1
|
Rudolf R, Todorovski A, Lederer V, Neuman NI, Schubert H, Sarkar B. An Anionic Mesoionic Carbene (anMIC) and its Transformation to Metallo MIC-Boranes: Synthesis and Properties. Angew Chem Int Ed Engl 2025; 64:e202422702. [PMID: 39817481 DOI: 10.1002/anie.202422702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/22/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
Neutral mesoionic carbenes (MICs) based on a 1,2,3-triazole core have had a strong impact on various branches of chemistry such as homogeneous catalysis, electrocatalysis, and photochemistry/photophysics. We present here the first general synthesis of anionic mesoionic carbenes (anMICs, 2) based on a 1,2,3-triazole core and a borate backbone. The free anMIC is stable in solution under an inert atmosphere at low temperatures, and can be stored for several weeks. Analysis of donor properties shows that these anMICs are extremely strong σ-donors, bypassing the donor properties of strong donors such as MICs, NHCs, anionic NHCs and N-heterocyclic olefins. The room temperature conversion of the free anMICs leads to three equally interesting compound classes: an amide-coordinated borane based on a MIC-borane backbone (2BR3), a polymeric triazolide (1Li) and an amide-coordinated metallo-MIC-borane. The metallo-MIC-borane (3Li) is an interesting precursor for the synthesis of further amide-coordinated MIC-borane compounds. Quantum chemical calculations have been used to elucidate the mechanism of transformation of the anMICs. We thus introduce three new categories of mesoionic compounds here with potential for different branches of chemistry and beyond.
Collapse
Affiliation(s)
- Richard Rudolf
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70469, Stuttgart, Germany
| | - Andrej Todorovski
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70469, Stuttgart, Germany
| | - Vera Lederer
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70469, Stuttgart, Germany
| | - Nicolás I Neuman
- Instituto de Desarrollo Tecnológico para la Industria Química, INTEC, UNL-CONICET, Predio CONICET Santa Fe "Dr. Alberto Cassano", Colectora Ruta Nacional 168,Km 0, Paraje El Pozo, S3000ZAA, Santa Fe, Argentina
| | - Hartmut Schubert
- Institut für Anorganische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Biprajit Sarkar
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70469, Stuttgart, Germany
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany
| |
Collapse
|
2
|
English LE, Horsley Downie TM, Lyall CL, Mahon MF, McMullin CL, Neale SE, Saunders CM, Liptrot DJ. Selective hydroboration of electron-rich isocyanates by an NHC-copper(I) alkoxide. Chem Commun (Camb) 2023; 59:1074-1077. [PMID: 36621804 DOI: 10.1039/d2cc04742j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The (IPr)CuOtBu catalysed reduction of 11 aryl and alkyl isocyanates with pinacolborane gave only the boraformamides, pinBN(R)C(O)H, in most cases. Overreduction, which hampers almost all isocyanate hydroborations, was restricted to electron poor aryl isocyanates (4-NC-C6H4NCO, 4-F3C-C6H4NCO, 3-O2N-C6H4NCO). Computational analysis showed stability of [(IPr)CuH]2, which was proposed to be the catalyst resting state, drives selectivity, suggesting an approach to prevent overreduction in future work. In the case of iPrNCO, formation of this species renders overreduction kinetically inaccessible. For 4-NC-C6H4NCO, however, the barrier height for the first step of over-reduction is much lower, even relative to [(IPr)CuH]2, resulting in unselective reduction.
Collapse
Affiliation(s)
- Laura E English
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,Centre for Sustainable and Circular Technologies, Bath, BA2 7AY, UK
| | | | | | - Mary F Mahon
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | | | - Samuel E Neale
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | | | - David J Liptrot
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
3
|
Sau S, Pramanik M, Bal A, Mal P. Reported Catalytic Hydrofunctionalizations that Proceed in the Absence of Catalysts: The Importance of Control Experiments. CHEM REC 2021; 22:e202100208. [PMID: 34618401 DOI: 10.1002/tcr.202100208] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 01/23/2023]
Abstract
The enlarged landscape of catalysis lies in the heart of chemistry. As the journey has set a milestone in organic synthesis, its darker side has not entered into the limelight. Studies disclose that the reported reactions by using catalysts were also attainable in the absence of catalysts in many cases. This article presents a literature collection that includes the significance of control experiments in hydrofunctionalization reactions. Systematic analysis reveals that the catalysts are ambiguous and might be unessential in chemical reactions enlisted here.
Collapse
Affiliation(s)
- Sudip Sau
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India
| | - Milan Pramanik
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India
| | - Ankita Bal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India
| |
Collapse
|
4
|
Fischer M, Hering-Junghans C. On 1,3-phosphaazaallenes and their diverse reactivity. Chem Sci 2021; 12:10279-10289. [PMID: 34377415 PMCID: PMC8336469 DOI: 10.1039/d1sc02947a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/30/2021] [Indexed: 11/21/2022] Open
Abstract
1,3-Phosphaazaallenes are heteroallenes of the type RP
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
CNR′ and little is known about their reactivity. In here we describe the straightforward synthesis of ArPCNR (Ar = Mes*, 2,4,6-tBu-C6H2; MesTer, 2.6-(2,4,6-Me3C6H2)–C6H3; DipTer, 2.6-(2,6-iPr2C6H2)–C6H3; R = tBu; Xyl, 2,6-Me2C6H3) starting from phospha-Wittig reagents ArPPMe3 and isonitriles CNR. It is further shown that ArPCNtBu are thermally labile with respect to the loss of iso-butene and it is shown that the cyanophosphines ArP(H)CN are synthetically feasible and form the corresponding phosphanitrilium borates with B(C6F5)3, whereas deprotonation of DipTerP(H)CN was shown to give an isolable cyanidophosphide. Lastly, the reactivity of ArPCNR towards Pier's borane was investigated, showing hydroboration of the CN bond in Mes*PCNtBu to give a hetero-butadiene, while with DipTerPCNXyl the formation of the Lewis acid–base adduct with a B–P linkage was observed. The combination of phospha-Wittig reagents with isonitriles affords 1,3-phosphaazaallenes and their diverse reactivity has been studied in detail.![]()
Collapse
Affiliation(s)
- Malte Fischer
- Leibniz Institut für Katalyse e.V. (LIKAT) A.-Einstein-Str. 3a 18059 Rostock Germany [https://www.catalysis.de/forschung/aktivierung-kleiner-molekuele/]
| | - Christian Hering-Junghans
- Leibniz Institut für Katalyse e.V. (LIKAT) A.-Einstein-Str. 3a 18059 Rostock Germany [https://www.catalysis.de/forschung/aktivierung-kleiner-molekuele/]
| |
Collapse
|
5
|
Huke CD, Kays DL. Hydrofunctionalization reactions of heterocumulenes: Formation of C–X (X = B, N, O, P, S and Si) bonds by homogeneous metal catalysts. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2021. [DOI: 10.1016/bs.adomc.2021.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|