1
|
Soria-Castro SM, Politano F, Raston CL, Oksdath-Mansilla G. Spinning Reactors for Process Intensification of Flow Photochemistry. Chempluschem 2024; 89:e202300784. [PMID: 38373019 DOI: 10.1002/cplu.202300784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
The design of new and more sustainable synthetic protocols to access new materials or valuable compounds will have a high impact on the broader chemistry community. In this sense, continuous-flow photochemistry has emerged as a powerful technique which has been employed successfully in various areas such as biopharma, organic chemistry, as well as materials science. However, it is important to note that chemical processes must not only advance towards new or improved chemical transformations, but also implement new technologies that enable new process opportunities. For this reason, the design of novel photoreactors is key to advancing photochemical strategies. In this sense, the use of equipment and techniques embracing processes intensification is important in developing more sustainable protocols. Among the most recent applications, spinning continuous flow reactors, such as rotor reactors or vortex reactors, have shown promising performance as new synthetic tools. Nevertheless, there is currently no review in the literature that effectively summarizes and showcases the most recent applications of such type of photoreactors. Herein, we highlight fundamental aspects and applications of two categories of spinning reactors, the Spinning Disc Reactors (SDRs) and Thin Film Vortex reactors, critiquing the scope and limitations of these advanced processing technologies. Further, we take a view on the future of spinning reactors in flow as a synthetic toolbox to explore new photochemical transformations.
Collapse
Affiliation(s)
- Silvia M Soria-Castro
- INFIQC-CONICET-UNC, Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Fabrizio Politano
- INFIQC-CONICET-UNC, Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Colin L Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Gabriela Oksdath-Mansilla
- INFIQC-CONICET-UNC, Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| |
Collapse
|
2
|
Laporte AAH, Masson TM, Zondag SDA, Noël T. Multiphasic Continuous-Flow Reactors for Handling Gaseous Reagents in Organic Synthesis: Enhancing Efficiency and Safety in Chemical Processes. Angew Chem Int Ed Engl 2024; 63:e202316108. [PMID: 38095968 DOI: 10.1002/anie.202316108] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Indexed: 12/29/2023]
Abstract
The use of reactive gaseous reagents for the production of active pharmaceutical ingredients (APIs) remains a scientific challenge due to safety and efficiency limitations. The implementation of continuous-flow reactors has resulted in rapid development of gas-handling technology because of several advantages such as increased interfacial area, improved mass- and heat transfer, and seamless scale-up. This technology enables shorter and more atom-economic synthesis routes for the production of pharmaceutical compounds. Herein, we provide an overview of literature from 2016 onwards in the development of gas-handling continuous-flow technology as well as the use of gases in functionalization of APIs.
Collapse
Affiliation(s)
- Annechien A H Laporte
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Tom M Masson
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Stefan D A Zondag
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Timothy Noël
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Joseph N, Mirzamani M, Abudiyah T, Al-Antaki AHM, Jellicoe M, Harvey DP, Crawley E, Chuah C, Whitten AE, Gilbert EP, Qian S, He L, Michael MZ, Kumari H, Raston CL. Vortex fluidic regulated phospholipid equilibria involving liposomes down to sub-micelle size assemblies. NANOSCALE ADVANCES 2024; 6:1202-1212. [PMID: 38356632 PMCID: PMC10863723 DOI: 10.1039/d3na01080e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
Conventional channel-based microfluidic platforms have gained prominence in controlling the bottom-up formation of phospholipid based nanostructures including liposomes. However, there are challenges in the production of liposomes from rapidly scalable processes. These have been overcome using a vortex fluidic device (VFD), which is a thin film microfluidic platform rather than channel-based, affording ∼110 nm diameter liposomes. The high yielding and high throughput continuous flow process has a 45° tilted rapidly rotating glass tube with an inner hydrophobic surface. Processing is also possible in the confined mode of operation which is effective for labelling pre-VFD-prepared liposomes with fluorophore tags for subsequent mechanistic studies on the fate of liposomes under shear stress in the VFD. In situ small-angle neutron scattering (SANS) established the co-existence of liposomes ∼110 nm with small rafts, micelles, distorted micelles, or sub-micelle size assemblies of phospholipid, for increasing rotation speeds. The equilibria between these smaller entities and ∼110 nm liposomes for a specific rotational speed of the tube is consistent with the spatial arrangement and dimensionality of topological fluid flow regimes in the VFD. The prevalence for the formation of ∼110 nm diameter liposomes establishes that this is typically the most stable structure from the bottom-up self-assembly of the phospholipid and is in accord with dimensions of exosomes.
Collapse
Affiliation(s)
- Nikita Joseph
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Marzieh Mirzamani
- James L. Winkle College of Pharmacy, University of Cincinnati Cincinnati OH 45267-0004 USA
| | - Tarfah Abudiyah
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Ahmed Hussein Mohammed Al-Antaki
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
- Department of Chemistry, Faculty of Science, University of Kufa Najaf 54001 Iraq
| | - Matt Jellicoe
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - David P Harvey
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Emily Crawley
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Clarence Chuah
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Andrew E Whitten
- Australian Nuclear Science and Technology Organisation (ANSTO) Lucas Heights NSW 2234 Australia
| | - Elliot Paul Gilbert
- Australian Nuclear Science and Technology Organisation (ANSTO) Lucas Heights NSW 2234 Australia
| | - Shuo Qian
- The Second Target Station Project of SNS, Oak Ridge National Laboratory Oak Ridge TN 37830 USA
| | - Lilin He
- Neutron Scattering Division, Oak Ridge National Laboratory Oak Ridge TN 37830 USA
| | - Michael Z Michael
- Flinders Centre for Innovation in Cancer (FCIC), Flinders Medical Centre (FMC) Bedford Park SA 5042 Australia
| | - Harshita Kumari
- James L. Winkle College of Pharmacy, University of Cincinnati Cincinnati OH 45267-0004 USA
| | - Colin L Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| |
Collapse
|
4
|
Jellicoe M, Igder A, Chuah C, Jones DB, Luo X, Stubbs KA, Crawley EM, Pye SJ, Joseph N, Vimalananthan K, Gardner Z, Harvey DP, Chen X, Salvemini F, He S, Zhang W, Chalker JM, Quinton JS, Tang Y, Raston CL. Vortex fluidic induced mass transfer across immiscible phases. Chem Sci 2022; 13:3375-3385. [PMID: 35432865 PMCID: PMC8943860 DOI: 10.1039/d1sc05829k] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/30/2022] [Indexed: 12/03/2022] Open
Abstract
Mixing immiscible liquids typically requires the use of auxiliary substances including phase transfer catalysts, microgels, surfactants, complex polymers and nano-particles and/or micromixers. Centrifugally separated immiscible liquids of different densities in a 45° tilted rotating tube offer scope for avoiding their use. Micron to submicron size topological flow regimes in the thin films induce high inter-phase mass transfer depending on the nature of the two liquids. A hemispherical base tube creates a Coriolis force as a 'spinning top' (ST) topological fluid flow in the less dense liquid which penetrates the denser layer of liquid, delivering liquid from the upper layer through the lower layer to the surface of the tube with the thickness of the layers determined using neutron imaging. Similarly, double helical (DH) topological flow in the less dense liquid, arising from Faraday wave eddy currents twisted by Coriolis forces, impact through the less dense liquid onto the surface of the tube. The lateral dimensions of these topological flows have been determined using 'molecular drilling' impacting on a thin layer of polysulfone on the surface of the tube and self-assembly of nanoparticles at the interface of the two liquids. At high rotation speeds, DH flow also occurs in the denser layer, with a critical rotational speed reached resulting in rapid phase demixing of preformed emulsions of two immiscible liquids. ST flow is perturbed relative to double helical flow by changing the shape of the base of the tube while maintaining high mass transfer between phases as demonstrated by circumventing the need for phase transfer catalysts. The findings presented here have implications for overcoming mass transfer limitations at interfaces of liquids, and provide new methods for extractions and separation science, and avoiding the formation of emulsions.
Collapse
Affiliation(s)
- Matt Jellicoe
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Aghil Igder
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Clarence Chuah
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Darryl B Jones
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Xuan Luo
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Keith A Stubbs
- School of Molecular Sciences, The University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia
| | - Emily M Crawley
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Scott J Pye
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Nikita Joseph
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Kasturi Vimalananthan
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Zoe Gardner
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - David P Harvey
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Xianjue Chen
- School of Environmental and Life Sciences, The University of Newcastle Callaghan New South Wales 2308 Australia
| | - Filomena Salvemini
- Australian Nuclear Science and Technology Organization New Illawara Road, Lucas Heights NSW Australia
| | - Shan He
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
- Department of Food Science and Engineering, School of Chemistry Chemical Engineering, Guangzhou University Guangzhou 510006 China
| | - Wei Zhang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University Adelaide SA 5042 Australia
| | - Justin M Chalker
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Jamie S Quinton
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
- Flinders Microscopy and Microanalysis (FMMA), College of Science and Engineering, Flinders University GPO Box 2100 Adelaide South Australia 5001 Australia
| | - Youhong Tang
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Colin L Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| |
Collapse
|
5
|
Zhang C. Synthesis of trifluoromethyl or trifluoroacetyl substituted heterocyclic compounds from trifluoromethyl‐α,β‐ynones. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202100544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Cai Zhang
- Department of Safety Supervision and Management Chongqing Vocational Institute of Safety Technology Chongqing People's Republic of China
| |
Collapse
|