1
|
Martínez-Ceberio C, Fernández-de-Córdova FJ, Ríos P, Rivada-Wheelaghan O. Synthesis and Characterization of Bimetallic Copper(I) Complexes Supported by a Hexadentate Naphthyridine-Based Macrocycle Ligand. Inorg Chem 2025; 64:8630-8638. [PMID: 40263154 DOI: 10.1021/acs.inorgchem.5c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Herein, we report the synthesis, characterization, and binding properties of a new ligand, N,N'-di-tert-butyl-3,7-diaza-1,5(2,7)-1,8-naphthyridinacyclooctaphane (tBuN6), with copper (I), CuI, centers. We demonstrate the flexibility and the ability of tBuN6 to adopt various conformations in solution and when coordinated to CuIcenters. NMR studies exhibit the labile coordination nature of CuI. However, the lability of the complexes is blocked by counterion exchange, which enables the use of less coordinating solvents such as tetrahydrofuran (THF) and avoids using acetonitrile. Thus, the exchange of [BF4]- with tetrakis 3,5-bis(trifluoromethyl)phenyl borate, [B(ArF)4]-, in 1·BF4, [Cu2(MeCN)2(tBuN6)][BF4], generates 1·B(ArF)4, which is stable in THF and reacts under a CO atmosphere to generate a syn,syn bis(carbonyl) complex. This complex is sufficiently stable in solution under CO and Ar atmosphere to be characterized by NMR and IR spectroscopy, the latter revealing two stretching bands for the CO bound to the CuI-centers at 2102 and 2088 cm-1.
Collapse
Affiliation(s)
- Carlos Martínez-Ceberio
- Instituto de Investigaciones Químicas (IIQ), Departamento de química Inorgánica, Universidad de Sevilla, Avenida Américo Vespucio 49, Sevilla, 41092, Spain
| | - Francisco José Fernández-de-Córdova
- Instituto de Investigaciones Químicas (IIQ), Departamento de química Inorgánica, Universidad de Sevilla, Avenida Américo Vespucio 49, Sevilla, 41092, Spain
| | - Pablo Ríos
- Instituto de Investigaciones Químicas (IIQ), Departamento de química Inorgánica, Universidad de Sevilla, Avenida Américo Vespucio 49, Sevilla, 41092, Spain
| | - Orestes Rivada-Wheelaghan
- Instituto de Investigaciones Químicas (IIQ), Departamento de química Inorgánica, Universidad de Sevilla, Avenida Américo Vespucio 49, Sevilla, 41092, Spain
| |
Collapse
|
2
|
Sévery L, Alexander Wheeler T, Nicolay A, Teat SJ, Don Tilley T. Dicopper(I) complexes of a binucleating, dianionic, naphthyridine bis(amide) ligand. Dalton Trans 2025. [PMID: 40012524 DOI: 10.1039/d5dt00034c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
The dinucleating ligand, 1,8-naphthyridine-2,7-bis(2,6-diisopropylphenyl)carboxamide (NBDA), was synthesized by palladium-catalyzed aminocarbonylation. This ligand was treated with two equivalents of mesitylcopper(I) in the presence of [nBu4N]X (X = Cl, N3) to give the anionic complexes [nBu4N][Cu2(NBDA)(μ-Cl)] and [nBu4N][Cu2(NBDA)(μ-N3)]. Treatment of H2NBDA with mesitylcopper(I) and two equivalents of xylyl isocyanide led to the formation of a charge-neutral dicopper(I) complex, [Cu2(NBDA)(CNXyl)2], displaying two isocyanide ligands, each terminally bound to one of the copper atoms. The complexes were characterized by NMR and IR spectroscopy, as well as by single-crystal X-ray diffraction analysis. Electrochemical characterization of the complexes using cyclic voltammetry revealed a reversible ligand-based reduction between -1.65 and -2.0 V vs. Fc/Fc+. DFT calculations suggest a more ionic bonding character and weaker Cu-Cu interactions in the NBDA complexes compared to those with other 1,8-naphthyridine-based ligands. This is congruent with intermetallic separations of over 3 Å induced by relatively strong coordination of the copper atoms to the amide nitrogen donor atoms observed in the solid state molecular structures.
Collapse
Affiliation(s)
- Laurent Sévery
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - T Alexander Wheeler
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Amelie Nicolay
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, USA.
| | - Simon J Teat
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - T Don Tilley
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
3
|
Zafar M, Subramaniyan V, Ansari KU, Yakir H, Danovich D, Tulchinsky Y. Assembling Di- and Polynuclear Cu(I) Complexes with Rigid Thioxanthone-Based Ligands: Structures, Reactivity, and Photoluminescence. Inorg Chem 2024; 63:24466-24481. [PMID: 39681326 PMCID: PMC11688670 DOI: 10.1021/acs.inorgchem.4c03819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/30/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
Thioxanthone (TX) molecules and their derivatives are well-known photoactive compounds. Yet, there exist only a handful of luminescent systems combining TX with transition metals. Recently, we reported a TX-based PSP pincer ligand (L1) that appears as a promising platform for filling this niche. Herein, we demonstrate that with Cu(I) this ligand exclusively assembles into dimeric structures with either di- or polynuclear Cu(I) cores. With cationic Cu(I) precursors, complexes featuring solvent-bridged bis-cationic cores were obtained. These coordinatively unsaturated bimetallic systems showed surprisingly facile activation of the chloroform C-Cl bonds, suggesting a possible metal-metal cooperation. The reaction of L1 with binary Cu(I) halides afforded dimeric complexes with polynuclear [CuX]n (n = 3 or 4) cores. With X = Br or I, emissive complexes containing stairstep [CuX]4 clusters were obtained. Emission lifetimes in the microsecond range measured for these complexes were indicative of a triplet emission (phosphorescence), which according to our time-dependent density functional theory study originates from a halide-metal-to-ligand charge transfer between the [CuX]4 cluster and the TX backbone of L1. Finally, the distinctive polynucleating behavior of L1 toward Cu(I) was also showcased by a comparison to another PSP ligand with a diaryl thioether backbone (L2), which formed only mononuclear pincer-type complexes, lacking any unusual reactivity or photoluminescence.
Collapse
Affiliation(s)
- Mohammad Zafar
- Institute
of Chemistry, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | | | - Kamal Uddin Ansari
- Institute
of Chemistry, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Hadar Yakir
- Institute
of Chemistry, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - David Danovich
- Institute
of Chemistry, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Yuri Tulchinsky
- Institute
of Chemistry, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
4
|
Wu J, Stevens MA, Gardiner MG, Colebatch AL. Ruthenium, copper and ruthenium-copper complexes of an unsymmetrical phosphino pyridyl 1,8-naphthyridine PNNN ligand. Dalton Trans 2024; 53:18037-18046. [PMID: 39441625 DOI: 10.1039/d4dt02755h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A new unsymmetrical dinucleating phosphino pyridyl 1,8-naphthyridine ligand PNNN is reported. Reaction with CuCl gave the dicopper complex [Cu2(μ-Cl)2(PNNN)] (1). In contrast, complexation of [RuCl2(cymene)]2 yielded a monometallic species [RuCl(cymene)(PNNN)]Cl ([2]Cl) in which the Ru is bound to the κ2-N,N, rather than κ2-P,N, binding pocket. The selective formation of the monoruthenium complex [2]Cl enabled synthesis of heterobimetallic complexes [RuCuCl3(cymene)(PNNN)] (3) and [RuCuCl2(cymene)(PNNN)]2[PF6]2 ([4]2[PF6]2), which both exhibit κ1-P coordination of Cu. Complexes 1 and [4]2[PF6]2 exhibit reversible dearomatisation-aromatisation behaviour at the metal-ligand cooperative methylene site upon sequential treatment with base (KOtBu) and acid (HCl). Notably, deprotonation of [4]2[PF6]2 induces a shift in the coordination mode of Cu to κ2-P,N.
Collapse
Affiliation(s)
- Jingyun Wu
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
| | - Michael A Stevens
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
| | - Michael G Gardiner
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
| | - Annie L Colebatch
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
5
|
See M, Ríos P, Tilley TD. Diborane Reductions of CO 2 and CS 2 Mediated by Dicopper μ-Boryl Complexes of a Robust Bis(phosphino)-1,8-naphthyridine Ligand. Organometallics 2024; 43:1180-1189. [PMID: 38817536 PMCID: PMC11134609 DOI: 10.1021/acs.organomet.4c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 06/01/2024]
Abstract
A dinucleating 1,8-naphthyridine ligand featuring fluorene-9,9-diyl-linked phosphino side arms (PNNPFlu) was synthesized and used to obtain the cationic dicopper complexes 2, [(PNNPFlu)Cu2(μ-Ph)][NTf2]; [NTf2] = bis(trifluoromethane)sulfonimide, 6, [(PNNPFlu)Cu2(μ-CCPh)][NTf2], and 3, [(PNNPFlu)Cu2(μ-OtBu)][NTf2]. Complex 3 reacted with diboranes to afford dicopper μ-boryl species (4, with μ-Bcat; cat = catecholate and 5, with μ-Bpin; pin = pinacolate) that are more reactive in C(sp)-H bond activations and toward activations of CO2 and CS2, compared to dicopper μ-boryl complexes supported by a 1,8-naphthyridine-based ligand with di(pyridyl) side arms. The solid-state structures and DFT analysis indicate that the higher reactivities of 4 and 5 relate to changes in the coordination sphere of copper, rather than to perturbations on the Cu-B bonding interactions. Addition of xylyl isocyanide (CNXyl) to 4 gave 7, [(PNNPFlu)Cu2(μ-Bcat)(CNXyl)][NTf2], demonstrating that the lower coordination number at copper is chemically significant. Reactions of 4 and 5 with CO2 yielded the corresponding dicopper borate complexes (8, [(PNNPFlu)Cu2(μ-OBcat)][NTf2]; 9, [(PNNPFlu)Cu2(μ-OBpin)][NTf2]), with 4 demonstrating catalytic reduction in the presence of excess diborane. Related reactions of 4 and 5 with CS2 provided insertion products 10, {[(PNNPFlu)Cu2]2[μ-S2C(Bcat)2]}[NTf2]2, and 11, [(PNNPFlu)Cu2(μ,κ2-S2CBpin)][NTf2], respectively. These products feature Cu-S-C-B linkages analogous to those of proposed CO2 insertion intermediate.
Collapse
Affiliation(s)
- Matthew
S. See
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Pablo Ríos
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica, Centro de Innovación en Química Avanzada
(ORFEO−CINQA), CSIC and Universidad
de Sevilla, Sevilla 41092, Spain
| | - T. Don Tilley
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
6
|
Stevens MA, Lim LF, Pham LN, Cox N, Coote ML, Colebatch AL. A one-pot reduction route to bimetallic manganese 1,8-naphthyridine complexes. Dalton Trans 2024; 53:1284-1294. [PMID: 38112500 DOI: 10.1039/d3dt03709f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Reaction of the dinucleating ligand 2,7-bis(6-methyl-2-pyridyl)-1,8-naphthyridine (MeL) with the MnI and MnII precursors MnBr(CO)5 and MnCl2 resulted in the formation of the monometallic complexes [MnBr(CO)3(MeL)] (1) and [MnCl2(MeL)] (3). In both cases, formation of bimetallic manganese complexes could be achieved by reduction with KC8, yielding the carbonyl-bridged complex [Mn2(CO)6(MeL)] (2) and the helicate complex [Mn2(MeL)2] (4), respectively. EPR results demonstrate that 4 represents a novel, weakly antiferromagnetically coupled homovalent dimer (J = -0.85 cm-1). The two formally Mn0 ions are both high spin (S = 3/2) and exhibit a zero-field splitting of ≈1 cm-1, suggesting reduction of the complex is substantially ligand centered, and may be better described as a MnII complex coupled to two open shell singlet ligands [MnII2(MeL2-)2]. X-ray crystallography, UV-Vis spectroscopy and DFT analysis support this finding.
Collapse
Affiliation(s)
- Michael A Stevens
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
| | - Li Feng Lim
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
| | - Le Nhan Pham
- Institute for Nanoscale Science & Technology, Flinders University, Adelaide, South Australia, 5042, Australia.
| | - Nicholas Cox
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
| | - Michelle L Coote
- Institute for Nanoscale Science & Technology, Flinders University, Adelaide, South Australia, 5042, Australia.
| | - Annie L Colebatch
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
7
|
Multem AJH, Delaney AR, Kroeger AA, Coote ML, Colebatch AL. Utilising a Proton-Responsive 1,8-Naphthyridine Ligand for the Synthesis of Bimetallic Palladium and Platinum Complexes. Chem Asian J 2023:e202301071. [PMID: 38161148 DOI: 10.1002/asia.202301071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
We present four proton-responsive palladium and platinum complexes, [MCl2 (R PONNHO)] (M=Pd, Pt; R=i Pr, t Bu) synthesised by complexation of PdCl2 or PtCl2 (COD) with the 1,8-naphthyridine ligand R PONNHO. Deprotonation of [MCl2 (tBu PONNHO)] switches ligand coordination from mono- to dinucleating, offering a synthetic pathway to bimetallic PdII and PtII complexes [M2 Cl2 (tBu PONNO)2 ]. Two-electron reduction gives planar MI -MI complexes [M2 (tBu PONNO)2 ] (M=Pd, Pt) containing a metal-metal bond. In contrast to the related nickel system that forms a metallophosphorane [Ni2 (tBu PONNOPONNO)], an unusual phosphinite binding mode is observed in [M2 (tBu PONNO)2 ] containing close phosphinite-naphthyridinone P⋅⋅⋅O interactions, which is investigated spectroscopically, crystallographically and computationally. The presented proton-responsive and structurally-responsive R PONNHO and bimetallic R PONNO complexes offer a novel platform for future explorations of metal-ligand and metal-metal cooperativity with palladium and platinum.
Collapse
Affiliation(s)
- Arie J H Multem
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Andie R Delaney
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Asja A Kroeger
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
- Institute for Nanoscale Science & Technology, Flinders University, Adelaide, South Australia, 5042, Australia
| | - Michelle L Coote
- Institute for Nanoscale Science & Technology, Flinders University, Adelaide, South Australia, 5042, Australia
| | - Annie L Colebatch
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
8
|
Delaney AR, Kroeger AA, Coote ML, Colebatch AL. Oxidative Addition and β-Hydride Elimination by a Macrocyclic Dinickel Complex: Observing Bimetallic Elementary Reactions. Chemistry 2023; 29:e202302366. [PMID: 37641804 DOI: 10.1002/chem.202302366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
The dinickel(I) complex Ni2 (tBu PONNOPONNO), featuring a planar macrocyclic diphosphoranide ligand tBu PONNOPONNO, offers a unique architectural platform for observing bimetallic elementary reactions. Oxidative addition reactions of alkyl halides produce dinickel(II) complexes of the type Ni2 (μ-R)(μ-X)(tBu PONNOPONNO). However, when R=Et β-hydride elimination is observed to form a dinickel monohydride, with the rate dependent on the nature of X. DFT studies suggest a new mechanism for bimetallic β-hydride elimination, where the rate dependence arises from the steric pressure imposed by the X group on the opposing trans face of the dinickel macrocycle. This work enhances understanding of bimetallic elementary reactions, particularly β-hydride elimination, which have not been well-explored for dinuclear systems.
Collapse
Affiliation(s)
- Andie R Delaney
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Asja A Kroeger
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
- Institute for Nanoscale Science & Technology, Flinders University, Adelaide, South Australia, 5042, Australia
| | - Michelle L Coote
- Institute for Nanoscale Science & Technology, Flinders University, Adelaide, South Australia, 5042, Australia
| | - Annie L Colebatch
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
9
|
Delaney AR, Yu LJ, Doan V, Coote ML, Colebatch AL. Bimetallic Nickel Complexes Supported by a Planar Macrocyclic Diphosphoranide Ligand. Chemistry 2023; 29:e202203940. [PMID: 36545819 DOI: 10.1002/chem.202203940] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Metal-metal cooperativity is emerging as an important strategy in catalysis. This requires appropriate ligand scaffolds that can support two metals in close proximity. Here we report nickel-promoted formation of a dinucleating planar macrocyclic ligand that can support bimetallic dinickel(II) and dinickel(I) complexes. Reaction outcomes can be tuned by variation of the substituents and reaction conditions to favour dinucleating macrocyclic, mononucleating macrocyclic or conventional pincer architectures.
Collapse
Affiliation(s)
- Andie R Delaney
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Li-Juan Yu
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Vincent Doan
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Michelle L Coote
- Institute for Nanoscale Science & Technology, Flinders University, Adelaide, South Australia, 5042, Australia
| | - Annie L Colebatch
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
10
|
Killian L, Bienenmann RLM, Broere DLJ. Quantification of the Steric Properties of 1,8-Naphthyridine-Based Ligands in Dinuclear Complexes. Organometallics 2023; 42:27-37. [PMID: 36644418 PMCID: PMC9832537 DOI: 10.1021/acs.organomet.2c00458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Indexed: 12/03/2022]
Abstract
Steric properties of ligands are an important parameter for tuning the reactivity of the corresponding complexes. For various ligands used in mononuclear complexes, methods have been developed to quantify their steric bulk. In this work, we present an expansion of the buried volume and the G-parameter to quantify the steric properties of 1,8-napthyridine-based dinuclear complexes. Using this methodology, we explored the tunability of the steric properties associated with these ligands and complexes.
Collapse
Affiliation(s)
| | | | - Daniël L. J. Broere
- Organic Chemistry and Catalysis,
Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
11
|
Hall PD, Stevens MA, Wang JYJ, Pham LN, Coote ML, Colebatch AL. Copper and Zinc Complexes of 2,7-Bis(6-methyl-2-pyridyl)-1,8-naphthyridine─A Redox-Active, Dinucleating Bis(bipyridine) Ligand. Inorg Chem 2022; 61:19333-19343. [DOI: 10.1021/acs.inorgchem.2c03126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Peter D. Hall
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory2601, Australia
| | - Michael A. Stevens
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory2601, Australia
| | - Jiao Yu J. Wang
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory2601, Australia
| | - Le Nhan Pham
- Institute for Nanoscale Science & Technology, Flinders University, Adelaide, South Australia5042, Australia
| | - Michelle L. Coote
- Institute for Nanoscale Science & Technology, Flinders University, Adelaide, South Australia5042, Australia
| | - Annie L. Colebatch
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory2601, Australia
| |
Collapse
|
12
|
van Beek CB, van Leest NP, Lutz M, de Vos SD, Klein Gebbink RJM, de Bruin B, Broere DLJ. Combining metal-metal cooperativity, metal-ligand cooperativity and chemical non-innocence in diiron carbonyl complexes. Chem Sci 2022; 13:2094-2104. [PMID: 35308864 PMCID: PMC8849050 DOI: 10.1039/d1sc05473b] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
Several metalloenzymes, including [FeFe]-hydrogenase, employ cofactors wherein multiple metal atoms work together with surrounding ligands that mediate heterolytic and concerted proton-electron transfer (CPET) bond activation steps. Herein, we report a new dinucleating PNNP expanded pincer ligand, which can bind two low-valent iron atoms in close proximity to enable metal-metal cooperativity (MMC). In addition, reversible partial dearomatization of the ligand's naphthyridine core enables both heterolytic metal-ligand cooperativity (MLC) and chemical non-innocence through CPET steps. Thermochemical and computational studies show how a change in ligand binding mode can lower the bond dissociation free energy of ligand C(sp3)-H bonds by ∼25 kcal mol-1. H-atom abstraction enabled trapping of an unstable intermediate, which undergoes facile loss of two carbonyl ligands to form an unusual paramagnetic (S = ) complex containing a mixed-valent iron(0)-iron(i) core bound within a partially dearomatized PNNP ligand. Finally, cyclic voltammetry experiments showed that these diiron complexes show catalytic activity for the electrochemical hydrogen evolution reaction. This work presents the first example of a ligand system that enables MMC, heterolytic MLC and chemical non-innocence, thereby providing important insights and opportunities for the development of bimetallic systems that exploit these features to enable new (catalytic) reactivity.
Collapse
Affiliation(s)
- Cody B van Beek
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Nicolaas P van Leest
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Martin Lutz
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Sander D de Vos
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Robertus J M Klein Gebbink
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Bas de Bruin
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Daniël L J Broere
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| |
Collapse
|
13
|
Delaney AR, Yu LJ, Coote ML, Colebatch AL. Synthesis of an expanded pincer ligand and its bimetallic coinage metal complexes. Dalton Trans 2021; 50:11909-11917. [PMID: 34374394 DOI: 10.1039/d1dt01741a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An expanded pincer ligand tBu-PONNOP (2,7-bis(di-tert-butylphosphinito)-1,8-naphthyridine) has been synthesised and its coordination to coinage metals has been studied. Bimetallic complexes were produced with metal halide salts of the type [M2X2(tBu-PONNOP)] (X = Cl, M = Au, Ag, Cu; X = I, M = Cu) with a varying degree of interaction with the naphthyridyl backbone in the order Au < Ag < Cu. The salts [Ag2(tBu-PONNOP)2][BArF4]2 (ArF = 3,5-C6H3(CF3)2) and [Ag2(NCMe)2(tBu-PONNOP)]X2 (X = BArF4, PF6) were prepared, which may serve as a source of tBu-PONNOP via transmetallation.
Collapse
Affiliation(s)
- Andie R Delaney
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia.
| | | | | | | |
Collapse
|
14
|
Gunther SO, Kosanovich AJ, Cao Y, Bhuvanesh N, Ozerov OV. Nucleopincers? Rhodium Complexes of Pyrimidine‐centered PNP Pincer Ligands Derived from Nitrogenous Nucleobases Uracil and Thymine. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202000417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- S. Olivia Gunther
- Department of Chemistry Texas A&M University 3255 TAMU College Station TX 77842 USA
| | - Alex J. Kosanovich
- Department of Chemistry Texas A&M University 3255 TAMU College Station TX 77842 USA
| | - Yihan Cao
- Department of Chemistry Texas A&M University 3255 TAMU College Station TX 77842 USA
| | - Nattamai Bhuvanesh
- Department of Chemistry Texas A&M University 3255 TAMU College Station TX 77842 USA
| | - Oleg V. Ozerov
- Department of Chemistry Texas A&M University 3255 TAMU College Station TX 77842 USA
| |
Collapse
|
15
|
Gafurov ZN, Kantyukov AO, Kagilev AA, Kagileva AA, Sakhapov IF, Mikhailov IK, Yakhvarov DG. Recent Advances in Chemistry of Unsymmetrical Phosphorus-Based Pincer Nickel Complexes: From Design to Catalytic Applications. Molecules 2021; 26:4063. [PMID: 34279402 PMCID: PMC8271868 DOI: 10.3390/molecules26134063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 11/25/2022] Open
Abstract
Pincer complexes play an important role in organometallic chemistry; in particular, their use as homogeneous catalysts for organic transformations has increased dramatically in recent years. The high catalytic activity of such bis-cyclometallic complexes is associated with the easy tunability of their properties. Moreover, the phosphorus-based unsymmetrical pincers showed higher catalytic activity than the corresponding symmetrical analogues in several catalytic reactions. However, in modern literature, an increasing interest in the development of catalysts based on non-precious metals is observed. For example, nickel, which is an affordable and sustainable analogue of platinum and palladium, known for its low toxicity, has attracted increasing attention in the catalytic chemistry of transition metals in recent years. Thus, this mini-review is devoted to the recent advances in the chemistry of unsymmetrical phosphorus-based pincer nickel complexes, including the ligand design, the synthesis of nickel complexes and their catalytic applications.
Collapse
Affiliation(s)
- Zufar N Gafurov
- FRC Kazan Scientific Center, Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, 420088 Kazan, Russia
| | - Artyom O Kantyukov
- FRC Kazan Scientific Center, Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, 420088 Kazan, Russia
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 420008 Kazan, Russia
| | - Alexey A Kagilev
- FRC Kazan Scientific Center, Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, 420088 Kazan, Russia
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 420008 Kazan, Russia
| | - Alina A Kagileva
- FRC Kazan Scientific Center, Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, 420088 Kazan, Russia
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 420008 Kazan, Russia
| | - Il'yas F Sakhapov
- FRC Kazan Scientific Center, Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, 420088 Kazan, Russia
| | - Ilya K Mikhailov
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 420008 Kazan, Russia
| | - Dmitry G Yakhvarov
- FRC Kazan Scientific Center, Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, 420088 Kazan, Russia
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
16
|
Nicolay A, Héron J, Shin C, Kuramarohit S, Ziegler MS, Balcells D, Tilley TD. Unsymmetrical Naphthyridine-Based Dicopper(I) Complexes: Synthesis, Stability, and Carbon–Hydrogen Bond Activations. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Amélie Nicolay
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Julie Héron
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Chungkeun Shin
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Serene Kuramarohit
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Micah S. Ziegler
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - David Balcells
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - T. Don Tilley
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
17
|
Recent progress on group 10 metal complexes of pincer ligands: From synthesis to activities and catalysis. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2021. [DOI: 10.1016/bs.adomc.2021.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Desnoyer AN, Nicolay A, Rios P, Ziegler MS, Tilley TD. Bimetallics in a Nutshell: Complexes Supported by Chelating Naphthyridine-Based Ligands. Acc Chem Res 2020; 53:1944-1956. [PMID: 32878429 DOI: 10.1021/acs.accounts.0c00382] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bimetallic motifs are a structural feature common to some of the most effective and synthetically useful catalysts known, including in the active sites of many metalloenzymes and on the surfaces of industrially relevant heterogeneous materials. However, the complexity of these systems often hampers detailed studies of their fundamental properties. To glean valuable mechanistic insight into how these catalysts function, this research group has prepared a family of dinucleating 1,8-naphthyridine ligands that bind two first-row transition metals in close proximity, originally designed to help mimic the proposed active site of metal oxide surfaces. Of the various bimetallic combinations examined, dicopper(I) is particularly versatile, as neutral bridging ligands adopt a variety of different binding modes depending on the configuration of frontier orbitals available to interact with the Cu centers. Organodicopper complexes are readily accessible, either through the traditional route of salt metathesis or via the activation of tetraarylborate anions through aryl group abstraction by a dicopper(I) unit. The resulting bridging aryl complexes engage in C-H bond activations, notably with terminal alkynes to afford bridging alkynyl species. The μ-hydrocarbyl complexes are surprisingly tolerant of water and elevated temperatures. This stability was leveraged to isolate a species that typically represents a fleeting intermediate in Cu-catalyzed azide-alkyne coupling (CuAAC); reaction of a bridging alkynyl complex with an organic azide afforded the first example of a well-defined, symmetrically bridged dicopper triazolide. This complex was shown to be an intermediate during CuAAC, providing support for a proposed bimetallic mechanism. These platforms are not limited to formally low oxidation states; chemical oxidation of the hydrocarbyl complexes cleanly results in formation of mixed valence CuICuII complexes with varying degrees of distortion in both the bridging moiety and the dicopper core. Higher oxidation states, e.g., dicopper(II), are easily accessed via oxidation of a dicopper(I) compound with air to give a CuII2(μ-OH)2 complex. Reduction of this compound with silanes resulted in the unexpected formation of pentametallic copper(I) dihydride clusters or trimetallic monohydride complexes, depending on the nature of the silane. Finally, development of an unsymmetrical naphthyridine ligand with mixed donor side-arms enables selective synthesis of an isostructural series of six heterobimetallic complexes, demonstrating the power of ligand design in the preparation of heterometallic assemblies.
Collapse
Affiliation(s)
- Addison N. Desnoyer
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Amélie Nicolay
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Pablo Rios
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
| | - Micah S. Ziegler
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - T. Don Tilley
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|