1
|
Pe J, Choi B, Choi H, Kwon SW, Kim DH. Preclinical Therapeutic Evaluation of Lenvatinib-Eluting Microspheres for Transcatheter Arterial Chemoembolization of Hepatocellular Carcinoma. Cardiovasc Intervent Radiol 2022; 45:1834-1841. [PMID: 35962212 PMCID: PMC10578029 DOI: 10.1007/s00270-022-03242-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 07/27/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE To evaluate the preclinical in vivo therapeutic response of Lenvatinib-eluting microspheres (LEN-EM) transcatheter arterial chemoembolization (LEN-TACE) in an hepatocellular carcinoma (HCC) rat model. METHODS Magnetic resonance imaging (MRI) visible LEN-EM was fabricated with poly(lactide-co-glycolide) and iron oxide nanoparticles by a double-emulsion method. The morphology, LEN loading/release kinetics, and MRI contrast effect of LEN-EM were evaluated. For in vivo study, N1S1 HCC rats were treated with LEN-TACE (LEN: 2.4 mg/kg, n = 5) using LEN-EM, systemic LEN (LEN: 0.4 mg/kg, oral gavage daily for 7 days, n = 5), control (intra-arterial (IA) saline infusion, n = 5), and non-tumor control (n = 3). Tumor size changes were measured for 2 weeks. Histology, comparative LEN plasma concentration, hematologic markers, liver profile, and serum chemistry among the groups were measured. RESULTS LEN-EM with 33 µm in average size was prepared in an optimized emulsion process. LEN loading efficiency was 58.7%. LEN was continuously released for 500 h. LEN-TACE showed the delivered LEN-EM surrounding tumor tissue in MRI-T2* images. The LEN-TACE group demonstrated a statistically significant larger tumor volume reduction compared to the other groups at 2 weeks post-procedure. Quantification data of Terminal deoxynucleotidyl transferase dUTP nick end labeling positive cells confirmed increased cancer cell death in the LEN-TACE group compared to control groups. Additional histology, hematologic markers, and liver profiles showed minimal side effects of LEN-TACE. CONCLUSION LEN-TACE using IA delivery of LEN-EM demonstrated an effective therapeutic efficacy in an HCC rat animal model.
Collapse
Affiliation(s)
- Jason Pe
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Bongseo Choi
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hyunjun Choi
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Soon Woo Kwon
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
2
|
Yuan S, Wang J, Xiang Y, Zheng S, Wu Y, Liu J, Zhu X, Zhang Y. Shedding Light on Luminescent Janus Nanoparticles: From Synthesis to Photoluminescence and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200020. [PMID: 35429137 DOI: 10.1002/smll.202200020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Luminescent Janus nanoparticles refer to a special category of Janus-based nanomaterials that not only exhibit dual-asymmetric surface nature but also attractive optical properties. The introduction of luminescence has endowed conventional Janus nanoparticles with many alluring light-responsive functionalities and broadens their applications in imaging, sensing, nanomotors, photo-based therapy, etc. The past few decades have witnessed significant achievements in this field. This review first summarizes well-established strategies to design and prepare luminescent Janus nanoparticles and then discusses optical properties of luminescent Janus nanoparticles based on downconversion and upconversion photoluminescence mechanisms. Various emerging applications of luminescent Janus nanoparticles are also introduced. Finally, opportunities and future challenges are highlighted with respect to the development of next-generation luminescent Janus nanoparticles with diverse applications.
Collapse
Affiliation(s)
- Shanshan Yuan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jing Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yi Xiang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Shanshan Zheng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yihan Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jinliang Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xiaohui Zhu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yong Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583, Singapore
| |
Collapse
|
3
|
Sim T, Choi B, Kwon SW, Kim KS, Choi H, Ross A, Kim DH. Magneto-Activation and Magnetic Resonance Imaging of Natural Killer Cells Labeled with Magnetic Nanocomplexes for the Treatment of Solid Tumors. ACS NANO 2021; 15:12780-12793. [PMID: 34165964 DOI: 10.1021/acsnano.1c01889] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Natural killer (NK) cell-based immunotherapy has been considered a promising cell-based cancer treatment strategy with low side effects for early tumors and metastasis. However, the therapeutic efficacy is generally low in established solid tumors. Ex vivo activation of NK cells with exogenous cytokines is often essential but ineffective to generate high doses of functional NK cells for cancer treatment. Image-guided local delivery of NK cells is also suggested for the therapy. However, there is a lack of noninvasive tools for monitoring NK cells. Herein, magnetic nanocomplexes are fabricated with clinically available materials (hyaluronic acid, protamine, and ferumoxytol; HAPF) for labeling NK cells. The prepared HAPF-nanocomplexes effectively attach to the NK cells (HAPF-NK). An exogenous magnetic field application effectively achieves magneto-activation of NK cells, promoting the generation and secretion of lytic granules of NK cells. The magneto-activated HAPF-NK cells also allow an MR image-guided NK cell therapy to treat hepatocellular carcinoma (HCC) solid tumors via transcatheter intra-arterial infusion. Suppressed tumor growth after the treatment of IA infused magneto-activated NK cells demonstrated a potential enhanced therapeutic efficacy of image guided local delivery of magneto-activated HAPF-NK cells. Given the potential challenges of NK cell cancer immunotherapy against established solid tumors, the effective NK cell labeling with HAPF, magneto-activation, and MRI contrast effect of NK cells will be beneficial to enhance the NK cell-therapeutic efficacy in various cancers.
Collapse
Affiliation(s)
- Taehoon Sim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Bongseo Choi
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Soon Woo Kwon
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Kwang-Soo Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Hyunjun Choi
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Alexander Ross
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois 60611, United States
| |
Collapse
|
4
|
Park W, Kim SJ, Cheresh P, Yun J, Lee B, Kamp DW, Kim DH. Magneto mitochondrial dysfunction mediated cancer cell death using intracellular magnetic nano-transducers. Biomater Sci 2021; 9:5497-5507. [PMID: 34075946 DOI: 10.1039/d1bm00419k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria are crucial regulators of the intrinsic pathway of cancer cell death. The high sensitivity of cancer cells to mitochondrial dysfunction offers opportunities for emerging targets in cancer therapy. Herein, magnetic nano-transducers, which convert external magnetic fields into physical stress, are designed to induce mitochondrial dysfunction to remotely kill cancer cells. Spindle-shaped iron oxide nanoparticles were synthesized to maximize cellular internalization and magnetic transduction. The magneto-mechanical transduction of nano-transducers in mitochondria enhances cancer cell apoptosis by promoting a mitochondrial quality control mechanism, referred to as mitophagy. In the liver cancer animal model, nano-transducers are infused into the local liver tumor via the hepatic artery. After treatment with a magnetic field, in vivo mitophagy-mediated cancer cell death was also confirmed by mitophagy markers, mitochondrial DNA damage assay, and TUNEL staining of tissues. This study is expected to contribute to the development of nanoparticle-mediated mitochondria-targeting cancer therapy and biological tools, such as magneto-genetics.
Collapse
Affiliation(s)
- Wooram Park
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA. and Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon, Gyeonggi 14662, Republic of Korea
| | - Seok-Jo Kim
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Jesse Brown VA Medical Center, Chicago, Illinois 60612, USA and Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA and Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Paul Cheresh
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Jesse Brown VA Medical Center, Chicago, Illinois 60612, USA and Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Jeanho Yun
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Republic of Korea
| | - Byeongdu Lee
- X-Ray Science Division, Argonne National Laboratory, Argonne, IL, 60439 USA
| | - David W Kamp
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Jesse Brown VA Medical Center, Chicago, Illinois 60612, USA and Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA. and Department of Biomedical Engineering, McCormick School of Engineering, Evanston, IL 60208, USA and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
5
|
Zhang X, Fu Q, Duan H, Song J, Yang H. Janus Nanoparticles: From Fabrication to (Bio)Applications. ACS NANO 2021; 15:6147-6191. [PMID: 33739822 DOI: 10.1021/acsnano.1c01146] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Janus nanoparticles (JNPs) refer to the integration of two or more chemically discrepant composites into one structure system. Studies into JNPs have been of significant interest due to their interesting characteristics stemming from their asymmetric structures, which can integrate different functional properties and perform more synergetic functions simultaneously. Herein, we present recent progress of Janus particles, comprehensively detailing fabrication strategies and applications. First, the classification of JNPs is divided into three blocks, consisting of polymeric composites, inorganic composites, and hybrid polymeric/inorganic JNPs composites. Then, the fabrication strategies are alternately summarized, examining self-assembly strategy, phase separation strategy, seed-mediated polymerization, microfluidic preparation strategy, nucleation growth methods, and masking methods. Finally, various intriguing applications of JNPs are presented, including solid surfactants agents, micro/nanomotors, and biomedical applications such as biosensing, controlled drug delivery, bioimaging, cancer therapy, and combined theranostics. Furthermore, challenges and future works in this field are provided.
Collapse
Affiliation(s)
- Xuan Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Qinrui Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| |
Collapse
|
6
|
Wei R, Xu Y, Xue M. Hollow iron oxide nanomaterials: synthesis, functionalization, and biomedical applications. J Mater Chem B 2021; 9:1965-1979. [PMID: 33595050 DOI: 10.1039/d0tb02858d] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hollow iron oxide nanoparticles (NPs) are an attractive class of hollow nanostructures that have received significant attention in the biomedical field due to their low toxicity, good biocompatibility, and intrinsic magnetic nature. We review the recent advances in the preparation, surface functionalization, and biomedical applications of hollow iron oxide NPs. Hollow iron oxide NPs are generally synthesized by the following five strategies, including the Kirkendall effect, galvanic replacement, chemical etching, nano template-mediated, and hydrothermal/solvothermal routes. We also summarize the general strategies for iron oxide NP surface functionalization. Moreover, various promising biomedical applications of hollow iron oxide NPs, including magnetic resonance imaging, drug delivery, and cancer therapy, are highlighted in detail. Finally, perspectives of hollow iron oxide NPs are provided.
Collapse
Affiliation(s)
- Ruixue Wei
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| | - Youzhi Xu
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| |
Collapse
|
7
|
Yu B, Zhang W, Kwak K, Choi H, Kim DH. Electric Pulse Responsive Magnetic Nanoclusters Loaded with Indoleamine 2,3-Dioxygenase Inhibitor for Synergistic Immuno-Ablation Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54415-54425. [PMID: 33237729 DOI: 10.1021/acsami.0c15679] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
An overlay of local ablation and immunotherapies could be one of the promising approaches to treat solid tumors, but finding the synergistic combination is still challenging with immune tolerance. Herein, electric pulse responsive iron-oxide-nanocube clusters (IONCs) loaded with indoleamine 2,3-dioxygenase inhibitors (IDOi) are prepared for the enhancement of irreversible electroporation (IRE) cell killing and modulation of the tumor immunosuppressive microenvironment (TIM). IDOi-loaded-IONCs (IDOi-IONCs) show highly responsive movement upon the application of IRE electric pulses inducing local magnetic fields. In vitro and in vivo IRE cell-killing efficiency are significantly enhanced by the IDOi-IONCs. The IRE with IDOi-IONCs also triggers IDOi release from IONCs for TIM modulation. The enhanced cell death and local IDOi release of the IRE with IDOi-IONCs demonstrate a synergistic anticancer effect in vivo with overturning the TIM. The increased infiltration of CD8+ T cells and the elevated ratio of CD8+ T cells to regulatory T cells are confirmed after the IRE with IDOi-IONCs. Further, synergistic interaction between IRE and IDOi-modulated TIM resulted in enhanced elimination of primary and secondary tumors. This proof-of-concept work illustrates a robust modality to guide immune-modulating nanoparticle-mediated immuno-ablation cancer therapies that can be easily tailored to improve its therapeutic outcome.
Collapse
Affiliation(s)
- Bo Yu
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Wentao Zhang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Evanston, Illinois 60208, United States
| | - Kijung Kwak
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Evanston, Illinois 60208, United States
| | - Hyunjun Choi
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois 60611, United States
| |
Collapse
|