1
|
Rehman Z, Lubay J, Franks WT, Bartók AP, Corlett EK, Nguyen B, Scrivens G, Samas BM, Frericks-Schmidt H, Brown SP. Organic NMR crystallography: enabling progress for applications to pharmaceuticals and plant cell walls. Faraday Discuss 2025; 255:222-243. [PMID: 39600178 PMCID: PMC11599944 DOI: 10.1039/d4fd00088a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/17/2024] [Indexed: 11/29/2024]
Abstract
The application of NMR crystallography to organic molecules is exemplified by two case studies. For the tosylate salt of the active pharmaceutical ingredient, Ritlectinib, solid-state NMR spectra are presented at a 1H Larmor frequency of 1 GHz and a magic-angle spinning (MAS) frequency of 60 kHz. Specifically, 14N-1H heteronuclear multiple-quantum coherence (HMQC) and 1H-1H double-quantum (DQ) single-quantum (SQ) correlation experiments are powerful probes of hydrogen bonding interactions. A full assignment of the 1H, 13C and 14N/15N chemical shifts is achieved using also 1H-13C cross polarization (CP) HETCOR spectra together with gauge-including projector augmented wave (GIPAW) DFT calculation for the geometry-optimised X-ray diffraction crystal structure that is reported here (CCDC 2352028). In addition, GIPAW calculations are presented for the 13C chemical shifts in the two polymorphs of cellulose for which diffraction structures are available. For both case studies, a focus is on the discrepancy between experiment and GIPAW calculation.
Collapse
Affiliation(s)
- Zainab Rehman
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK.
| | - Jairah Lubay
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK.
| | - W Trent Franks
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK.
| | - Albert P Bartók
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK.
- Warwick Centre for Predictive Modelling, School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
| | | | | | | | | | | | - Steven P Brown
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
2
|
Tatman BP, Franks WT, Brown SP, Lewandowski JR. Nuclear spin diffusion under fast magic-angle spinning in solid-state NMR. J Chem Phys 2023; 158:2890210. [PMID: 37171196 DOI: 10.1063/5.0142201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
Solid-state nuclear spin diffusion is the coherent and reversible process through which spin order is transferred via dipolar couplings. With the recent increases in magic-angle spinning (MAS) frequencies and magnetic fields becoming routinely applied in solid-state nuclear magnetic resonance, understanding how the increased 1H resolution obtained affects spin diffusion is necessary for interpretation of several common experiments. To investigate the coherent contributions to spin diffusion with fast MAS, we have developed a low-order correlation in Liouville space model based on the work of Dumez et al. (J. Chem. Phys. 33, 224501, 2010). Specifically, we introduce a new method for basis set selection, which accounts for the resonance-offset dependence at fast MAS. Furthermore, we consider the necessity of including chemical shift, both isotropic and anisotropic, in the modeling of spin diffusion. Using this model, we explore how different experimental factors change the nature of spin diffusion. Then, we show case studies to exemplify the issues that arise in using spin diffusion techniques at fast spinning. We show that the efficiency of polarization transfer via spin diffusion occurring within a deuterated and 100% back-exchanged protein sample at 60 kHz MAS is almost entirely dependent on resonance offset. We additionally identify temperature-dependent magnetization transfer in beta-aspartyl L-alanine, which could be explained by the influence of an incoherent relaxation-based nuclear Overhauser effect.
Collapse
Affiliation(s)
- Ben P Tatman
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - W Trent Franks
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Steven P Brown
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Józef R Lewandowski
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
3
|
Szell PMJ, Rehman Z, Tatman BP, Hughes LP, Blade H, Brown SP. Exploring the Potential of Multinuclear Solid-State 1 H, 13 C, and 35 Cl Magnetic Resonance To Characterize Static and Dynamic Disorder in Pharmaceutical Hydrochlorides. Chemphyschem 2023; 24:e202200558. [PMID: 36195553 PMCID: PMC10099218 DOI: 10.1002/cphc.202200558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/30/2022] [Indexed: 02/04/2023]
Abstract
Crystallographic disorder, whether static or dynamic, can be detrimental to the physical and chemical stability, ease of crystallization and dissolution rate of an active pharmaceutical ingredient. Disorder can result in a loss of manufacturing control leading to batch-to-batch variability and can lengthen the process of structural characterization. The range of NMR active nuclei makes solid-state NMR a unique technique for gaining nucleus-specific information about crystallographic disorder. Here, we explore the use of high-field 35 Cl solid-state NMR at 23.5 T to characterize both static and dynamic crystallographic disorder: specifically, dynamic disorder occurring in duloxetine hydrochloride (1), static disorder in promethazine hydrochloride (2), and trifluoperazine dihydrochloride (3). In all structures, the presence of crystallographic disorder was confirmed by 13 C cross-polarization magic-angle spinning (CPMAS) NMR and supported by GIPAW-DFT calculations, and in the case of 3, 1 H solid-state NMR provided additional confirmation. Applying 35 Cl solid-state NMR to these compounds, we show that higher magnetic fields are beneficial for resolving the crystallographic disorder in 1 and 3, while broad spectral features were observed in 2 even at higher fields. Combining the data obtained from 1 H, 13 C, and 35 Cl NMR, we show that 3 exhibits a unique case of disorder involving the + N-H hydrogen positions of the piperazinium ring, driving the chloride anions to occupy three distinct sites.
Collapse
Affiliation(s)
| | - Zainab Rehman
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - Ben P Tatman
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - Leslie P Hughes
- Oral Product Development Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, SK10 2NA, UK
| | - Helen Blade
- Oral Product Development Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, SK10 2NA, UK
| | - Steven P Brown
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
4
|
Juramy M, Mollica G. Recent Progress in Nuclear Magnetic Resonance Strategies for Time-Resolved Atomic-Level Investigation of Crystallization from Solution. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Al-Ani A, Szell PMJ, Rehman Z, Blade H, Wheatcroft HP, Hughes LP, Brown SP, Wilson CC. Combining X-ray and NMR Crystallography to Explore the Crystallographic Disorder in Salbutamol Oxalate. CRYSTAL GROWTH & DESIGN 2022; 22:4696-4707. [PMID: 35971412 PMCID: PMC9374327 DOI: 10.1021/acs.cgd.1c01093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Salbutamol is an active pharmaceutical ingredient commonly used to treat respiratory distress and is listed by the World Health Organization as an essential medicine. Here, we establish the crystal structure of its oxalate form, salbutamol oxalate, and explore the nature of its crystallographic disorder by combined X-ray crystallography and 13C cross-polarization (CP) magic-angle spinning (MAS) solid-state NMR. The *C-OH chiral center of salbutamol (note that the crystal structures are a racemic mixture of the two enantiomers of salbutamol) is disordered over two positions, and the tert-butyl group is rotating rapidly, as revealed by 13C solid-state NMR. The impact of crystallization conditions on the disorder was investigated, finding variations in the occupancy ratio of the *C-OH chiral center between single crystals and a consistency across samples in the bulk powder. Overall, this work highlights the contrast between investigating crystallographic disorder by X-ray diffraction and solid-state NMR experiment, and gauge-including projector-augmented-wave (GIPAW) density functional theory (DFT) calculations, with their combined use, yielding an improved understanding of the nature of the crystallographic disorder between the local (i.e., as viewed by NMR) and longer-range periodic (i.e., as viewed by diffraction) scale.
Collapse
Affiliation(s)
- Aneesa
J. Al-Ani
- Centre
for Sustainable and Circular Technologies (CSCT), University of Bath, Claverton Down, Bath BA2
7AY, U.K.
| | | | - Zainab Rehman
- Department
of Physics, University of Warwick, Coventry CV4 7AL, U.K.
| | - Helen Blade
- Oral
Product Development, Pharmaceutical Technology & Development,
Operations, AstraZeneca, Macclesfield SK10 2NA, U.K.
| | - Helen P. Wheatcroft
- Chemical
Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K.
| | - Leslie P. Hughes
- Oral
Product Development, Pharmaceutical Technology & Development,
Operations, AstraZeneca, Macclesfield SK10 2NA, U.K.
| | - Steven P. Brown
- Department
of Physics, University of Warwick, Coventry CV4 7AL, U.K.
| | - Chick C. Wilson
- Centre
for Sustainable and Circular Technologies (CSCT), University of Bath, Claverton Down, Bath BA2
7AY, U.K.
| |
Collapse
|
6
|
Szell PMJ, Nilsson Lill SO, Blade H, Brown SP, Hughes LP. A toolbox for improving the workflow of NMR crystallography. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2021; 116:101761. [PMID: 34736104 DOI: 10.1016/j.ssnmr.2021.101761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
NMR crystallography is a powerful tool with applications in structural characterization and crystal structure verification, to name two. However, applying this tool presents several challenges, especially for industrial users, in terms of consistency, workflow, time consumption, and the requirement for a high level of understanding of experimental solid-state NMR and GIPAW-DFT calculations. Here, we have developed a series of fully parameterized scripts for use in Materials Studio and TopSpin, based on the .magres file format, with a focus on organic molecules (e.g. pharmaceuticals), improving efficiency, robustness, and workflow. We separate these tools into three major categories: performing the DFT calculations, extracting & visualizing the results, and crystallographic modelling. These scripts will rapidly submit fully parameterized CASTEP jobs, extract data from the calculations, assist in visualizing the results, and expedite the process of structural modelling. Accompanied with these tools is a description on their functionality, documentation on how to get started and use the scripts, and links to video tutorials for guiding new users. Through the use of these tools, we hope to facilitate NMR crystallography and to harmonize the process across users.
Collapse
Affiliation(s)
| | - Sten O Nilsson Lill
- Early Product Development and Manufacturing, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Helen Blade
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Steven P Brown
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK.
| | - Leslie P Hughes
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK.
| |
Collapse
|
7
|
Pawlak T, Sudgen I, Bujacz G, Iuga D, Brown SP, Potrzebowski MJ. Synergy of Solid-State NMR, Single-Crystal X-ray Diffraction, and Crystal Structure Prediction Methods: A Case Study of Teriflunomide (TFM). CRYSTAL GROWTH & DESIGN 2021; 21:3328-3343. [PMID: 34267599 PMCID: PMC8273857 DOI: 10.1021/acs.cgd.1c00123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/27/2021] [Indexed: 06/13/2023]
Abstract
In this work, for the first time, we present the X-ray diffraction crystal structure and spectral properties of a new, room-temperature polymorph of teriflunomide (TFM), CSD code 1969989. As revealed by DSC, the low-temperature TFM polymorph recently reported by Gunnam et al. undergoes a reversible thermal transition at -40 °C. This reversible process is related to a change in Z' value, from 2 to 1, as observed by variable-temperature 1H-13C cross-polarization (CP) magic-angle spinning (MAS) solid-state NMR, while the crystallographic system is preserved (triclinic). Two-dimensional 13C-1H and 1H-1H double-quantum MAS NMR spectra are consistent with the new room-temperature structure, including comparison with GIPAW (gauge-including projector augmented waves) calculated NMR chemical shifts. A crystal structure prediction procedure found both experimental teriflunomide polymorphs in the energetic global minimum region. Differences between the polymorphs are seen for the torsional angle describing the orientation of the phenyl ring relative to the planarity of the TFM molecule. In the low-temperature structure, there are two torsion angles of 4.5 and 31.9° for the two Z' = 2 molecules, while in the room-temperature structure, there is disorder that is modeled with ∼50% occupancy between torsion angles of -7.8 and 28.6°. These observations are consistent with a broad energy minimum as revealed by DFT calculations. PISEMA solid-state NMR experiments show a reduction in the C-H dipolar coupling in comparison to the static limit for the aromatic CH moieties of 75% and 51% at 20 and 40 °C, respectively, that is indicative of ring flips at the higher temperature. Our study shows the power of combining experiments, namely DSC, X-ray diffraction, and MAS NMR, with DFT calculations and CSP to probe and understand the solid-state landscape, and in particular the role of dynamics, for pharmaceutical molecules.
Collapse
Affiliation(s)
- Tomasz Pawlak
- Centre
of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Isaac Sudgen
- Molecular
Systems Engineering Group, Centre for Process Systems Engineering,
Department of Chemical Engineering, Imperial
College London, London SW7 2AZ, U.K.
| | - Grzegorz Bujacz
- Institute
of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 4/10, 90-924, Lodz, Poland
| | - Dinu Iuga
- Department
of Physics, University of Warwick, Coventry CV4 7AL, U.K.
| | - Steven P. Brown
- Department
of Physics, University of Warwick, Coventry CV4 7AL, U.K.
| | - Marek J. Potrzebowski
- Centre
of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
8
|
Szell PMJ, Lewandowski JR, Blade H, Hughes LP, Nilsson Lill SO, Brown SP. Taming the dynamics in a pharmaceutical by cocrystallization: investigating the impact of the coformer by solid-state NMR. CrystEngComm 2021. [DOI: 10.1039/d1ce01084k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The anti-HIV pharmaceutical efavirenz is highly dynamic in its crystalline state, and we show that these dynamics can be tamed through the introduction of a coformer.
Collapse
Affiliation(s)
| | | | - Helen Blade
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Leslie P. Hughes
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Sten O. Nilsson Lill
- Early Product Development and Manufacturing, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Steven P. Brown
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|