1
|
Dong J, Chi K, Zhao Y, Liu Y. Vertical Conductive Metal-Organic Framework Single-Crystalline Nanowire Arrays for Efficient Electrocatalytic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404808. [PMID: 39136428 DOI: 10.1002/smll.202404808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/12/2024] [Indexed: 11/21/2024]
Abstract
The construction of crystalline metal-organic frameworks with regular architectures supportive of enhanced mass transport and bubble diffusion is imperative for electrocatalytic applications; however, this poses a formidable challenge. Here, a method is presented that confines the growth of nano-architectures to the liquid-liquid interface. Using this method, vertically oriented single crystalline nanowire arrays of an Ag-benzenehexathiol (BHT) conductive metal-organic framework (MOF) are fabricated via an "in-plane self-limiting and out-of-plane epitaxial growth" mechanism. This material has excellent electrocatalytic features, including highly exposed active sites, intrinsically high electrical conductivity, and superhydrophilic and superaerophobic properties. Leveraging these advantages, the carefully designed material demonstrates superior electrocatalytic hydrogen evolution activity, resulting in a low Tafel slope of 66 mV dec-1 and a low overpotential of 275 mV at a high current density of 1 A cm-2. Finite element analysis (FEA) and in situ microscopic verification indicates that the nanowire array structure significantly enhances the electrolyte transport kinetics and promotes the rapid release of gas bubbles. The findings highlight the potential of using MOF-based ordered nanoarray structures for advanced electrocatalytic applications.
Collapse
Affiliation(s)
- Junjie Dong
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Kai Chi
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yan Zhao
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yunqi Liu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
2
|
He Y, Ma Z, Yan F, Zhu C, Shen T, Chou S, Zhang X, Chen Y. Regulation of the d-band center of metal-organic frameworks for energy-saving hydrogen generation coupled with selective glycerol oxidation. Proc Natl Acad Sci U S A 2024; 121:e2320777121. [PMID: 38630719 PMCID: PMC11046701 DOI: 10.1073/pnas.2320777121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/20/2024] [Indexed: 04/19/2024] Open
Abstract
The hybrid electrolyzer coupled glycerol oxidation (GOR) with hydrogen evolution reaction (HER) is fascinating to simultaneously generate H2 and high value-added chemicals with low energy input, yet facing a challenge. Herein, Cu-based metal-organic frameworks (Cu-MOFs) are reported as model catalysts for both HER and GOR through doping of atomically dispersed precious and nonprecious metals. Remarkably, the HER activity of Ru-doped Cu-MOF outperformed a Pt/C catalyst, with its Faradaic efficiency for formate formation at 90% at a low potential of 1.40 V. Furthermore, the hybrid electrolyzer only needed 1.36 V to achieve 10 mA cm-2, 340 mV lower than that for splitting pure water. Theoretical calculations demonstrated that electronic interactions between the host and guest (doped) metals shifted downward the d-band centers (εd) of MOFs. This consequently lowered water adsorption and dissociation energy barriers and optimized hydrogen adsorption energy, leading to significantly enhanced HER activities. Meanwhile, the downshift of εd centers reduced energy barriers for rate-limiting step and the formation energy of OH*, synergistically enhancing the activity of MOFs for GOR. These findings offered an effective means for simultaneous productions of hydrogen fuel and high value-added chemicals using one hybrid electrolyzer with low energy input.
Collapse
Affiliation(s)
- Yuqian He
- Key Laboratory of In-Fiber Integrated Optics, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin150001, China
| | - Zheng Ma
- Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin150001, China
| | - Feng Yan
- Key Laboratory of In-Fiber Integrated Optics, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin150001, China
| | - Chunling Zhu
- Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin150001, China
| | - Tongyang Shen
- Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin150001, China
| | - Shulei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang325035, China
| | - Xiao Zhang
- Key Laboratory of In-Fiber Integrated Optics, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin150001, China
| | - Yujin Chen
- Key Laboratory of In-Fiber Integrated Optics, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin150001, China
- Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin150001, China
| |
Collapse
|
3
|
Kamel AH, Hefnawy A, Hazeem LJ, Rashdan SA, Abd-Rabboh HSM. Current perspectives, challenges, and future directions in the electrochemical detection of microplastics. RSC Adv 2024; 14:2134-2158. [PMID: 38205235 PMCID: PMC10777194 DOI: 10.1039/d3ra06755f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Microplastics (5 μm) are a developing threat that contaminate every environmental compartment. The detection of these contaminants is undoubtedly an important topic of study because of their high potential to cause harm to ecosystems. For many years, scientists have been assiduously striving to surmount the obstacle of detection restrictions and minimize the likelihood of receiving results that are either false positives or false negatives. This study covers the current state of electrochemical sensing technology as well as its application as a low-cost analytical platform for the detection and characterization of novel contaminants. Examples of detection mechanisms, electrode modification procedures, device configuration, and performance are given to show how successful these approaches are for monitoring microplastics in the environment. Additionally included are the recent developments in nanoimpact techniques. Compared to electrochemical methods for microplastic remediation, the use of electrochemical sensors for microplastic detection has received very little attention. With an overview of microplastic electrochemical sensors, this review emphasizes the promise of existing electrochemical remediation platforms toward sensor design and development. In order to enhance the monitoring of these substances, a critical assessment of the requirements for future research, challenges associated with detection, and opportunities is provided. In addition to-or instead of-the now-in-use laboratory-based analytical equipment, these technologies can be utilized to support extensive research and manage issues pertaining to microplastics in the environment and other matrices.
Collapse
Affiliation(s)
- Ayman H Kamel
- Department, College of Science, University of Bahrain Zallaq 32038 Kingdom of Bahrain
- Department of Chemistry, Faculty of Science, Ain Shams University Cairo 11566 Egypt
| | - A Hefnawy
- Department, College of Science, University of Bahrain Zallaq 32038 Kingdom of Bahrain
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University El-Shatby Alexandria 21526 Egypt
| | - Layla J Hazeem
- Department of Biology, College of Science, University of Bahrain Zallaq 32038 Bahrain
| | - Suad A Rashdan
- Department, College of Science, University of Bahrain Zallaq 32038 Kingdom of Bahrain
| | - Hisham S M Abd-Rabboh
- Chemistry Department, Faculty of Science, King Khalid University Abha 62529 Saudi Arabia
| |
Collapse
|
4
|
Zhang Q, Jiang S, Lv T, Peng Y, Pang H. Application of Conductive MOF in Zinc-Based Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305532. [PMID: 37382197 DOI: 10.1002/adma.202305532] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/26/2023] [Indexed: 06/30/2023]
Abstract
The use of conductive MOFs (c-MOFs) in zinc-based batteries has been a popular research direction. Zinc-based batteries are widely used with the advantages of high specific capacity and safety and stability, but they also face many problems. c-MOFs have excellent conductivity compared with other primitive MOFs, and therefore have better applications in zinc-based batteries. In this paper, the transfer mechanisms of the unique charges of c-MOFs: hop transport and band transport, respectively, are discussed and the way of electron transport is further addressed. Then, the various ways to prepare c-MOFs are introduced, among which solvothermal, interfacial synthesis, and postprocessing methods are widely used. In addition, the applications of c-MOFs are discussed in terms of their role and performance in different types of zinc-based batteries. Finally, the current problems of c-MOFs and the prospects for their future development are presented.
Collapse
Affiliation(s)
- Qian Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Shu Jiang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Tingting Lv
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
- Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu, 610106, P. R. China
| | - Yi Peng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| |
Collapse
|
5
|
Zu S, Zhang H, Zhang T, Zhang M, Song L. Ni-Rh-based bimetallic conductive MOF as a high-performance electrocatalyst for the oxygen evolution reaction. Front Chem 2023; 11:1242672. [PMID: 37841204 PMCID: PMC10570521 DOI: 10.3389/fchem.2023.1242672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/22/2023] [Indexed: 10/17/2023] Open
Abstract
Metal-organic frameworks (MOFs) have recently been considered the promising catalysts due to their merits of abundant metal sites, versatile coordination groups, and tunable porous structure. However, low electronic conductivity of most MOFs obstructs their direct application in electrocatalysis. In this work, we fabricate an Ni-Rh bimetallic conductive MOF ([Ni2.85Rh0.15(HHTP)2]n/CC) grown in situ on carbon cloth. Abundant nanopores in the conductive MOFs expose additional catalytic active sites, and the advantageous 2D π-conjugated structure helps accelerate charge transfer. Owing to the introduction of Rh, [Ni2.85Rh0.15(HHTP)2]n/CC exhibited substantially improved oxygen evolution reaction (OER) activity and exhibited only an overpotential of 320 mV to achieve the current density of 20 mA cm-2. The remarkable OER performance confirmed by the electrochemical tests could be ascribed to the synergistic effect caused by the doped Rh together with Ni in [Ni2.85Rh0.15(HHTP)2]n/CC, thereby exhibiting outstanding electrocatalytic performance.
Collapse
Affiliation(s)
| | | | | | | | - Li Song
- Jiangsu Collaborative Innovation Center of Atmospheric Environment, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Qi P, Chen M, Luo T, Zhao C, Lin C, Luo H, Zhang D. Solid-state self-catalyzed growth of N-doped carbon tentacles on an M(Fe, Co)Se surface for rechargeable Zn-air batteries. Chem Commun (Camb) 2023; 59:5898-5901. [PMID: 37097640 DOI: 10.1039/d2cc06914h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
A scalable and facile solid-catalyzed growth approach is reported to integrate N-doped carbon tentacles with metal selenide nanoparticles, showing great potential for mass production of non-precious metal catalysts for rechargeable Zn-air batteries.
Collapse
Affiliation(s)
- Pan Qi
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Mengxu Chen
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Teng Luo
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Changjiu Zhao
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Cong Lin
- Department of Mechanical Engineer, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong, China
| | - Hao Luo
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
- Intelligent Manufacturing Institute of Hefei University of Technology, Hefei, 230051, Anhui, China.
| | - Dawei Zhang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| |
Collapse
|
7
|
Cong C, Ma H. Advances of Electroactive Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207547. [PMID: 36631286 DOI: 10.1002/smll.202207547] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The preparation of electroactive metal-organic frameworks (MOFs) for applications of supercapacitors and batteries has received much attention and remarkable progress during the past few years. MOF-based materials including pristine MOFs, hybrid MOFs or MOF composites, and MOF derivatives are well designed by a combination of organic linkers (e.g., carboxylic acids, conjugated aromatic phenols/thiols, conjugated aromatic amines, and N-heterocyclic donors) and metal salts to construct predictable structures with appropriate properties. This review will focus on construction strategies of pristine MOFs and hybrid MOFs as anodes, cathodes, separators, and electrolytes in supercapacitors and batteries. Descriptions and discussions follow categories of electrochemical double-layer capacitors (EDLCs), pseudocapacitors (PSCs), and hybrid supercapacitors (HSCs) for supercapacitors. In contrast, Li-ion batteries (LIBs), Lithium-sulfur batteries (LSBs), Lithium-oxygen batteries (LOBs), Sodium-ion batteries (SIBs), Sodium-sulfur batteries (SSBs), Zinc-ion batteries (ZIBs), Zinc-air batteries (ZABs), Aluminum-sulfur batteries (ASBs), and others (e.g., LiSe, NiZn, H+ , alkaline, organic, and redox flow batteries) are categorized for batteries.
Collapse
Affiliation(s)
- Cong Cong
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 21186, China
| | - Huaibo Ma
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 21186, China
| |
Collapse
|
8
|
Javed N, Noor T, Iqbal N, Naqvi SR. A review on development of metal-organic framework-derived bifunctional electrocatalysts for oxygen electrodes in metal-air batteries. RSC Adv 2023; 13:1137-1161. [PMID: 36686941 PMCID: PMC9841892 DOI: 10.1039/d2ra06741b] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/14/2022] [Indexed: 01/19/2023] Open
Abstract
Worldwide demand for oil, coal, and natural gas has increased recently because of odd weather patterns and economies recovering from the pandemic. By using these fuels at an astonishing rate, their reserves are running low with each passing decade. Increased reliance on these sources is contributing significantly to both global warming and power shortage problems. It is vital to highlight and focus on using renewable energy sources for power production and storage. This review aims to discuss one of the cutting-edge technologies, metal-air batteries, which are currently being researched for energy storage applications. A battery that employs an external cathode of ambient air and an anode constructed of pure metal in which an electrolyte can be aqueous or aprotic electrolyte is termed as a metal-air battery (MAB). Due to their reportedly higher energy density, MABs are frequently hailed as the electrochemical energy storage of the future for applications like grid storage or electric car energy storage. The demand of the upcoming energy storage technologies can be satisfied by these MABs. The usage of metal-organic frameworks (MOFs) in metal-air batteries as a bi-functional electrocatalyst has been widely studied in the last decade. Metal ions or arrays bound to organic ligands to create one, two, or three-dimensional structures make up the family of molecules known as MOFs. They are a subclass of coordination polymers; metal nodes and organic linkers form different classes of these porous materials. Because of their modular design, they offer excellent synthetic tunability, enabling precise chemical and structural control that is highly desirable in electrode materials of MABs.
Collapse
Affiliation(s)
- Najla Javed
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), H-12 CampusIslamabad 44000Pakistan+92 51 9085 5121
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), H-12 CampusIslamabad 44000Pakistan+92 51 9085 5121
| | - Naseem Iqbal
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST)Islamabad 44000Pakistan
| | - Salman Raza Naqvi
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), H-12 CampusIslamabad 44000Pakistan+92 51 9085 5121
| |
Collapse
|
9
|
Kong Y, Lu C, Wang J, Ying S, Liu T, Ma X, Yi FY. Molecular Regulation Based on Functional Trimetallic Metal-Organic Frameworks for Efficient Oxygen Evolution Reaction. Inorg Chem 2022; 61:10934-10941. [PMID: 35772081 DOI: 10.1021/acs.inorgchem.2c01484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Metal-organic frameworks (MOFs) as classic crystalline porous materials have attracted great interest in the catalytic field. However, how to realize molecular regulation of the MOF structure to achieve a remarkable oxygen evolution reaction (OER) electrocatalyst is still a challenge. Herein, we designed several series of special MOF materials to explore the relationship between the structure and properties as well as the related reactive mechanism. First, various metal centers, including Fe, Co, Ni, Zn, and Mg, were utilized to construct the first series of trimetallic MOF materials, namely, M3-MOF-BDC, where BDC = 1,4-benzenedicarboxylic acid, also known as terephthalic acid. Among of them, Fe3-MOF-BDC shows the best OER performance and only needs an overpotential of 312 mV at 10 mA cm-2. Then, functional BDC-X ligands (X = NH2, OH, NO2, DH) with various characteristic groups were selected to construct a new series, namely, Fe3-MOF-BDC-X, to further improve its OER electrocatalytic performance. As expected, Fe3-MOF-BDC-NH2 exhibited a greatly enhanced OER performance with ultralow Tafel slopes of 45 mV dec-1 and overpotentials of 280 mV at 10 mA cm-2 when the BDC-NH2 ligand was adopted, even superior to commercial IrO2 (323 mV) and most of the reported pristine MOFs as OER electrodes. Much higher structural stability was proven. The detailed structure-property relationship and mechanism are discussed. In a word, this work provides a very important theoretical basis for the design and exploration of new MOF electrocatalysts.
Collapse
Affiliation(s)
- Yuxuan Kong
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Chunxiao Lu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Jiang Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Shuanglu Ying
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Tian Liu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Xinghua Ma
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Fei-Yan Yi
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| |
Collapse
|
10
|
Duan Y, Liu H, Zhang H, Ke S, Wang S, Dou M, Wang F. Conductive bimetal organic framework nanorods decorated with highly dispersed Co 3O 4nanoparticles as bi-functional electrocatalyst. NANOTECHNOLOGY 2022; 33:145601. [PMID: 34823231 DOI: 10.1088/1361-6528/ac3d66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
The poor electronic conductivity and low intrinsic electrocatalytic activity of metal organic frameworks (MOFs) greatly limit their direct application in electrocatalytic reactions. Herein, we report a conductive two-dimensionalπ-dconjugated Ni and Co bimetal organic framework (MOF)-NiCo-(2,3,6,7,10,11-hexaiminotriphenylene) (NiCo-HITP) nanorods decorated with highly dispersed Co3O4nanoparticles (NPs) as a promising bi-functional electrocatalyst towards oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) through an effective and facile strategy by modifying the rod-shaped -Ni3HITP2crystals using cobalt ions. The triggered electrocatalytic activity of the resulting MOF-based materials was achieved by increasing the electrical conductivity (7.23 S cm-1) originated from Ni3HITP2substrate and also by creating the cooperative catalysis sites of Co-Nxand Co3O4NPs. Optimized syntheses show a promising ORR activity with a high half-wave potential (0.77 V) and also a significantly improved OER activity compared with pure Ni3HITP2in alkaline electrolyte. Furthermore, a rechargeable Zn-air battery using the as-prepared material as air-cathode also shows a high power density (143.1 mW cm-2)-even comparable to a commercial Pt/C-RuO2-based battery. This methodology offers a new prospect in the design and synthesis of non-carbonized MOF bi-functional electrocatalysts for efficient catalysis towards ORR and OER.
Collapse
Affiliation(s)
- Yaxin Duan
- State Key Laboratory of Chemical Resource Engineering, Laboratory of Electrochemical Process and Technology for materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Haitao Liu
- State Key Laboratory of Chemical Resource Engineering, Laboratory of Electrochemical Process and Technology for materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Huabing Zhang
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, People's Republic of China
| | - Shaojie Ke
- State Key Laboratory of Chemical Resource Engineering, Laboratory of Electrochemical Process and Technology for materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Shuaize Wang
- State Key Laboratory of Chemical Resource Engineering, Laboratory of Electrochemical Process and Technology for materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Meiling Dou
- State Key Laboratory of Chemical Resource Engineering, Laboratory of Electrochemical Process and Technology for materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Feng Wang
- State Key Laboratory of Chemical Resource Engineering, Laboratory of Electrochemical Process and Technology for materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
11
|
Wang J, Hu H, Lu S, Hu J, Zhu H, Duan F, Du M. Conductive metal and covalent organic frameworks for electrocatalysis: design principles, recent progress and perspective. NANOSCALE 2022; 14:277-288. [PMID: 34935018 DOI: 10.1039/d1nr06197f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metal and covalent organic frameworks (MOFs/COFs) are emerging promising candidates in the field of catalysts due to their porous nature, chemically well-defined active sites and structural diversity. However, they are typically provided with poor electrical conductivity, which is insufficient for them to work as satisfying electrocatalysts. Designing and fabricating MOFs/COFs with high conductivity presents a new avenue towards special electrochemical reactions. This minireview firstly highlighted the origin and design principles of conductive MOFs/COFs for electrocatalysis on the basis of typical charge transfer mechanisms, that is "through space", "extended conjugation" and "through bond". An overview of conductive MOFs/COFs used in the electrocatalytic carbon dioxide reduction reaction (CO2RR), water splitting and the oxygen reduction reaction (ORR) was then made to track the very recent progress. In the final remarks, the present challenges and perspectives for the use of conductive MOFs/COFs as electrocatalysts including their structural optimization, feasible applications and structure-activity correlation are proposed.
Collapse
Affiliation(s)
- Jinyan Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Hongyin Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Shuanglong Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Jundie Hu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Han Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Fang Duan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Mingliang Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
12
|
Hassan MH, Khan R, Andreescu S. Advances in electrochemical detection methods for measuring contaminants of emerging concerns. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Mohamed H. Hassan
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam New York USA
| | - Reem Khan
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam New York USA
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam New York USA
| |
Collapse
|
13
|
|