1
|
Macchia E, Bollella P, Torsi L. Bioelectronic Large-Area Transistors for High-Performance Sensing. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2025; 18:407-425. [PMID: 40009741 DOI: 10.1146/annurev-anchem-061522-034729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Bioelectronics, originating from Galvani's eighteenth-century experiments, blends biology, medicine, and electronics to create devices that can be closely connected to biological systems. This review focuses on bioelectronic large-area field-effect transistor (FET) sensing devices, emphasizing their sensitivity, specificity, and reliability. The role of analytical chemistry in optimizing performance-level control is pivotal, and the review discusses key performance metrics, including limit of identification (LOI), reliability and selectivity. The assessment of the LOI level is addressed using examples of FET-based bioelectronic sensors capable of detecting concentrations at least in the picomolar range. Examples of sensors capable of detecting concentrations in the tens of zeptomolar range are also provided, demonstrating that a single molecule in 0.1 mL can be reliably detected. Working at the LOI also minimizes random errors, which can be as low as 1%. The review also explores the use of molecularly imprinted polymers for highly selective FET bioelectronic detections, noting their sustainability and robustness in comparison to natural antibodies.
Collapse
Affiliation(s)
- Eleonora Macchia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Bari, Italy
- Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Centre for Colloid and Surface Science, University of Bari Aldo Moro, Bari, Italy
| | - Paolo Bollella
- Centre for Colloid and Surface Science, University of Bari Aldo Moro, Bari, Italy
- Department of Chemistry, University of Bari Aldo Moro, Bari, Italy;
| | - Luisa Torsi
- Centre for Colloid and Surface Science, University of Bari Aldo Moro, Bari, Italy
- Department of Chemistry, University of Bari Aldo Moro, Bari, Italy;
| |
Collapse
|
2
|
Sergi I, Sensi M, Zanotti R, Tsironi T, Flemetakis E, Power DM, Bortolotti CA, Biscarini F. Dual-compartment-gate organic transistors for monitoring biogenic amines from food. Biosens Bioelectron 2025; 271:117098. [PMID: 39731819 DOI: 10.1016/j.bios.2024.117098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/11/2024] [Accepted: 12/22/2024] [Indexed: 12/30/2024]
Abstract
According to the Food and Agriculture Organization of the United Nations (FAO) more than 14% of the world's food production is lost every year before reaching retail, and another 17% is lost during the retail stage. The use of the expiration date as the main estimator of the life-end of food products creates unjustified food waste. Sensors capable of quantifying the effective food freshness and quality could substantially reduce food waste and enable more effective management of the food chain. We propose an electrolyte-gated organic transistor (EGOT) that responds to the release of biogenic amines, like diamines and tyramine, generated by the degradation of protein-rich food. The EGOT sensor features a polymeric poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) gate electrode fabricated in the shape of a miniaturized beaker containing an aqueous solution in the inner side (to be exposed to food) and capacitively coupled through a hydrogel to the transistor channel on the outside (not in contact with food). The hydrogen bonds formed by the water-dissolved amines with PEDOT:PSS modulate the EGOT channel across a wide range of amine concentrations. We demonstrate that our sensor can detect different amines by the combinatorial analysis of the response from different channel materials, PEDOT:PSS and the other DPP-DTT, with a limit of detection as low as 100 pM.
Collapse
Affiliation(s)
- Ilenia Sergi
- Department of Life Sciences, Università Degli Studi di Modena e Reggio Emilia, Via Campi 103, Modena, 41125, Italy; Department of Neurosciences and Rehabilitation, Università Degli Studi di Ferrara, Via Fossato di Mortara 17/19, Ferrara, 44121, Italy
| | - Matteo Sensi
- Department of Life Sciences, Università Degli Studi di Modena e Reggio Emilia, Via Campi 103, Modena, 41125, Italy.
| | - Rian Zanotti
- Department of Physics, Informatics and Mathematics, Università Degli Studi di Modena e Reggio Emilia, Via Campi 213/a, Modena, 41125, Italy
| | - Theofania Tsironi
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, 11855, Greece
| | - Emmanouil Flemetakis
- Department of Biotechnology, Agricultural University of Athens, Athens, 11855, Greece
| | - Deborah Mary Power
- Centro de Ciencias Do Mar, Universidade Do Algarve, Campus de Gambelas, 8000-117, Faro, Portugal
| | - Carlo Augusto Bortolotti
- Department of Life Sciences, Università Degli Studi di Modena e Reggio Emilia, Via Campi 103, Modena, 41125, Italy
| | - Fabio Biscarini
- Department of Life Sciences, Università Degli Studi di Modena e Reggio Emilia, Via Campi 103, Modena, 41125, Italy; Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia (CTNSC), Via Fossato di Mortara 17-19, Ferrara, 44121, Italy
| |
Collapse
|
3
|
Song J, Liu H, Zhao Z, Lin P, Yan F. Flexible Organic Transistors for Biosensing: Devices and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300034. [PMID: 36853083 DOI: 10.1002/adma.202300034] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Flexible and stretchable biosensors can offer seamless and conformable biological-electronic interfaces for continuously acquiring high-fidelity signals, permitting numerous emerging applications. Organic thin film transistors (OTFTs) are ideal transducers for flexible and stretchable biosensing due to their soft nature, inherent amplification function, biocompatibility, ease of functionalization, low cost, and device diversity. In consideration of the rapid advances in flexible-OTFT-based biosensors and their broad applications, herein, a timely and comprehensive review is provided. It starts with a detailed introduction to the features of various OTFTs including organic field-effect transistors and organic electrochemical transistors, and the functionalization strategies for biosensing, with a highlight on the seminal work and up-to-date achievements. Then, the applications of flexible-OTFT-based biosensors in wearable, implantable, and portable electronics, as well as neuromorphic biointerfaces are detailed. Subsequently, special attention is paid to emerging stretchable organic transistors including planar and fibrous devices. The routes to impart stretchability, including structural engineering and material engineering, are discussed, and the implementations of stretchable organic transistors in e-skin and smart textiles are included. Finally, the remaining challenges and the future opportunities in this field are summarized.
Collapse
Affiliation(s)
- Jiajun Song
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Hong Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Zeyu Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials and Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Feng Yan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
- Research Institute of Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
4
|
Jiang X, Shi C, Wang Z, Huang L, Chi L. Healthcare Monitoring Sensors Based on Organic Transistors: Surface/Interface Strategy and Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308952. [PMID: 37951211 DOI: 10.1002/adma.202308952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/16/2023] [Indexed: 11/13/2023]
Abstract
Organic transistors possess inherent advantages such as flexibility, biocompatibility, customizable chemical structures, solution-processability, and amplifying capabilities, making them highly promising for portable healthcare sensor applications. Through convenient and diverse modifications at the material and device surfaces or interfaces, organic transistors allow for a wide range of sensor applications spanning from chemical and biological to physical sensing. In this comprehensive review, the surface and interface engineering aspect associated with four types of typical healthcare sensors is focused. The device operation principles and sensing mechanisms are systematically analyzed and highlighted, and particularly surface/interface functionalization strategies that contribute to the enhancement of sensing performance are focused. An outlook and perspective on the critical issues and challenges in the field of healthcare sensing using organic transistors are provided as well.
Collapse
Affiliation(s)
- Xingyu Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Cheng Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Zi Wang
- Suzhou Laboratory, 388 Ruoshui Road, Suzhou, 215123, P. R. China
| | - Lizhen Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
5
|
Sensi M, de Oliveira RF, Berto M, Palmieri M, Ruini E, Livio PA, Conti A, Pinti M, Salvarani C, Cossarizza A, Cabot JM, Ricart J, Casalini S, González-García MB, Fanjul-Bolado P, Bortolotti CA, Samorì P, Biscarini F. Reduced Graphene Oxide Electrolyte-Gated Transistor Immunosensor with Highly Selective Multiparametric Detection of Anti-Drug Antibodies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211352. [PMID: 37435994 DOI: 10.1002/adma.202211352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/13/2023]
Abstract
The advent of immunotherapies with biological drugs has revolutionized the treatment of cancers and auto-immune diseases. However, in some patients, the production of anti-drug antibodies (ADAs) hampers the drug efficacy. The concentration of ADAs is typically in the range of 1-10 pm; hence their immunodetection is challenging. ADAs toward Infliximab (IFX), a drug used to treat rheumatoid arthritis and other auto-immune diseases, are focussed. An ambipolar electrolyte-gated transistor (EGT) immunosensor is reported based on a reduced graphene oxide (rGO) channel and IFX bound to the gate electrode as the specific probe. The rGO-EGTs are easy to fabricate and exhibit low voltage operations (≤ 0.3 V), a robust response within 15 min, and ultra-high sensitivity (10 am limit of detection). A multiparametric analysis of the whole rGO-EGT transfer curves based on the type-I generalized extreme value distribution is proposed. It is demonstrated that it allows to selectively quantify ADAs also in the co-presence of its antagonist tumor necrosis factor alpha (TNF-α), the natural circulating target of IFX.
Collapse
Affiliation(s)
- Matteo Sensi
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, Modena, 41125, Italy
| | - Rafael Furlan de Oliveira
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg, 67000, France
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, 13083-970, Brazil
| | - Marcello Berto
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, Modena, 41125, Italy
| | - Marina Palmieri
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, Modena, 41125, Italy
| | - Emilio Ruini
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, Modena, 41125, Italy
| | - Pietro Antonio Livio
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Andrea Conti
- Dermatology Unit, Surgical, Medical, and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, via del Pozzo 71, Modena, 41125, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, Modena, 41125, Italy
| | - Carlo Salvarani
- Rheumatology Unit, University of Modena and Reggio Emilia, Medical School Azienda Ospedaliero-Universitaria Policlinico di Modena, via del Pozzo 71, Modena, 41125, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Via Campi 287, Modena, 41125, Italy
| | - Joan M Cabot
- Leitat Technology Center, Innovació 2, Barcelona, 08225, Spain
| | - Jordi Ricart
- Leitat Technology Center, Innovació 2, Barcelona, 08225, Spain
| | - Stefano Casalini
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg, 67000, France
- Dipartimento di Scienze Chimiche University of Padova, via Marzolo 1, Padova, 35131, Italy
| | | | - Pablo Fanjul-Bolado
- Metrohm DropSens, S.L. Vivero Ciencias de la Salud, C/Colegio Santo Domingo de Guzmán s/n, Oviedo, 33010, Spain
| | - Carlo Augusto Bortolotti
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, Modena, 41125, Italy
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Fabio Biscarini
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, Modena, 41125, Italy
- Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara 17-19, Ferrara, 44121, Italy
| |
Collapse
|
6
|
Hao R, Liu L, Yuan J, Wu L, Lei S. Recent Advances in Field Effect Transistor Biosensors: Designing Strategies and Applications for Sensitive Assay. BIOSENSORS 2023; 13:bios13040426. [PMID: 37185501 PMCID: PMC10136430 DOI: 10.3390/bios13040426] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 05/17/2023]
Abstract
In comparison with traditional clinical diagnosis methods, field-effect transistor (FET)-based biosensors have the advantages of fast response, easy miniaturization and integration for high-throughput screening, which demonstrates their great technical potential in the biomarker detection platform. This mini review mainly summarizes recent advances in FET biosensors. Firstly, the review gives an overview of the design strategies of biosensors for sensitive assay, including the structures of devices, functionalization methods and semiconductor materials used. Having established this background, the review then focuses on the following aspects: immunoassay based on a single biosensor for disease diagnosis; the efficient integration of FET biosensors into a large-area array, where multiplexing provides valuable insights for high-throughput testing options; and the integration of FET biosensors into microfluidics, which contributes to the rapid development of lab-on-chip (LOC) sensing platforms and the integration of biosensors with other types of sensors for multifunctional applications. Finally, we summarize the long-term prospects for the commercialization of FET sensing systems.
Collapse
Affiliation(s)
- Ruisha Hao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Lei Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Jiangyan Yuan
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Lingli Wu
- Medical College, Northwest Minzu University, Lanzhou 730000, China
| | - Shengbin Lei
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
7
|
Macchia E, Torricelli F, Bollella P, Sarcina L, Tricase A, Di Franco C, Österbacka R, Kovács-Vajna ZM, Scamarcio G, Torsi L. Large-Area Interfaces for Single-Molecule Label-free Bioelectronic Detection. Chem Rev 2022; 122:4636-4699. [PMID: 35077645 DOI: 10.1021/acs.chemrev.1c00290] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioelectronic transducing surfaces that are nanometric in size have been the main route to detect single molecules. Though enabling the study of rarer events, such methodologies are not suited to assay at concentrations below the nanomolar level. Bioelectronic field-effect-transistors with a wide (μm2-mm2) transducing interface are also assumed to be not suited, because the molecule to be detected is orders of magnitude smaller than the transducing surface. Indeed, it is like seeing changes on the surface of a one-kilometer-wide pond when a droplet of water falls on it. However, it is a fact that a number of large-area transistors have been shown to detect at a limit of detection lower than femtomolar; they are also fast and hence innately suitable for point-of-care applications. This review critically discusses key elements, such as sensing materials, FET-structures, and target molecules that can be selectively assayed. The amplification effects enabling extremely sensitive large-area bioelectronic sensing are also addressed.
Collapse
Affiliation(s)
- Eleonora Macchia
- Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Fabrizio Torricelli
- Dipartimento Ingegneria dell'Informazione, Università degli Studi di Brescia, 25123 Brescia, Italy
| | - Paolo Bollella
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy.,Centre for Colloid and Surface Science - Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Lucia Sarcina
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Angelo Tricase
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Cinzia Di Franco
- CNR, Istituto di Fotonica e Nanotecnologie, Sede di Bari, 70125 Bari, Italy
| | - Ronald Österbacka
- Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Zsolt M Kovács-Vajna
- Dipartimento Ingegneria dell'Informazione, Università degli Studi di Brescia, 25123 Brescia, Italy
| | - Gaetano Scamarcio
- CNR, Istituto di Fotonica e Nanotecnologie, Sede di Bari, 70125 Bari, Italy.,Dipartimento Interateneo di Fisica "M. Merlin", Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Luisa Torsi
- Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland.,Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy.,Centre for Colloid and Surface Science - Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| |
Collapse
|
8
|
Halima HB, Errachid A, Jaffrezic‐Renault N. Electrochemical Affinity Sensors Using Field Effect Transducer Devices for Chemical Analysis. ELECTROANAL 2021. [DOI: 10.1002/elan.202100451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hamdi Ben Halima
- University of Lyon Institute of Analytical Sciences 69100 Villeurbanne France
| | - Abdelhamid Errachid
- University of Lyon Institute of Analytical Sciences 69100 Villeurbanne France
| | | |
Collapse
|
9
|
Torricelli F, Adrahtas DZ, Bao Z, Berggren M, Biscarini F, Bonfiglio A, Bortolotti CA, Frisbie CD, Macchia E, Malliaras GG, McCulloch I, Moser M, Nguyen TQ, Owens RM, Salleo A, Spanu A, Torsi L. Electrolyte-gated transistors for enhanced performance bioelectronics. NATURE REVIEWS. METHODS PRIMERS 2021; 1:66. [PMID: 35475166 PMCID: PMC9037952 DOI: 10.1038/s43586-021-00065-8] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 12/31/2022]
Abstract
Electrolyte-gated transistors (EGTs), capable of transducing biological and biochemical inputs into amplified electronic signals and stably operating in aqueous environments, have emerged as fundamental building blocks in bioelectronics. In this Primer, the different EGT architectures are described with the fundamental mechanisms underpinning their functional operation, providing insight into key experiments including necessary data analysis and validation. Several organic and inorganic materials used in the EGT structures and the different fabrication approaches for an optimal experimental design are presented and compared. The functional bio-layers and/or biosystems integrated into or interfaced to EGTs, including self-organization and self-assembly strategies, are reviewed. Relevant and promising applications are discussed, including two-dimensional and three-dimensional cell monitoring, ultra-sensitive biosensors, electrophysiology, synaptic and neuromorphic bio-interfaces, prosthetics and robotics. Advantages, limitations and possible optimizations are also surveyed. Finally, current issues and future directions for further developments and applications are discussed.
Collapse
Affiliation(s)
- Fabrizio Torricelli
- Department of Information Engineering, University of Brescia, Brescia, Italy
| | - Demetra Z. Adrahtas
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Fabio Biscarini
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Annalisa Bonfiglio
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Carlo A. Bortolotti
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - C. Daniel Frisbie
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Eleonora Macchia
- Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - George G. Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Iain McCulloch
- Physical Sciences and Engineering Division, KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Maximilian Moser
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Thuc-Quyen Nguyen
- Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Róisín M. Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Andrea Spanu
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Luisa Torsi
- Department of Chemistry, University of Bari ‘Aldo Moro’, Bari, Italy
| |
Collapse
|
10
|
Burtscher B, Manco Urbina PA, Diacci C, Borghi S, Pinti M, Cossarizza A, Salvarani C, Berggren M, Biscarini F, Simon DT, Bortolotti CA. Sensing Inflammation Biomarkers with Electrolyte-Gated Organic Electronic Transistors. Adv Healthc Mater 2021; 10:e2100955. [PMID: 34423579 PMCID: PMC11469060 DOI: 10.1002/adhm.202100955] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/16/2021] [Indexed: 01/08/2023]
Abstract
An overview of cytokine biosensing is provided, with a focus on the opportunities provided by organic electronic platforms for monitoring these inflammation biomarkers which manifest at ultralow concentration levels in physiopathological conditions. Specifically, two of the field's state-of-the-art technologies-organic electrochemical transistors (OECTs) and electrolyte gated organic field effect transistors (EGOFETs)-and their use in sensing cytokines and other proteins associated with inflammation are a particular focus. The overview will include an introduction to current clinical and "gold standard" quantification techniques and their limitations in terms of cost, time, and required infrastructure. A critical review of recent progress with OECT- and EGOFET-based protein biosensors is presented, alongside a discussion onthe future of these technologies in the years and decades ahead. This is especially timely as the world grapples with limited healthcare diagnostics during the Coronavirus disease (COVID-19)pandemic where one of the worst-case scenarios for patients is the "cytokine storm." Clearly, low-cost point-of-care technologies provided by OECTs and EGOFETs can ease the global burden on healthcare systems and support professionals by providing unprecedented wealth of data that can help to monitor disease progression in real time.
Collapse
Affiliation(s)
- Bernhard Burtscher
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | | | - Chiara Diacci
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Simone Borghi
- Department of Life SciencesUniversity of Modena and Reggio EmiliaVia Campi 103Modena41125Italy
| | - Marcello Pinti
- Department of Life SciencesUniversity of Modena and Reggio EmiliaVia Campi 103Modena41125Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and AdultsUniversity of Modena and Reggio EmiliaVia Campi 287Modena41125Italy
| | - Carlo Salvarani
- Rheumatology UnitUniversity of Modena and Reggio EmiliaMedical SchoolAzienda Ospedaliero‐UniversitariaPoliclinico di ModenaModena41124Italy
| | - Magnus Berggren
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Fabio Biscarini
- Department of Life SciencesUniversity of Modena and Reggio EmiliaVia Campi 103Modena41125Italy
- Center for Translation NeurophysiologyIstituto Italiano di TecnologiaVia Fossato di Mortara 17–19Ferrara44100Italy
| | - Daniel T. Simon
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Carlo A. Bortolotti
- Department of Life SciencesUniversity of Modena and Reggio EmiliaVia Campi 103Modena41125Italy
| |
Collapse
|
11
|
|
12
|
Selvaraj M, Greco P, Sensi M, Saygin GD, Bellassai N, D'Agata R, Spoto G, Biscarini F. Label free detection of miRNA-21 with electrolyte gated organic field effect transistors (EGOFETs). Biosens Bioelectron 2021; 182:113144. [PMID: 33799026 DOI: 10.1016/j.bios.2021.113144] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/16/2021] [Accepted: 03/02/2021] [Indexed: 10/21/2022]
Abstract
We report a dual gate/common channel organic transistor architecture designed for quantifying the concentration of one of the strands of miRNA-21 in solution. The device allows one to measure the differential response between two gate electrodes, viz. one sensing and one reference, both immersed in the electrolyte above the transistor channel. Hybridization with oligonucleotide in the picomolar regime induces a sizable reduction of the current flowing through the transistor channel. The device signal is reported at various gate voltages, showing maximum sensitivity in the sublinear regime, with a limit of detection as low as 35 pM. We describe the dose curves with an analytical function derived from a thermodynamic model of the reaction equilibria relevant in our experiment and device configuration, and we show that the apparent Hill dependence on analyte concentration, whose exponent lies between 0.5 and 1, emerges from the interplay of the different equilibria. The binding free energy characteristic of the hybridization on the device surface is found to be approximately 20% lower with respect to the reaction in solution, hinting to partially inhibiting effect of the surface and presence of competing reactions. Impedance spectroscopy and surface plasmon resonance (SPR) performed on the same oligonucleotide pair were correlated to the electronic current transduced by the EGOFET, and confirmed the selectivity of the biorecognition probe covalently bound on the gold surface.
Collapse
Affiliation(s)
- Meenu Selvaraj
- Scriba Nanotecnologie s.r.l., Via di Corticella 183/8, I-40128, Bologna, Italy; Department of Chemical Sciences, Università degli Studi di Catania, Viale Andrea Doria 6, I-95125, Catania, Italy
| | - Pierpaolo Greco
- Department of Life Sciences, Università, Degli Studi di Modena e Reggio Emilia, Via Campi 103, I-41125, Modena, Italy.
| | - Matteo Sensi
- Department of Life Sciences, Università, Degli Studi di Modena e Reggio Emilia, Via Campi 103, I-41125, Modena, Italy
| | - Gulseren Deniz Saygin
- Scriba Nanotecnologie s.r.l., Via di Corticella 183/8, I-40128, Bologna, Italy; Department of Physics, Informatics and Mathematics, Università, Degli Studi di Modena e Reggio Emilia, Via Campi 103, I-41125, Modena, Italy
| | - Noemi Bellassai
- Department of Chemical Sciences, Università degli Studi di Catania, Viale Andrea Doria 6, I-95125, Catania, Italy
| | - Roberta D'Agata
- Department of Chemical Sciences, Università degli Studi di Catania, Viale Andrea Doria 6, I-95125, Catania, Italy
| | - Giuseppe Spoto
- Department of Chemical Sciences, Università degli Studi di Catania, Viale Andrea Doria 6, I-95125, Catania, Italy
| | - Fabio Biscarini
- Department of Life Sciences, Università, Degli Studi di Modena e Reggio Emilia, Via Campi 103, I-41125, Modena, Italy; Center for Translational Neurophysiology - Istituto Italiano di Tecnologia, Via Fossato di Mortara 17-19, I-44100, Ferrara, Italy
| |
Collapse
|