjustment of the sensitivity of the photoelectrochemical system. Thus, with a 5-layer electrode with hybrid CeO2@Ag nanoparticles submicromolar hydrogen peroxide concentrations can be detected.
Collapse
Affiliation(s)
- Shuang Zhao
- Fachbereich Physik, CHyN, Universität Hamburg, 22761 Hamburg, Germany.
| | - Marc Riedel
- Biosystems Technology, Institute of Life Sciences and Biomedical Technologies, Technical University of Applied Sciences Wildau, 15745 Wildau, Germany.
| | - Javier Patarroyo
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
| | - Neus G Bastús
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
| | - Victor Puntes
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
- Vall d'Hebron Institut de Recerca (VHIR), 08035 Barcelona, Catalonia, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
| | - Zhao Yue
- Department of Microelectronics, Nankai University, 30071 Tianjin, China.
| | - Fred Lisdat
- Biosystems Technology, Institute of Life Sciences and Biomedical Technologies, Technical University of Applied Sciences Wildau, 15745 Wildau, Germany.
| | - Wolfgang J Parak
- Fachbereich Physik, CHyN, Universität Hamburg, 22761 Hamburg, Germany.
| |
Collapse
|
6
|
Welden R, Komesu CAN, Wagner PH, Schöning MJ, Wagner T. Photoelectrochemical enzymatic penicillin biosensor: A proof‐of‐concept experiment. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Rene Welden
- Institute of Nano‐ and Biotechnologies Aachen University of Applied Sciences Jülich Germany
- Laboratory for Soft Matter and Biophysics Katholieke Universiteit Leuven Leuven Belgium
| | | | - Patrick H. Wagner
- Laboratory for Soft Matter and Biophysics Katholieke Universiteit Leuven Leuven Belgium
| | - Michael J. Schöning
- Institute of Nano‐ and Biotechnologies Aachen University of Applied Sciences Jülich Germany
- Institute of Biological Information Processing (IBI‐3) Forschungszentrum Jülich Jülich Germany
| | - Torsten Wagner
- Institute of Nano‐ and Biotechnologies Aachen University of Applied Sciences Jülich Germany
- Institute of Biological Information Processing (IBI‐3) Forschungszentrum Jülich Jülich Germany
| |
Collapse
|
7
|
Meng Y, Chen F, Wu C, Krause S, Wang J, Zhang DW. Light-Addressable Electrochemical Sensors toward Spatially Resolved Biosensing and Imaging Applications. ACS Sens 2022; 7:1791-1807. [PMID: 35762514 DOI: 10.1021/acssensors.2c00940] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The light-addressable electrochemical sensor (LAES) is a recently emerged bioanalysis technique combining electrochemistry with the photoelectric effect in a semiconductor. In an LAES, a semiconductor substrate is illuminated locally to generate charge carriers in a well-defined area, thereby confining the electrochemical process to a target site. Benefiting from the unique light addressability, an LAES can not only detect multiple analytes in parallel within a single sensor plate but also act as a bio(chemical) imaging sensor to visualize the two-dimensional distribution of specific analytes. An LAES usually has three working modes: a potentiometric mode using light-addressable potentiometric sensors (LAPS) and an impedance mode using scanning photoinduced impedance microscopy (SPIM), while an amperometric mode refers to light-addressable electrochemistry (LAE) and photoelectrochemical (PEC) sensing. In this review, we describe the detection principles of each mode of LAESs and the concept of light addressability. In addition, we highlight the recent progress and advance of LAESs in spatial resolution, sensor system design, multiplexed detection, and bio(chemical) imaging applications. An outlook on current research challenges and future prospects is also presented.
Collapse
Affiliation(s)
- Yao Meng
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fangming Chen
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Chunsheng Wu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Steffi Krause
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - Jian Wang
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, 710061, China
| | - De-Wen Zhang
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, 710061, China
| |
Collapse
|
8
|
Askarova G, Hesari M, Wang C, Mirkin MV. Decoupling Through-Tip Illumination from Scanning in Nanoscale Photo-SECM. Anal Chem 2022; 94:7169-7173. [PMID: 35532734 DOI: 10.1021/acs.analchem.2c00753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of scanning electrochemical microscopy (SECM) for nanoscale imaging of photoelectrochemical processes at semiconductor surfaces has recently been demonstrated. To illuminate a microscopic portion of the substrate surface facing the SECM probe, a glass-sealed, polished tip simultaneously served as a nanoelectrode and a light guide. One issue affecting nanoscale photo-SECM experiments is mechanical interactions of the rigid optical fiber with the tip motion controlled by the piezo-positioner. Here we report an improved experimental setup in which the tip is mechanically decoupled from the fiber and light is delivered to the back of the tip capillary using a complex lens system. The advantages of this approach are evident from the improved quality of the approach curves and photo-SECM images. The light intensity delivered from the optical fiber to the tip is not changed significantly by their decoupling.
Collapse
Affiliation(s)
- Gaukhar Askarova
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States.,The Graduate Center of CUNY, New York, New York 10016, United States
| | - Mahdi Hesari
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
| | - Chen Wang
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States.,The Graduate Center of CUNY, New York, New York 10016, United States
| | - Michael V Mirkin
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States.,Advanced Science Research Center at The Graduate Center, CUNY, New York, New York 10031, United States
| |
Collapse
|
9
|
Seo D, Won S, Kim JT, Chung TD. Adopting Back Reduction Current as an Additional Output Signal for Achieving Photoelectrochemical Differentiated Detection. Anal Chem 2022; 94:2063-2071. [PMID: 35029970 DOI: 10.1021/acs.analchem.1c04129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Photoelectrochemical (PEC) sensors are usually based on a single output signal, that is, the photocurrent change caused by the (photoelectro)chemical reaction between target analytes and photoelectrodes. However, the photocurrent may be influenced by redox species other than the target analyte; therefore, modifying the surface of photoelectrodes with probes that selectively bind to the analyte is essential. Moreover, even though various surface modification methods have been developed, distinguishing molecularly similar chemicals using PEC sensing systems remains a significant challenge. To address these selectivity issues, we proposed a photoanode-based PEC sensor that utilizes a cathodic transient current as a second output signal in addition to the photocurrent, which arises from the back reduction of photo-oxidized species. Factors influencing the back reduction were investigated by observing the transient photocurrent of hematite photoanodes in the presence of model redox probes. The chemical environment around the electrode-electrolyte interface was manipulated by altering the electrolyte composition or modifying the electrode surface. The favorable interaction between the electrode surface and redox species led to an increase in the extent of back reduction and the cathodic transient current. In addition, the extent of back reduction also depends on the chemical identity of the redox species, such as the kinetics of subsequent chemical reactions. Therefore, the synergistic combination of the photocurrent and the cathodic transient current enabled the differentiated detection of various catecholamine neurotransmitters with a single pristine photoelectrode, which has never been achieved using traditional PEC methods. Revisiting the transient photocurrent can complement conventional PEC applications and offers possibilities for more effective semiconductor-based applications.
Collapse
Affiliation(s)
- Daye Seo
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Sunghwan Won
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Ji Tae Kim
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Taek Dong Chung
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.,Advanced Institute of Convergence Technology, Suwon-si, Gyeonggi-do 16229, Korea
| |
Collapse
|
10
|
Abstract
Electrochemistry represents an important analytical technique used to acquire and assess chemical information in detail, which can aid fundamental investigations in various fields, such as biological studies. For example, electrochemistry can be used as simple and cost-effective means for bio-marker tracing in applications, such as health monitoring and food security screening. In combination with light, powerful spatially-resolved applications in both the investigation and manipulation of biochemical reactions begin to unfold. In this article, we focus primarily on light-addressable electrochemistry based on semiconductor materials and light-readable electrochemistry enabled by electrochemiluminescence (ECL). In addition, the emergence of multiplexed and imaging applications will also be introduced.
Collapse
|
11
|
Riedel M, Höfs S, Ruff A, Schuhmann W, Lisdat F. A Tandem Solar Biofuel Cell: Harnessing Energy from Light and Biofuels. Angew Chem Int Ed Engl 2021; 60:2078-2083. [PMID: 33006812 PMCID: PMC7894536 DOI: 10.1002/anie.202012089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Indexed: 12/12/2022]
Abstract
We report on a photobioelectrochemical fuel cell consisting of a glucose‐oxidase‐modified BiFeO3 photobiocathode and a quantum‐dot‐sensitized inverse opal TiO2 photobioanode linked to FAD glucose dehydrogenase via a redox polymer. Both photobioelectrodes are driven by enzymatic glucose conversion. Whereas the photobioanode can collect electrons from sugar oxidation at rather low potential, the photobiocathode shows reduction currents at rather high potential. The electrodes can be arranged in a sandwich‐like manner due to the semi‐transparent nature of BiFeO3, which also guarantees a simultaneous excitation of the photobioanode when illuminated via the cathode side. This tandem cell can generate electricity under illumination and in the presence of glucose and provides an exceptionally high OCV of about 1 V. The developed semi‐artificial system has significant implications for the integration of biocatalysts in photoactive entities for bioenergetic purposes, and it opens up a new path toward generation of electricity from sunlight and (bio)fuels.
Collapse
Affiliation(s)
- Marc Riedel
- Biosystems Technology, Institute of Life Sciences and Biomedical Technologies, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745, Wildau, Germany
| | - Soraya Höfs
- Biosystems Technology, Institute of Life Sciences and Biomedical Technologies, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745, Wildau, Germany
| | - Adrian Ruff
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätstr. 150, 44780, Bochum, Germany.,PPG (Deutschland) Business Support GmbH, EMEA Packaging Coatings, Erlenbrunnenstr. 20, 72411, Bodelshausen, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätstr. 150, 44780, Bochum, Germany
| | - Fred Lisdat
- Biosystems Technology, Institute of Life Sciences and Biomedical Technologies, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745, Wildau, Germany
| |
Collapse
|
12
|
Zhao S, Riedel M, Patarroyo J, Bastus N, Puntes V, Yue Z, Lisdat F, Parak WJ. Introducing visible-light sensitivity into photocatalytic CeO 2 nanoparticles by hybrid particle preparation exploiting plasmonic properties of gold: enhanced photoelectrocatalysis exemplified for hydrogen peroxide sensing. NANOSCALE 2021; 13:980-990. [PMID: 33367345 DOI: 10.1039/d0nr06356h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In this report we combine the catalytic properties of CeO2 nanoparticles with their transduction ability for photoelectrochemical sensing. This study highlights the usage of CeO2 providing catalytic activity towards H2O2, but only with a limited excitation range in the UV for the construction of a sensing system. In order to improve the photoelectrocatalysis of CeO2 nanoparticles by extending their excitation to visible light, Au/CeO2 core/shell hybrid nanoparticles have been synthesized. The hybrid nanoparticles are fixed on electrodes, allowing for the generation of photocurrents, the direction of which can be controlled by the electrode potential (without bias). The application of the hybrid nanoparticles results in an enhanced photocurrent amplitude under white light illumination as compared to the pure CeO2 nanoparticles. Wavelength-dependent measurements confirm the participation of the Au core in the signal transduction. This can be explained by improved charge carrier generation within the hybrid particles. Thus, by using a plasmonic element the photoelectochemical response of a catalytic nanoparticle (i.e. CeO2) has been spectrally extended. The effect can be exploited for sensorial hydrogen peroxide detection. Here higher photocatalytic current responses have been found for the hybrid particles fixed to gold electrodes although the catalytic reduction has been comparable for both types of nanoparticles. Thus, it can be demonstrated that Au/CeO2 core-shell nanoparticles allow the utilization of visible light for photoelectrochemical hydrogen peroxide (H2O2) detection with improved sensitivity under white light illumination or application of such particles with only visible light excitation, which is not possible for pure CeO2. With help of the layer-by-layer (LbL) technique for nanoparticle immobilization, the electrode response can be adjusted and with a 5 layers electrode a low detection limit of about 3 μM H2O2 with a linear detection range up to 2000 μM is obtained.
Collapse
Affiliation(s)
- Shuang Zhao
- Fachbereich Physik, CHyN, Universität Hamburg, 22761, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Riedel M, Höfs S, Ruff A, Schuhmann W, Lisdat F. A Tandem Solar Biofuel Cell: Harnessing Energy from Light and Biofuels. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Marc Riedel
- Biosystems Technology Institute of Life Sciences and Biomedical Technologies Technical University of Applied Sciences Wildau Hochschulring 1 15745 Wildau Germany
| | - Soraya Höfs
- Biosystems Technology Institute of Life Sciences and Biomedical Technologies Technical University of Applied Sciences Wildau Hochschulring 1 15745 Wildau Germany
| | - Adrian Ruff
- Analytical Chemistry—Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr-University Bochum Universitätstr. 150 44780 Bochum Germany
- PPG (Deutschland) Business Support GmbH EMEA Packaging Coatings Erlenbrunnenstr. 20 72411 Bodelshausen Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry—Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr-University Bochum Universitätstr. 150 44780 Bochum Germany
| | - Fred Lisdat
- Biosystems Technology Institute of Life Sciences and Biomedical Technologies Technical University of Applied Sciences Wildau Hochschulring 1 15745 Wildau Germany
| |
Collapse
|