1
|
Zhuang X, Li H, Feng Z, Wang H. Visible-Light-Mediated Copper-Catalyzed S-Arylation of Sulfenamides with Aryl Thianthrenium Salts. Org Lett 2025; 27:4886-4892. [PMID: 40314649 DOI: 10.1021/acs.orglett.5c01145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
The site-selective incorporation of sulfilimine functionalities into aromatic compounds provides a vital strategy for drug discovery in medicinal chemistry. However, green and sustainable methods for realizing the goal are still limited. Here, we report a copper-catalyzed S-arylation of sulfenamides with aryl thianthrenium salts irradiated by visible light without the photocatalyst, which exhibited fine functional-group compatibility and gave the desired products in high yields. Mechanistic investigations revealed that the key to achieving these results is the generation of an electron donor-acceptor (EDA) complex between sulfenamides and aryl thianthrenium salts under basic conditions.
Collapse
Affiliation(s)
- Xiangyu Zhuang
- Key Laboratory of Marine Drugs, Ministry of Education; Molecular Synthesis Center, and School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Hao Li
- Key Laboratory of Marine Drugs, Ministry of Education; Molecular Synthesis Center, and School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Zhaoyu Feng
- Key Laboratory of Marine Drugs, Ministry of Education; Molecular Synthesis Center, and School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Hongyu Wang
- Key Laboratory of Marine Drugs, Ministry of Education; Molecular Synthesis Center, and School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, P. R. China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
2
|
Wu Z, Lu Z, Luo Y, Wang L, Hughes M, Smith S, Hou Z, Shen Q. Copper-Mediated Direct Trifluoromethylation of Trichloromethyl Alkanes. Org Lett 2025; 27:2794-2798. [PMID: 40045847 DOI: 10.1021/acs.orglett.5c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
CF3CCl2-containing compounds are of significant synthetic value but are typically synthesized from environmentally harmful hydrochlorofluorocarbons (CFCs). Herein, we report the use of a well-defined Cu(I) complex, [(bpy)Cu(CF3)], as an efficient trifluoromethylating reagent for the direct trifluoromethylation of trichloroalkanes under mild conditions, affording CF3CCl2-containing products with excellent chemoselectivity. This protocol also enabled the gram-scale synthesis of cyhalothric acid ester, which is a key intermediate in the production of pyrethroid pesticides.
Collapse
Affiliation(s)
- Ziming Wu
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016 China
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Zehai Lu
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Yongrui Luo
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Linhua Wang
- Syngenta Crop Protection, Product Technology and Engineering, 410 Swing Rd, Greensboro, North Carolina 27409, United States
| | - Matthew Hughes
- Syngenta Crop Protection, Manufacturing Centre, Huddersfield HD2 1FF, U.K
| | - Stephen Smith
- Syngenta Crop Protection, Jealotts Hill Research Centre, Bracknell RG42 6EY, U.K
| | - Zhuang Hou
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016 China
| | - Qilong Shen
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
3
|
Kumar N, Singh S, Kandasamy J. Synthesis of Functionalized Thioimidates from Thioamides and Arylboronic Acids via Copper-Catalyzed Cross-Coupling Reaction at Room Temperature. J Org Chem 2025; 90:2988-3000. [PMID: 39969101 DOI: 10.1021/acs.joc.4c02840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Functionalized S-aryl thioimidates were synthesized from thioamides and arylboronic acids at room temperature under mild conditions. The reaction was catalyzed by copper(II) acetate in the presence of DBU under an open atmosphere. A wide range of functionalized aryl and alkyl boronic acids was chemo-selectively coupled with aryl and alkyl thioamides to obtain corresponding S-aryl and S-alkyl thioimidates in 64-80% yields. Room temperature reactions, easy operation, and broad substrate scope are the salient features of the developed methodology.
Collapse
Affiliation(s)
- Nitin Kumar
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Sundaram Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Jeyakumar Kandasamy
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
- Department of Chemistry, Pondicherry University, Pondicherry 605014, India
| |
Collapse
|
4
|
Weng Y, Pan D, Wu J, Leng X, Xue XS, Shen Q. Solvent-Dependent C(sp 3)-CF 3 Reductive Elimination from Neutral Four-Coordinate Cu(III) Complexes. Chemistry 2025; 31:e202403620. [PMID: 39785119 DOI: 10.1002/chem.202403620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 01/12/2025]
Abstract
A solvent dependent C(sp3)-CF3 bond-forming reductive elimination from neutral four-coordinate Cu(III) complexes [(L)CuIII(CF3)2(CH2CO2 tBu)] (L=pyridine or its derivatives) is described. Reactions in less polar solvent ClCH2CH2Cl proceed via a concerted bond breaking/bond forming process along with the reorientation of the ligand, while reaction in polar solvent DMF occurs via a rate limiting ligand-dissociation, followed by C(sp3)-CF3 reductive elimination from the resulting three-coordinate intermediate. These mechanistic proposals are supported by kinetic studies that included ligand and temperature effects, as well as DFT calculations.
Collapse
Affiliation(s)
- Yuecheng Weng
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032
| | - Deng Pan
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032
| | - Jian Wu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032
| | - Xuebing Leng
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032
| | - Xiao-Song Xue
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032
| | - Qilong Shen
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032
| |
Collapse
|
5
|
Su L, Dong J, Shen Y, Xie S, Wu S, Pan N, Liu F, Shang Q, Cai F, Ren TB, Yuan L, Yin SF, Han LB, Zhou Y. General (hetero)polyaryl amine synthesis via multicomponent cycloaromatization of amines. Nat Commun 2025; 16:169. [PMID: 39746930 PMCID: PMC11696898 DOI: 10.1038/s41467-024-54190-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 11/05/2024] [Indexed: 01/04/2025] Open
Abstract
(Hetero)polyaryl amines are extensively prevalent in pharmaceuticals, fine chemicals, and materials but the intricate and varied nature of their structures severely restricts their synthesis. Here, we present a selective multicomponent cycloaromatization of structurally and functionally diverse amine substrates for the general and modular synthesis of (hetero)polyaryl amines through copper(I)-catalysis. This strategy directly constructs a remarkable range of amino group-functionalized (hetero)polyaryl frameworks (194 examples), including naphthalene, binaphthalene, phenanthren, benzothiophene, dibenzothiophene, benzofuran, dibenzofuran, quinoline, isoquinoline, quinazoline, and others, which are challenging or impossible to obtain using alternative methods. Copper(III)-acetylide species are involved in driving the exclusive 7-endo-dig cyclization, suppressing many side-reactions that are susceptible to occur. Due to the easy introduction of various functional units into heteropolyarylamines, multiple functionalized fluorescent dyes can be arbitrarily synthesized, which can serve as effective fluorescent probes for monitoring the pathological processes (e.g. chemotherapy-induced cell apoptosis) and studying the related disease mechanisms.
Collapse
Affiliation(s)
- Lebin Su
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
- School of Physics and Chemistry, Hunan First Normal University, Changsha, China
| | - Jianyu Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
- School of Physics and Chemistry, Hunan First Normal University, Changsha, China.
| | - Yang Shen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Shimin Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
- School of Physics and Chemistry, Hunan First Normal University, Changsha, China
| | - Shaofeng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Neng Pan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Feng Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Qian Shang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Fangfang Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, China.
| | - Li-Biao Han
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Yongbo Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
| |
Collapse
|
6
|
Chen X, Liu H, Ding D, Li H, She Y, Yang YF. Mechanistic insights into copper-mediated benzylic C(sp 3)-H bond trifluoromethylation. Org Biomol Chem 2024; 22:8480-8487. [PMID: 39329421 DOI: 10.1039/d4ob01305k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The mechanisms underlying copper-mediated trifluoromethylation of benzylic C(sp3)-H bonds were investigated using density functional theory (DFT) calculations. Two distinct pathways were identified: radical recombination/reductive elimination and single-electron transfer (SET). In the radical recombination/reductive elimination pathway, the CuII species recombines with benzyl radicals to generate a CuIII intermediate, which subsequently undergoes reductive elimination. Conversely, the SET pathway involves single-electron transfer from benzyl radicals to CuII species, forming a cationic benzylic intermediate and CuI species, followed by coupling with a CF3 group coordinated to Cu. DFT calculations revealed that the radical recombination/reductive elimination pathway is favoured for trifluoromethylation of primary and secondary benzylic C(sp3)-H bonds, with the reductive elimination step being rate-determining. In contrast, the SET pathway exhibits preference for trifluoromethylation of tertiary benzylic C(sp3)-H bonds. These mechanistic insights have significant implications for enhancing the selectivity of copper-mediated trifluoromethylation reactions.
Collapse
Affiliation(s)
- Xiahe Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Hang Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Debo Ding
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Huiling Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Yun-Fang Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
7
|
Weng Y, Jin Y, Wu J, Leng X, Lou X, Geng F, Hu B, Wu B, Shen Q. Oxidative Substitution of Organocopper(II) by a Carbon-Centered Radical. J Am Chem Soc 2024; 146:23555-23565. [PMID: 39116098 DOI: 10.1021/jacs.4c07552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Copper-catalyzed coupling reactions of alkyl halides are believed to prominently involve copper(II) species and alkyl radicals as pivotal intermediates, with their exact interaction mechanism being the subject of considerable debate. In this study, a visible light-responsive fluoroalkylcopper(III) complex, [(terpy)Cu(CF3)2(CH2CO2tBu)] Trans-1, was designed to explore the mechanism. Upon exposure to blue LED irradiation, Trans-1 undergoes copper-carbon bond homolysis, generating Cu(II) species and carbon-centered radicals, where the carbon-centered radical then recombines with the Cu(II) intermediate, resulting in the formation of Cis-1, the Cis isomer of Trans-1. Beyond this, a well-defined fluoroalkylcopper(II) intermediate ligated with a sterically hindered ligand was isolated and underwent full characterization and electronic structure studies. The collective experimental, computational, and spectroscopic findings in this work strongly suggest that organocopper(II) engages with carbon-centered radicals via an "oxidative substitution" mechanism, which is likely the operational pathway for copper-catalyzed C-H bond trifluoromethylation reactions.
Collapse
Affiliation(s)
- Yuecheng Weng
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Yuxuan Jin
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Jian Wu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Xuebing Leng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Xiaobing Lou
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Fushan Geng
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Bingwen Hu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Botao Wu
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Qilong Shen
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
8
|
Yan W, Poore AT, Yin L, Carter S, Ho YS, Wang C, Yachuw SC, Cheng YH, Krause JA, Cheng MJ, Zhang S, Tian S, Liu W. Catalytically Relevant Organocopper(III) Complexes Formed through Aryl-Radical-Enabled Oxidative Addition. J Am Chem Soc 2024; 146:15176-15185. [PMID: 38770641 DOI: 10.1021/jacs.4c01668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Stepwise oxidative addition of copper(I) complexes to form copper(III) species via single electron transfer (SET) events has been widely proposed in copper catalysis. However, direct observation and detailed investigation of these fundamental steps remain elusive owing largely to the typically slow oxidative addition rate of copper(I) complexes and the instability of the copper(III) species. We report herein a novel aryl-radical-enabled stepwise oxidative addition pathway that allows for the formation of well-defined alkyl-CuIII species from CuI complexes. The process is enabled by the SET from a CuI species to an aryl diazonium salt to form a CuII species and an aryl radical. Subsequent iodine abstraction from an alkyl iodide by the aryl radical affords an alkyl radical, which then reacts with the CuII species to form the alkyl-CuIII complex. The structure of resultant [(bpy)CuIII(CF3)2(alkyl)] complexes has been characterized by NMR spectroscopy and X-ray crystallography. Competition experiments have revealed that the rate at which different alkyl iodides undergo oxidative addition is consistent with the rate of iodine abstraction by carbon-centered radicals. The CuII intermediate formed during the SET process has been identified as a four-coordinate complex, [CuII(CH3CN)2(CF3)2], through electronic paramagnetic resonance (EPR) studies. The catalytic relevance of the high-valent organo-CuIII has been demonstrated by the C-C bond-forming reductive elimination reactivity. Finally, localized orbital bonding analysis of these formal CuIII complexes indicates inverted ligand fields in σ(Cu-CH2) bonds. These results demonstrate the stepwise oxidative addition in copper catalysis and provide a general strategy to investigate the elusive formal CuIII complexes.
Collapse
Affiliation(s)
- Wenhao Yan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Andrew T Poore
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lingfeng Yin
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Samantha Carter
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yeu-Shiuan Ho
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Chao Wang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Stephen C Yachuw
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yu-Ho Cheng
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Jeanette A Krause
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Mu-Jeng Cheng
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Shiyu Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Shiliang Tian
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Wei Liu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
9
|
Yang YZ, Xue Q, Xiong ZQ, Li Y, Ouyang XH, Hu M, Li JH. Divergent [2 + n] Heteroannulation of β-CF 3-1,3-enynes with Alkyl Azides via Hydrogen Atom Transfer and Radical Substitution. Org Lett 2024; 26:889-894. [PMID: 38251851 DOI: 10.1021/acs.orglett.3c04041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
A copper-promoted divergent intermolecular [2 + n] heteroannulation of β-CF3-1,3-enynes with alkyl azides via alkyl radical-driven HAT and radical substitution (C-C bond formation) to form four- to ten-membered saturated N-heterocycles is developed. This method enables the aryl-induced or kinetically controlled site selective functionalization of the remote C(sp3)-H bonds at positions 2, 3, 4, 5, 6, 7, or 8 toward the nitrogen atom through triplet nitrene formation, radical addition across the C═C bond, HAT and radical substitution cascades, and features a broad substrate scope, excellent site selectivity, and facile late-stage derivatization of bioactive molecules. Initial deuterium-labeling and control experiments shed light on the reaction mechanism via nitrene formation and HAT.
Collapse
Affiliation(s)
- Yu-Zhong Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qi Xue
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Zhi-Qiang Xiong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Yang Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Ming Hu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 475004, China
| |
Collapse
|
10
|
Yan W, Carter S, Hsieh CT, Krause JA, Cheng MJ, Zhang S, Liu W. Copper-Carbon Homolysis Competes with Reductive Elimination in Well-Defined Copper(III) Complexes. J Am Chem Soc 2023; 145:26152-26159. [PMID: 37992224 DOI: 10.1021/jacs.3c08510] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Despite the recent advancements of Cu catalysis for the cross-coupling of alkyl electrophiles and the frequently proposed involvement of alkyl-Cu(III) complexes in such reactions, little is known about the reactivity of these high-valent complexes. Specifically, although the reversible interconversion between an alkyl-CuIII complex and an alkyl radical/CuII pair has been frequently proposed in Cu catalysis, direct observation of such steps in well-defined CuIII complexes remains elusive. In this study, we report the synthesis and investigation of alkyl-CuIII complexes, which exclusively undergo a Cu-C homolysis pathway to generate alkyl radicals and CuII species. Kinetic studies suggest a bond dissociation energy of 28.6 kcal/mol for the CuIII-C bonds. Moreover, these four-coordinate complexes could be converted to a solvated alkyl-CuIII-(CF3)2, which undergoes highly efficient C-CF3 bond-forming reductive elimination even at low temperatures (-4 °C). These results provide strong support for the reversible recombination of alkyl radicals with CuII to form alkyl-CuIII species, an elusive step that has been proposed in Cu-catalyzed mechanisms. Furthermore, our work has demonstrated that the reactivity of CuIII complexes could be significantly influenced by subtle changes in the coordination environment. Lastly, the observation of the highly reactive neutral alkyl-CuIII-(CF3)2 species (or with weakly bound solvent molecules) suggests they might be the true intermediates in many Cu-catalyzed trifluoromethylation reactions.
Collapse
Affiliation(s)
- Wenhao Yan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Samantha Carter
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chi-Tien Hsieh
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Jeanette A Krause
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Mu-Jeng Cheng
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Shiyu Zhang
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wei Liu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
11
|
Cao E, Sun M. Spectral Physics of Stable Cu(III) Produced by Oxidative Addition of an Alkyl Halide. Int J Mol Sci 2023; 24:15694. [PMID: 37958679 PMCID: PMC10648560 DOI: 10.3390/ijms242115694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
In this paper, we theoretically investigated spectral physics on Cu(III) complexes formed by the oxidative addition of α-haloacetonitrile to ionic and neutral Cu(I) complexes, stimulated by recent experimental reports. Firstly, the electronic structures of reactants of α-haloacetonitrile and neutral Cu(I) and two kinds of products of Cu(III) complexes are visualized with the density of state (DOS) and orbital energy levels of HOMO and LUMO. The visually manifested static and dynamic polarizability as well as the first hyperpolarizability are employed to reveal the vibrational modes of the normal and resonance Raman spectra of two Cu(III) complexes. The nuclear magnetic resonance (NMR) spectra are not only used to identify the reactants and products but also to distinguish between two Cu(III) complexes. The charge difference density (CDD) reveals intramolecular charge transfer in electronic transitions in optical absorption spectra. The CDDs in fluorescence visually reveal electron-hole recombination. Our results promote a deeper understanding of the physical mechanism of stable Cu(III) produced by the oxidative addition of an alkyl halide.
Collapse
Affiliation(s)
- En Cao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China;
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China;
| |
Collapse
|
12
|
Wei Z, Zheng W, Wan X, Hu J. Copper-Catalyzed Enantioselective Difluoromethylation-Alkynylation of Olefins by Solving the Dilemma between Acidities and Reduction Potentials of Difluoromethylating Agents. Angew Chem Int Ed Engl 2023; 62:e202308816. [PMID: 37466977 DOI: 10.1002/anie.202308816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/20/2023]
Abstract
Molecules containing a difluoromethyl group or a propargylic stereocenter are widely used in pharmaceuticals and agrochemicals, and 1,2-functionalization of olefins is an important method for introducing the two groups into molecules simultaneously. The construction of the propargylic stereocenter with terminal alkynes usually requires bases. However, difluoromethylating agents with high reduction potentials often decompose in the presence of bases because of their acidities, and those with low reduction potentials are stable but difficult to undergo the desired single electron transfer (SET) reduction. Using the linear relationship between reduction potential differences (ΔE) and Hammett substituent constants (σ) of difluoromethyl aryl sulfones, we solved the dilemma between acidities and reduction potentials of difluoromethylating agents. Herein, we report the first enantioselective difluoromethylation-alkynylation of olefins with difluoromethyl 4-chlorophenyl sulfone with high enantioselectivity (>90 % ee). We also extended this asymmetric fluoroalkylation-alkynylation reaction with other fluoroalkyl sulfones, which enabled efficient installation of trifluoromethyl, difluoroalkyl, difluorobenzyl, (benzenesulfonyl)-difluoromethyl and monofluoromethyl groups into products.
Collapse
Affiliation(s)
- Zhiqiang Wei
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| | - Weiqin Zheng
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Xiaolong Wan
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| |
Collapse
|
13
|
Luo Y, Li Y, Wu J, Xue XS, Hartwig JF, Shen Q. Oxidative addition of an alkyl halide to form a stable Cu(III) product. Science 2023; 381:1072-1079. [PMID: 37676952 PMCID: PMC10658983 DOI: 10.1126/science.adg9232] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023]
Abstract
The step that cleaves the carbon-halogen bond in copper-catalyzed cross-coupling reactions remains ill defined because of the multiple redox manifolds available to copper and the instability of the high-valent copper product formed. We report the oxidative addition of α-haloacetonitrile to ionic and neutral copper(I) complexes to form previously elusive but here fully characterized copper(III) complexes. The stability of these complexes stems from the strong Cu-CF3 bond and the high barrier for C(CF3)-C(CH2CN) bond-forming reductive elimination. The mechanistic studies we performed suggest that oxidative addition to ionic and neutral copper(I) complexes proceeds by means of two different pathways: an SN2-type substitution to the ionic complex and a halogen-atom transfer to the neutral complex. We observed a pronounced ligand acceleration of the oxidative addition, which correlates with that observed in the copper-catalyzed couplings of azoles, amines, or alkynes with alkyl electrophiles.
Collapse
Affiliation(s)
- Yongrui Luo
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Yuli Li
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Jian Wu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Xiao-Song Xue
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - John F. Hartwig
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Qilong Shen
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| |
Collapse
|
14
|
Demonti L, Joven-Sancho D, Nebra N. Cross-Coupling Reactions Enabled by Well-Defined Ag(III) Compounds: Main Focus on Aromatic Fluorination and Trifluoromethylation. CHEM REC 2023; 23:e202300143. [PMID: 37338273 DOI: 10.1002/tcr.202300143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/31/2023] [Indexed: 06/21/2023]
Abstract
AgIII compounds are considered strong oxidizers of difficult handling. Accordingly, the involvement of Ag catalysts in cross-coupling via 2e- redox sequences is frequently discarded. Nevertheless, organosilver(III) compounds have been authenticated using tetradentate macrocycles or perfluorinated groups as supporting ligands, and since 2014, first examples of cross-coupling enabled by AgI /AgIII redox cycles saw light. This review collects the most relevant contributions to this field, with main focus on aromatic fluorination/perfluoroalkylation and the identification of AgIII key intermediates. Pertinent comparison between the activity of AgIII RF compounds in aryl-F and aryl-CF3 couplings vs. the one shown by its CuIII RF and AuIII RF congeners is herein disclosed, thus providing a more profound picture on the scope of these transformations and the pathways commonly associated to C-RF bond formations enabled by coinage metals.
Collapse
Affiliation(s)
- Luca Demonti
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA)., Université Paul Sabatier, CNRS., 118 Route de Narbonne, 31062, Toulouse, France)
| | - Daniel Joven-Sancho
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA)., Université Paul Sabatier, CNRS., 118 Route de Narbonne, 31062, Toulouse, France)
| | - Noel Nebra
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA)., Université Paul Sabatier, CNRS., 118 Route de Narbonne, 31062, Toulouse, France)
| |
Collapse
|
15
|
Li H, Wang X, Yuan K, Lv L, Liu K, Li Z. Fluorescent Mechanism of a Highly Selective Probe for Copper(II) Detection: A Theoretical Study. ACS OMEGA 2023; 8:17171-17180. [PMID: 37214676 PMCID: PMC10193560 DOI: 10.1021/acsomega.3c01528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023]
Abstract
A highly selective probe for copper(II) detection based on the dansyl group was theoretically studied by means of (time-dependent) density functional theory. The calculated results indicated that the oscillator strength of the fluorescent process for the probe molecule is considerably large, but the counterpart of its copper(II) complex is nearly zero; therefore, the predicted radiative rate kr of the probe is several orders of magnitude larger than that of its complex; however, the predicted internal conversion rate kic of both the probe and its complex is of the same order of magnitude. In addition, the simulated intersystem crossing rate kisc of the complex is much greater than that of the probe due to the effect of heavy atom from the copper atom in the complex. Based on the above information, the calculated fluorescence quantum yield of the probe is 0.16% and that of the complex becomes 10-6%, which implies that the first excited state of the probe is bright state and that of the complex is dark state. For the complex, the hole-electron pair analysis indicates that the process of S0 → S1 belongs to metal-to-ligand charge transfer; its density-of-state diagram visually illustrates that the highest occupied molecular orbital (HOMO) contains the ingredient of the s orbital from the copper atom, which decreases the frontier orbital energy level and the overlap integral of HOMO and LUMO.
Collapse
|
16
|
Talmazan RA, Refugio Monroy J, del Río‐Portilla F, Castillo I, Podewitz M. Encapsulation Enhances the Catalytic Activity of C-N Coupling: Reaction Mechanism of a Cu(I)/Calix[8]arene Supramolecular Catalyst. ChemCatChem 2022; 14:e202200662. [PMID: 36605358 PMCID: PMC9804476 DOI: 10.1002/cctc.202200662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/11/2022] [Indexed: 01/07/2023]
Abstract
Development of C-N coupling methodologies based on Earth-abundant metals is a promising strategy in homogeneous catalysis for sustainable processes. However, such systems suffer from deactivation and low catalytic activity. We here report that encapsulation of Cu(I) within the phenanthroyl-containing calix[8]arene derivative 1,5-(2,9-dimethyl-1,10-phenanthroyl)-2,3,4,6,7,8-hexamethyl-p-tert-butylcalix[8]arene (C8PhenMe6 ) significantly enhances C-N coupling activity up to 92 % yield in the reaction of aryl halides and aryl amines, with low catalyst loadings (2.5 % mol). A tailored multiscale computational protocol based on Molecular Dynamics simulations and DFT investigations revealed an oxidative addition/reductive elimination process of the supramolecular catalyst [Cu(C8PhenMe6)I]. The computational investigations uncovered the origins of the enhanced catalytic activity over its molecular analogues: Catalyst deactivation through dimerization is prevented, and product release facilitated. Capturing the dynamic profile of the macrocycle and the impact of non-covalent interactions on reactivity allows for the rationalization of the behavior of the flexible supramolecular catalysts employed.
Collapse
Affiliation(s)
- Radu A. Talmazan
- Institute of Materials ChemistryTU WienGetreidemarkt 91060ViennaAustria
- Institute of General, Inorganic, and Theoretical Chemistry and Center of Molecular BiosciencesUniversity of InnsbruckInnrain 80/826020InnsbruckAustria
| | - J. Refugio Monroy
- Instituto de QuímicaUniversidad Nacional Autónoma de MéxicoCircuito ExteriorCU, Ciudad de México04510México
- Present address: Department of ChemistryHumboldt Universität zu BerlinBrook-Taylor-Strasse 212489BerlinGermany
| | - Federico del Río‐Portilla
- Instituto de QuímicaUniversidad Nacional Autónoma de MéxicoCircuito ExteriorCU, Ciudad de México04510México
| | - Ivan Castillo
- Instituto de QuímicaUniversidad Nacional Autónoma de MéxicoCircuito ExteriorCU, Ciudad de México04510México
| | - Maren Podewitz
- Institute of Materials ChemistryTU WienGetreidemarkt 91060ViennaAustria
| |
Collapse
|
17
|
Car-Parrinello molecular dynamics study of CuF, AgF, CuPF6 and AgPF6 in acetonitrile solvent and Cluster-Continuum calculation of the solvation free energy of Cu(I), Ag(I) and Li(I). J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Li Y, Song G, Liu Y, Li J. Theoretical Study of Mechanism and Product Selectivity of Metal-Catalyzed Reactions of Alkynyl Thioethers with Isoxazoles/Anthranils. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Zhang D, He X, Yang T, Liu S. Insights into the Activation Mode of α-Carbonyl Sulfoxonium Ylides in Rhodium-Catalyzed C-H Activation: A Theoretical Study. ChemistryOpen 2022; 11:e202100254. [PMID: 35212172 PMCID: PMC9278107 DOI: 10.1002/open.202100254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/08/2022] [Indexed: 12/02/2022] Open
Abstract
A computational study has been performed to investigate the mechanism of RhIII -catalyzed C-H bond activation using sulfoxonium ylides as a carbene precursor. The stepwise and concerted activation modes for sulfoxonium ylides were investigated. Detailed theoretical results showed that the favored stepwise pathway involves C-H bond activation, carbonization, carbene insertion, and protonation. The free energy profiles for dialkylation of 2-phenylpyridine were also calculated to account for the low yield of this reaction. Furthermore, the substituent effect was elucidated by comparing the energy barriers for the protonation of meta- and para-substituted sulfoxonium ylides calculated by density functional theory.
Collapse
Affiliation(s)
- Dianmin Zhang
- Chongqing Key Laboratory of Environmental Materials and Remediation Technologies College of Chemistry and Environmental EngineeringChongqing University of Arts and SciencesChongqing402160China
| | - Xiaofang He
- Chongqing Key Laboratory of Environmental Materials and Remediation Technologies College of Chemistry and Environmental EngineeringChongqing University of Arts and SciencesChongqing402160China
| | - Tao Yang
- Chongqing Key Laboratory of Environmental Materials and Remediation Technologies College of Chemistry and Environmental EngineeringChongqing University of Arts and SciencesChongqing402160China
| | - Song Liu
- Chongqing Key Laboratory of Environmental Materials and Remediation Technologies College of Chemistry and Environmental EngineeringChongqing University of Arts and SciencesChongqing402160China
- School of Chemistry and Chemical EngineeringChongqing UniversityChongqing400030China
| |
Collapse
|
20
|
Bergman HM, Beattie DD, Handford RC, Rossomme E, Suslick BA, Head-Gordon M, Cundari TR, Liu Y, Tilley TD. Copper(III) Metallacyclopentadienes via Zirconocene Transfer and Reductive Elimination to an Isolable Phenanthrocyclobutadiene. J Am Chem Soc 2022; 144:9853-9858. [PMID: 35604847 DOI: 10.1021/jacs.2c02581] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite the widespread use of copper catalysis for the formation of C-C bonds, debate about the mechanism persists. Reductive elimination from Cu(III) is often invoked as a key step, yet examples of its direct observation from isolable complexes remain limited to only a few examples. Here, we demonstrate that incorporation of bulky mesityl (Mes) groups into the α-positions of a phenanthrene-appended zirconacyclopentadiene, Cp2Zr(2,5-Mes2-phenanthro[9,10]C4), enables efficient oxidative transmetalation to the corresponding, formal Cu(III) metallacyclopentadiene dimer. The dimer was quantitatively converted to a structurally analogous anionic monomer [nBu4N]{Cl2Cu(2,5-Mes2-phenanthro[9,10]C4)} upon treatment with [nBu4N][Cl]. Both metallacycles undergo quantitative reductive elimination upon heating to generate phenanthrocyclobutadiene and a Cu(I) species. Due to the steric protection provided by the mesityl groups, this cyclobutadiene was isolated and thoroughly characterized to reveal antiaromaticity comparable to that of free cyclobutadiene, which imbues it with a small highest occupied molecular orbital-lowest unoccupied molecular orbital energy gap of 1.85 eV and accessible reduced and oxidized electronic states.
Collapse
Affiliation(s)
- Harrison M Bergman
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - D Dawson Beattie
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Rex C Handford
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Elliot Rossomme
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States.,Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Benjamin A Suslick
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States.,Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Thomas R Cundari
- Department of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, Denton, Texas 76203, United States
| | - Yi Liu
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - T Don Tilley
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
21
|
Rajalakshmi C, Krishnan A, Saranya S, Anilkumar G, Thomas VI. A detailed theoretical investigation to unravel the molecular mechanism of the ligand-free copper-catalyzed Suzuki cross-coupling reaction. Org Biomol Chem 2022; 20:4539-4552. [PMID: 35388388 DOI: 10.1039/d2ob00371f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Suzuki-Miyaura coupling (SMC) represents a very efficacious method for constructing C-C bonds in organic synthesis. The ligand-free variants of SMC have been grabbing attention these days. Despite this momentousness, the mechanistic details of the ligand-free variants are scant in the literature. Herein, we have carried out a detailed mechanistic investigation into the ligand-free Cu-catalyzed SMC of unsaturated organic halides with aryl boronic acid with the aid of density functional theory (DFT) calculations employing the conductor-like polarizable continuum model (CPCM) method. The present study elucidates that in the absence of ancillary ligands on the metal, the substrates, base, and solvent molecules could act as pseudo-ancillary ligands to facilitate the cross-coupling reaction. The investigation further revealed that unsaturated halides like alkynyl halides/vinyl halides could act as good ancillary ligands for copper by forming a Cu-π intermediate and promoting a facile transmetalation process. However, regarding the oxidative addition and reductive elimination steps, a concerted pathway is observed contrary to Pd catalyzed Suzuki coupling, owing to the instability of Cu(III) species and the favourability of Csp2-Csp bond formation. In the whole set of mechanisms explored, oxidative addition/oxidative nucleophilic substitution was the rate-determining step in all the cases. A thermodynamically stable π-coordinated intermediate species where the substrate and base molecule are coordinated to the metal center is identified as the rate-determining species for the ligand-free Suzuki cross-coupling reaction. The presence of the aforesaid intermediate increases the energy span and consequently the activation barrier for the rate-determining step. This study unveiled a theoretical rationale for the high-temperature requirement in the ligand-free Cu-catalyzed SMC reaction.
Collapse
Affiliation(s)
- C Rajalakshmi
- Department of Chemistry, CMS College Kottayam (Autonomous), Kottayam, Kerala, 686001, India.
| | - Anandhu Krishnan
- Department of Chemistry, CMS College Kottayam (Autonomous), Kottayam, Kerala, 686001, India.
| | - Salim Saranya
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O, Kottayam, Kerala, 686560, India.
| | - Gopinathan Anilkumar
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O, Kottayam, Kerala, 686560, India. .,Institute for Integrated Programmes and Research in Basic Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O, Kottayam, Kerala, India 686560
| | - Vibin Ipe Thomas
- Department of Chemistry, CMS College Kottayam (Autonomous), Kottayam, Kerala, 686001, India. .,Institute for Integrated Programmes and Research in Basic Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O, Kottayam, Kerala, India 686560
| |
Collapse
|
22
|
Wang G, Li M, Leng X, Xue X, Shen Q. Neutral Five‐Coordinate Arylated Copper(III) Complex: Key Intermediate in Copper‐Mediated Arene Trifluoromethylation. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guangyu Wang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 P. R. China
| | - Man Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical Engi‐neering, Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Xuebing Leng
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 P. R. China
| | - Xiaosong Xue
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 P. R. China
| | - Qilong Shen
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences Chinese Academy of Sciences; 345 Lingling Lu Shanghai 200032 P. R. China
| |
Collapse
|
23
|
Marcos-Ayuso G, Lledós A, Casares JA. Copper(I) activation of C-X bonds: bimolecular vs. unimolecular reaction mechanism. Chem Commun (Camb) 2022; 58:2718-2721. [PMID: 35113089 DOI: 10.1039/d1cc07027d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Experimental kinetic studies and DFT calculations show that the oxidative addition of aryl halides (Ar-X) to complexes [Cu(NHC)R] follow different paths depending on the nature of X. For X = Br a concerted addition leads to cis-[Cu(NHC)XRAr] from which the usual C-C coupled product Ar-R eliminates. However, for X = I trans-[Cu(NHC)IRAr] is formed instead, leading to the elimination of R-I in a metathesis reaction. This behaviour is accounted for by a change in the reaction mechanism for Ar-I, which involves two molecules of copper(I) complex, the second one stabilising the incipient iodide formed in the C-I breaking (oxidative addition) and C-I forming (reductive elimination) processes.
Collapse
Affiliation(s)
- Guillermo Marcos-Ayuso
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47011-Valladolid, Spain.
| | - Agustí Lledós
- Departament de Química, Edifici C.n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain.
| | - Juan A Casares
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47011-Valladolid, Spain.
| |
Collapse
|
24
|
Zhou X, Xu Y, Wang C, Wu G. Cu‐Catalyzed Vinylamination of
S
‐Alkylisothiouronium Salts with Maleimide and Alkylamines. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xueying Zhou
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou People’s Republic of China
| | - Yaling Xu
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou People’s Republic of China
| | - Caihong Wang
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou People’s Republic of China
| | - Ge Wu
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou People’s Republic of China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian China
| |
Collapse
|
25
|
Lin WY, Govindan K, Duraisamy T, Jayaram A, Senadi GC. Copper-Catalyzed Oxidative Cyclization of 2-Aminobenzamide Derivatives: Efficient Syntheses of Quinazolinones and Indazolones. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1667-3977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AbstractA simple copper-catalyzed assembly to formulate quinazolinone and indazolone derivatives in a single protocol manner is reported. These transformations are based on the fact that DMF can serve as a reaction solvent and one carbon synthon for the construction of heterocyclic rings. Moreover, this protocol features base-free and Brønsted acid free environmentally benign conditions with broad synthetic scope. A good scalability is demonstrated.
Collapse
Affiliation(s)
- Wei-Yu Lin
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University
- Department of Medical Research, Kaohsiung Medical University Hospital
- Drug Development and Value Creation Research Centre, Kaohsiung Medical University
| | - Karthick Govindan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University
| | | | | | - Gopal Chandru Senadi
- Department of Chemistry, Faculty of Engineering and Technology SRM Institute of Science and Technology
| |
Collapse
|
26
|
Feng A, Liu Y, Yang Y, Zhu R, Zhang D. Theoretical Insight into the Mechanism and Selectivity in Manganese-Catalyzed Oxidative C(sp3)–H Methylation. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Aili Feng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Yanhong Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Yiying Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Rongxiu Zhu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Dongju Zhang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
27
|
Bakare SP, Patil M. Thiolate-assisted copper( i) catalyzed C–S cross coupling of thiols with aryl iodides: scope, kinetics and mechanism. NEW J CHEM 2022. [DOI: 10.1039/d2nj00043a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The scope and mechanism of the C–S cross coupling of thiophenols with aryl iodides using a Cu(i) catalyst in a ligand-free environment is disclosed.
Collapse
Affiliation(s)
- Sneha Prasad Bakare
- UM-DAE Centre for Excellence in Basic Sciences, Nalanda, University of Mumbai, Vidyanagari Campus, Santacruz (East), Mumbai – 400098, India
| | - Mahendra Patil
- UM-DAE Centre for Excellence in Basic Sciences, Nalanda, University of Mumbai, Vidyanagari Campus, Santacruz (East), Mumbai – 400098, India
| |
Collapse
|
28
|
Jiao M, Wang Z, Zhang B, Chen BZ. [2+2] Cycloaddition or β-hydrogen elimination?—a DFT study of the reactions of propylene catalyzed by (PDI)Fe-metallacycle. NEW J CHEM 2022. [DOI: 10.1039/d1nj05646h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The origin of the chemoselectivity of [2+2] cycloaddition reactions catalyzed by different (PDI)Fe-metallacycles is due to the different groups (N2 or CH3) coordinated with the Fe metal.
Collapse
Affiliation(s)
- Mingyang Jiao
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, P. R. China
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, P. R. China
- Shandong Energy Institute, Qingdao 266101, Shandong, P. R. China
| | - Zichen Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, P. R. China
| | - Beibei Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, P. R. China
| | - Bo-Zhen Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, YuQuan Road, Beijing 100049, P. R. China
| |
Collapse
|
29
|
Liu CC, Qiao B, Qu LB, Zhang T, Li SJ, Lan Y. The regioselectivity of the sulfonylation of tetrazoles: a theoretical view. Org Chem Front 2022. [DOI: 10.1039/d2qo00797e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
DFT calculations were performed to reveal the regioselectivity for the sulfonylation of tetrazoles.
Collapse
Affiliation(s)
- Chen-Chen Liu
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| | - Bolin Qiao
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| | - Ling-Bo Qu
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| | - Tao Zhang
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| | - Shi-Jun Li
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| | - Yu Lan
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, P. R. China
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| |
Collapse
|
30
|
Mechanism and selectivity of nickel-catalyzed [3 + 2] cycloaddition of cyclopropenones and α,β-unsaturated ketones: A computational study. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
31
|
Chen XY, Yang S, Ren BP, Shi L, Lin DZ, Zhang H, Liu HY. Copper porphyrin-catalyzed cross dehydrogenative coupling of alkanes with carboxylic acids: Esterification and decarboxylation dual pathway. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Liu H, Shen Q. Well-defined organometallic Copper(III) complexes: Preparation, characterization and reactivity. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213923] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Lozano-Lavilla O, Gómez-Orellana P, Lledós A, Casares JA. Transmetalation Reactions Triggered by Electron Transfer between Organocopper Complexes. Inorg Chem 2021; 60:11633-11639. [PMID: 34259512 PMCID: PMC8609523 DOI: 10.1021/acs.inorgchem.1c01595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
![]()
[Cu(bipy)(C6F5)] reacts with most aryl iodides
to form heterobiphenyls by cross-coupling, but when Rf–I is
used (Rf = 3,5-dicholoro-2,4,6-trifluorophenyl), homocoupling products
are also formed. Kinetic studies suggest that, for the homocoupling
reaction, a mechanism based on transmetalation from [Cu(bipy)(C6F5)] to Cu(III) intermediates formed in the oxidative
addition step is at work. Density functional theory calculations show
that the interaction between these Cu(III) species and the starting
Cu(I) complex involves a Cu(I)–Cu(III) electron transfer concerted
with the formation of an iodine bridge between the metals and that
a fast transmetalation takes place in a dimer in a triplet state between
two Cu(II) units. In copper-catalyzed
cross-coupling reactions, electron-transfer
processes between Cu(I) and Cu(III) species are overlooked behind
RDS (C−X activation). Density functional theory studies considering
two molecules of the catalyst and two spin states throughout the course
of the reaction have revealed the feasibility of such a process and
the transmetalation between Cu(II) species, justifying in this way
the formation of homocoupling products.
Collapse
Affiliation(s)
- Olmo Lozano-Lavilla
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid 47011, Spain
| | - Pablo Gómez-Orellana
- Departament de Química, Edifici C.n. Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Agustí Lledós
- Departament de Química, Edifici C.n. Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Juan A Casares
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid 47011, Spain
| |
Collapse
|
34
|
Kim-Lee SH, Mauleón P, Gómez Arrayás R, Carretero JC. Dynamic multiligand catalysis: A polar to radical crossover strategy expands alkyne carboboration to unactivated secondary alkyl halides. Chem 2021. [DOI: 10.1016/j.chempr.2021.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Yang S, Chen X, Xiong M, Zhang H, Shi L, Lin D, Liu H. Copper
porphyrin‐catalyzed
C(sp
2
)
—
O bond construction via coupling phenols with formamides. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shuang Yang
- Department of Chemistry, The Key Laboratory of Fuel Cell Technology of Guangdong Province South China University of Technology Guangzhou China
| | - Xiao‐Yan Chen
- Department of Chemistry, The Key Laboratory of Fuel Cell Technology of Guangdong Province South China University of Technology Guangzhou China
| | - Ming‐Feng Xiong
- Department of Chemistry, The Key Laboratory of Fuel Cell Technology of Guangdong Province South China University of Technology Guangzhou China
| | - Hao Zhang
- Department of Chemistry, The Key Laboratory of Fuel Cell Technology of Guangdong Province South China University of Technology Guangzhou China
| | - Lei Shi
- Department of Chemistry Guangdong University of Education Guangzhou China
| | - Dong‐Zi Lin
- Department of Laboratory Medicine Foshan Fourth People's Hospital Foshan China
| | - Hai‐Yang Liu
- Department of Chemistry, The Key Laboratory of Fuel Cell Technology of Guangdong Province South China University of Technology Guangzhou China
| |
Collapse
|
36
|
|
37
|
A General N-alkylation Platform via Copper Metallaphotoredox and Silyl Radical Activation of Alkyl Halides. Chem 2021; 7:1827-1842. [PMID: 34423174 DOI: 10.1016/j.chempr.2021.05.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The catalytic union of amides, sulfonamides, anilines, imines or N-heterocycles with a broad spectrum of electronically and sterically diverse alkyl bromides has been achieved via a visible light-induced metallaphotoredox platform. The use of a halogen abstraction-radical capture (HARC) mechanism allows for room temperature coupling of C(sp3 )-bromides using simple Cu(II) salts, effectively bypassing the prohibitively high barriers typically associated with thermally-induced SN2 or SN1 N-alkylation. This regio- and chemoselective protocol is compatible with >10 classes of medicinally-relevant N-nucleophiles, including established pharmaceutical agents, in addition to structurally diverse primary, secondary and tertiary alkyl bromides. Furthermore, the capacity of HARC methodologies to engage conventionally inert coupling partners is highlighted via the union of N-nucleophiles with cyclopropyl bromides and unactivated alkyl chlorides, substrates that are incompatible with nucleophilic substitution pathways. Preliminary mechanistic experiments validate the dual catalytic, open-shell nature of this platform, which enables reactivity previously unattainable in traditional halide-based N-alkylation systems.
Collapse
|
38
|
Wei Y, Jiang X, Gao H, Bian M, Huang Y, Zhou Z, Yi W. Rhodium(III)‐Catalyzed Cascade C−H Coupling/C‐Terminus Michael Addition of
N
‐Phenoxy Amides with 1,6‐Enynes. ChemistrySelect 2021. [DOI: 10.1002/slct.202102186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yinhui Wei
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Xinlin Jiang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Hui Gao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Mengyao Bian
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Yugang Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Zhi Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Wei Yi
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 China
| |
Collapse
|
39
|
Roy B, Rahaman H, Hazra S, Mondal B. Cu-Catalyzed C–H Activation Reaction: One-Pot Direct Synthesis of Xanthine and Uric Acid Derivatives from 5-Bromouracil. Synlett 2021. [DOI: 10.1055/a-1542-9683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractA one-pot direct synthesis of xanthine and uric acid derivates is reported. This simple yet efficient methodology illustrates concurrent formation of two C–N bonds using CuBr2 as catalyst and one of those C–N bonds is formed by uracil C6–H bond activation.
Collapse
|
40
|
Zhu XK, Zheng YQ, Liu JB. A Computational Mechanistic Study of Cp*Co(III)-Catalyzed Three-Component C-H Bond Addition to Terpenes and Formaldehydes: Insights into the Origins of Regioselectivity. J Phys Chem A 2021; 125:5031-5039. [PMID: 34080859 DOI: 10.1021/acs.jpca.1c02826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transition metal-catalyzed three-component reactions of arenes, dienes, and carbonyls enable the convergent synthesis of homoallylic alcohols. Controlling regioselectivity is a central challenge for the difunctionalization of substituted 1,3-dienes in which multiple unbiased C═C bonds exist. Here, the mechanisms of Cp*Co(III)-catalyzed three-component C-H bond addition to terpenes and formaldehydes were investigated by density functional theory calculations. The reaction proceeds via sequential C(sp2)-H activation, migratory insertion, β-hydride elimination, hydride reinsertion, and C-C bond formation to yield the final product. The migratory insertion is the rate- and regioselectivity-determining step of the overall reaction. We employed an energy decomposition approach to quantitatively dissect the contributions of different types of interactions to regioselectivity. For the 2-alkyl substituted 1,3-dienes, the orbital interactions in the 3,4-insertion are intrinsically more favorable as compared to that in the 4,3-insertion, while the stronger steric effects between metallacycle and 1,3-diene override the intrinsic electronic preference. However, the steric effects failed to rationalize the unfavorable 1,2-insertion that is analogous to 4,3-insertion and even bears smaller steric effects. The donor-acceptor interaction analysis indicates that orbital interactions between σCo-C and πC═C decreased significantly in the 1,2-insertion transition state, which leads to higher activation energy barriers. These insights into the dominant effects controlling regioselectivity will enable rational design of new catalysts for selective functionalization of dienes.
Collapse
Affiliation(s)
- Xun-Kun Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Yu-Qing Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Jian-Biao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
41
|
Oleszek S, Kumagai S, Grabda M, Shiota K, Yoshioka T, Takaoka M. Mitigation of bromine-containing products during pyrolysis of polycarbonate-based tetrabromobisphenol A in the presence of copper(I) oxide. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124972. [PMID: 33388450 DOI: 10.1016/j.jhazmat.2020.124972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/19/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Polycarbonate (PC) is an engineering thermoplastic that is widely used in electrical and electronic equipment. This plastic often contains tetrabromobisphenol A (TBBA), the most common brominated flame retardant. Thermal degradation of the PC-TBBA leads to generation of numerous bromo-organic products in the pyrolytic oil, hindering its appropriate utilization, as well as corrosive hydrogen bromide gas. The purpose of this study was to experimentally investigate and compare the pyrolysis products of PC-TBBA and PC-TBBA + Cu2O at various temperatures, with an emphasis on the yield and distribution of brominated compounds. In pyrolysis of PC-TBBA + Cu2O, at the maximum degradation temperature (600 °C), as much as 86% of total Br was trapped in the residue, while 3% and 11% were distributed in the condensate and gas fractions, respectively. In contrast, the distribution of Br from non-catalytic pyrolysis of PC-TBBA (600 °C) was 0.5% residue, 40% condensate, and 60% gas. The results of this study revealed that in the presence of Cu2O, organo-bromine products were most likely involved in Ullman-type coupling reactions, leading to early cross-linking of the polymer network that efficiently hinders their vaporization. HBr in the gas fraction was suppressed due to effective fixation of bromine in residue in the form of CuBr.
Collapse
Affiliation(s)
- Sylwia Oleszek
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Katsura C-1-3, 615-8540 Kyoto, Japan; Institute of Environmental Engineering of the Polish Academy of Sciences, M. Sklodowska-Curie 34, 41-819 Zabrze, Poland.
| | - Shogo Kumagai
- Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aoba, Aramaki-Aza, Aoba-ku, Sendai 980-8579, Japan.
| | - Mariusz Grabda
- Institute of Environmental Engineering of the Polish Academy of Sciences, M. Sklodowska-Curie 34, 41-819 Zabrze, Poland.
| | - Kenji Shiota
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Katsura C-1-3, 615-8540 Kyoto, Japan.
| | - Toshiaki Yoshioka
- Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aoba, Aramaki-Aza, Aoba-ku, Sendai 980-8579, Japan.
| | - Masaki Takaoka
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Katsura C-1-3, 615-8540 Kyoto, Japan.
| |
Collapse
|
42
|
Li Z, Zhang L, Pu M, Lei M. Mechanistic Understanding of Base‐Catalyzed Aldimine/Ketoamine Condensations: An Old Story and A New Model. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhe‐wei Li
- State Key Laboratory of Chemical Resource Engineering Institute of Computational Chemistry College of Chemistry Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Lin Zhang
- State Key Laboratory of Chemical Resource Engineering Institute of Computational Chemistry College of Chemistry Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Min Pu
- State Key Laboratory of Chemical Resource Engineering Institute of Computational Chemistry College of Chemistry Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering Institute of Computational Chemistry College of Chemistry Beijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
43
|
Lin WX, Pei Z, Gong C, Mo H, Yang K, Qu LB, Wei D, Song JS, Li SJ, Lan Y. Is the reaction sequence in phosphine-catalyzed [8+2] cycloaddition controlled by electrophilicity? Chem Commun (Camb) 2021; 57:761-764. [PMID: 33350413 DOI: 10.1039/d0cc07370a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the presence of multiple electrophiles, the reaction sequence is a critical mechanistic problem. Here, we report a theoretical study on the mechanism of phosphine-catalyzed [8+2] cycloaddition of heptafulvenes and allenoate. DFT calculations showed that electrophilicity is the barrier for nucleophilic attack, while it fails in the prediction of priority.
Collapse
Affiliation(s)
- Wen-Xuan Lin
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P. R. China.
| | - Zhuolin Pei
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P. R. China.
| | - Cunxi Gong
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P. R. China.
| | - Huilin Mo
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P. R. China.
| | - Kai Yang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P. R. China.
| | - Ling-Bo Qu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P. R. China.
| | - Donghui Wei
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P. R. China.
| | - Jin-Shuai Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P. R. China.
| | - Shi-Jun Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P. R. China.
| | - Yu Lan
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P. R. China. and School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China.
| |
Collapse
|
44
|
Zhao ZW, Dong YJ, Geng Y, Li RH, Guan W, Su ZM. Superiority of Iridium Photocatalyst and Role of Quinuclidine in Selective α-C(sp 3)-H Alkylation: Theoretical Insights. J Org Chem 2021; 86:484-492. [PMID: 33295780 DOI: 10.1021/acs.joc.0c02227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent experimental work reported that visible-light photoredox catalysis coupled with primary sulfonamides and electron-deficient alkenes could efficiently construct C-C bonds at the α-position of primary amine derivatives under mild conditions. Here, a systematic study was conducted to explore the non-negligible excited-state single-electron-transfer (SET) processes and the catalytic cycle. Hydrogen atom transfer (HAT) catalysis containing different site-selective functionalization, involved as a critical process during the reaction, was computationally characterized. The superiorities of iridium-based photoredox catalysts in terms of photoabsorption properties, phosphorescence rates, and electron-transfer rates for SET processes were focused on. In addition, the function of quinuclidine in the entire photocatalytic reaction was also probed. These intrinsic properties and detailed insights into the mechanism are supposed to be helpful to the understanding of the C-C bond functionalization reaction and the future application of the iridium-based photoredox catalyst.
Collapse
Affiliation(s)
- Zhi-Wen Zhao
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin, P. R. China
| | - Yu-Jiao Dong
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin, P. R. China
| | - Yun Geng
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin, P. R. China
| | - Run-Han Li
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin, P. R. China
| | - Wei Guan
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin, P. R. China
| | - Zhong-Min Su
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin, P. R. China.,School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, P. R. China
| |
Collapse
|
45
|
Pei G, Chen H, Xu W, Chen T, Li J. Diboron-controlled product selectivity switch in copper-catalyzed decarboxylative substitutions of alkynyl cyclic carbonates. Org Chem Front 2021. [DOI: 10.1039/d1qo01411k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DFT calculations were performed to explore the mechanisms, origins of diboron-controlled divergent product selectivity and stereoselectivity in the copper-catalyzed decarboxylative substitution of alkynyl cyclic carbonates.
Collapse
Affiliation(s)
- Guojing Pei
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Hui Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Wan Xu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Tao Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Juan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| |
Collapse
|
46
|
Fang YQ, Dang L. Mechanistic Study of Domino Rearrangement-Promoted Meta C-H Activation in 2-Methyl- N-methoxyaniline via Cu(NHC) +: Motivation and Selectivity. Org Lett 2020; 22:9178-9183. [PMID: 33196206 DOI: 10.1021/acs.orglett.0c03004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Here we report a detailed theoretical study of the mechanism of Cu+-catalyzed domino rearrangement of 2-methyl-N-methoxyaniline with a deep understanding of the unique motivation and selectivity of these migrations. We find that the Cu+ catalyst accelerates the [1,3]-methoxy migration to the methyl-bound ortho position of umpolung phenyl. The following domino transfer prefers methyl [1,2]-migration, and the rate-determining step for the whole reaction is the transfer of a proton from the phenyl ring to amine to finish the catalytic cycle.
Collapse
Affiliation(s)
- Yu-Qi Fang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, P. R. China
| | - Li Dang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, P. R. China
| |
Collapse
|
47
|
Zhu L, Li J, Yang J, Au-Yeung HY. Cross dehydrogenative C-O coupling catalysed by a catenane-coordinated copper(i). Chem Sci 2020; 11:13008-13014. [PMID: 34094485 PMCID: PMC8163234 DOI: 10.1039/d0sc05133k] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Catalytic activity of copper(i) complexes supported by phenanthroline-containing catenane ligands towards a new C(sp3)–O dehydrogenative cross-coupling of phenols and bromodicarbonyls is reported. As the phenanthrolines are interlocked by the strong and flexible mechanical bond in the catenane, the active catalyst with an open copper coordination site can be revealed only transiently and the stable, coordinatively saturated Cu(i) pre-catalyst is quickly regenerated after substrate transformation. Compared with a control Cu(i) complex supported by non-interlocked phenanthrolines, the catenane-supported Cu(i) is highly efficient with a broad substrate scope, and can be applied in gram-scale transformations without a significant loss of the catalytic activity. This work demonstrates the advantages of the catenane ligands that provide a dynamic and responsive copper coordination sphere, highlighting the potential of the mechanical bond as a design element in transition metal catalyst development. The use of a catenane-supported copper(i) complex for the cross dehydrogenative C–O coupling of phenols and bromodicarbonyls is described.![]()
Collapse
Affiliation(s)
- Lihui Zhu
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Jiasheng Li
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Jun Yang
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Ho Yu Au-Yeung
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China .,State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| |
Collapse
|
48
|
Liu S, Achou R, Boulanger C, Pawar G, Kumar N, Lusseau J, Robert F, Landais Y. Copper-catalyzed oxidative benzylic C(sp3)–H amination: direct synthesis of benzylic carbamates. Chem Commun (Camb) 2020; 56:13013-13016. [DOI: 10.1039/d0cc05226d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Cu(i)–diimine ligand combined with a N–F source allows the C–H abstraction and incorporation of a carbamate functional group in the hydrocarbons at the benzylic position.
Collapse
Affiliation(s)
- Shuai Liu
- University of Bordeaux
- Institute of Molecular sciences (ISM)
- UMR-CNRS 5255
- Talence Cedex 33405
- France
| | - Raphaël Achou
- University of Bordeaux
- Institute of Molecular sciences (ISM)
- UMR-CNRS 5255
- Talence Cedex 33405
- France
| | - Coline Boulanger
- University of Bordeaux
- Institute of Molecular sciences (ISM)
- UMR-CNRS 5255
- Talence Cedex 33405
- France
| | - Govind Pawar
- University of Bordeaux
- Institute of Molecular sciences (ISM)
- UMR-CNRS 5255
- Talence Cedex 33405
- France
| | - Nivesh Kumar
- University of Bordeaux
- Institute of Molecular sciences (ISM)
- UMR-CNRS 5255
- Talence Cedex 33405
- France
| | - Jonathan Lusseau
- University of Bordeaux
- Institute of Molecular sciences (ISM)
- UMR-CNRS 5255
- Talence Cedex 33405
- France
| | - Frédéric Robert
- University of Bordeaux
- Institute of Molecular sciences (ISM)
- UMR-CNRS 5255
- Talence Cedex 33405
- France
| | - Yannick Landais
- University of Bordeaux
- Institute of Molecular sciences (ISM)
- UMR-CNRS 5255
- Talence Cedex 33405
- France
| |
Collapse
|
49
|
Yao Y, Zhang X, Ma S. DFT study on the E-stereoselective reductive A3-coupling reaction of terminal alkynes with aldehydes and 3-pyrroline. Org Chem Front 2020. [DOI: 10.1039/d0qo00564a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mechanism of the Cu(i)-catalyzed reductive A3-coupling reaction of terminal alkynes with aldehydes and 3-pyrroline for the synthesis of E-allylic amines has been studied by DFT calculations.
Collapse
Affiliation(s)
- Yuan Yao
- Research Center for Molecular Recognition and Synthesis
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| | - Xue Zhang
- State Key Laboratory of Organometallic Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- P. R. China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| |
Collapse
|