1
|
Sun NX, Wang LC, Fang Z, Wang CS, Guo K, Wu XF. Iron-Catalyzed Aminoalkylative Carbonylative Cyclization of Alkenes toward α-Tetralones. Org Lett 2024; 26:3140-3144. [PMID: 38563571 DOI: 10.1021/acs.orglett.4c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Carbonylative multifunctionalization of alkenes is an efficient approach to introduce multiple functional groups into one molecule from easily available materials. Herein, we developed an iron-catalyzed radical relay carbonylative cyclization of alkenes with acetamides. Various α-tetralones can be constructed in moderate yields from readily available substrates with an earth-abundant iron salt as the catalyst.
Collapse
Affiliation(s)
- Nai-Xian Sun
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning China
| | - Le-Cheng Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning China
- Leibniz-Institut für Katalyse e.V., 18059, Rostock, Germany
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chang-Sheng Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning China
- Leibniz-Institut für Katalyse e.V., 18059, Rostock, Germany
| |
Collapse
|
2
|
Yang LF, Xiong ZQ, Ouyang XH, Wang QA, Li JH. Cobalt-Promoted Photoredox 1,2-Amidoamination of Alkenes with N-Sulfonamidopyridin-1-ium Salts and Free Amines. Org Lett 2024; 26:1667-1671. [PMID: 38380904 DOI: 10.1021/acs.orglett.4c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
A cobalt-promoted photoredox 1,2-amidoamination of alkenes with N-sulfonamidopyridin-1-ium salts and free amines for the synthesis of unsymmetrical vicinal diamines has been developed. The reaction handles N-(sulfonamido)pyridin-1-ium salts as the sulfonamidyl radical precursors and free amines as the nucleophilic terminating reagents to enable the formation of two new C(sp3)-N bonds in a single reaction step and offers a route to selectively producing unsymmetrical vicinal diamines with an exquisite selectivity and a good compatibility of functional groups.
Collapse
Affiliation(s)
- Liang-Feng Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Zhi-Qiang Xiong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Qiu-An Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
3
|
Zhang Y, Teng BH, Wu XF. Copper-catalyzed trichloromethylative carbonylation of ethylene. Chem Sci 2024; 15:1418-1423. [PMID: 38274060 PMCID: PMC10806816 DOI: 10.1039/d3sc05530b] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Difunctionalization of alkenes is an efficient strategy for the synthesis of complex compounds from readily available starting materials. Herein, we developed a copper-catalyzed visible-light-mediated trichloromethylative carbonylation of ethylene by employing commercially available CCl4 and CO as trichloromethyl and carbonyl sources, respectively. With this protocol, various nucleophiles including amines, phenols, and alcohols can be rapidly transformed into β-trichloromethyl carboxylic acid derivatives with good functional-group tolerance. Bis-vinylated γ-trichloromethyl amides can also be obtained by adjusting the pressure of carbon monoxide and ethylene. In addition, this photocatalytic system can be successfully applied in the late-stage functionalization of bioactive molecules and pharmaceutical derivatives as well.
Collapse
Affiliation(s)
- Youcan Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science Shanghai 201620 China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 116023 Dalian Liaoning China
| | - Bing-Hong Teng
- School of Chemistry and Chemical Engineering, Liaoning Normal University 850 Huanghe Road Dalian 116029 China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 116023 Dalian Liaoning China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 116023 Dalian Liaoning China
- Leibniz-Institut Für Katalyse e.V. Albert-Einstein-Straβe 29a 18059 Rostock Germany
| |
Collapse
|
4
|
Wang R, Wang C. Asymmetric imino-acylation of alkenes enabled by HAT-photo/nickel cocatalysis. Chem Sci 2023; 14:6449-6456. [PMID: 37325152 PMCID: PMC10266448 DOI: 10.1039/d3sc01945d] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
By merging nickel-mediated facially selective aza-Heck cyclization and radical acyl C-H activation promoted by tetrabutylammonium decatungstate (TBADT) as a hydrogen atom transfer (HAT) photocatalyst, we accomplish an asymmetric imino-acylation of oxime ester-tethered alkenes with readily available aldehydes as the acyl source, enabling the synthesis of highly enantioenriched pyrrolines bearing an acyl-substituted stereogenic center under mild conditions. Preliminary mechanistic studies support a Ni(i)/Ni(ii)/Ni(iii) catalytic sequence involving the intramolecular migratory insertion of a tethered olefinic unit into the Ni(iii)-N bond as the enantiodiscriminating step.
Collapse
Affiliation(s)
- Rui Wang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| | - Chuan Wang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| |
Collapse
|
5
|
Li M, Li SX, Chen DP, Gao F, Qiu YF, Wang XC, Quan ZJ, Liang YM. Regioselective C-H Active Carbonylation via 1,4-Palladium Migration. Org Lett 2023; 25:2761-2766. [PMID: 37052909 DOI: 10.1021/acs.orglett.3c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
We report a highly regioselective three-component coupling reaction of styrene, CO gas, and an amine compound to synthesize multisubstituted α,β-unsaturated amides, which involves a palladium-catalyzed sequential 1,4-palladium migration, C(sp2)-H activation, carbonylation, and amination. Salient features of this strategy include the use of 1 atm of CO, excellent stereochemistry, and good functional group tolerance. Further, a series of control experiments and density functional theory calculations were performed to afford some insights for the transfer mechanism.
Collapse
Affiliation(s)
- Ming Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Shun-Xi Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Dong-Ping Chen
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Fan Gao
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Yi-Feng Qiu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Xi-Cun Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Zheng-Jun Quan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
6
|
Ivanova EE, Shabalin DA, Ushakov IA, Vashchenko AV, Schmidt EY, Trofimov BA. Diastereoselective synthesis of tetrahydropyrrolo[1,2- d]oxadiazoles from functionalized Δ 1-pyrrolines and in situ generated nitrile oxides. Org Biomol Chem 2023; 21:1725-1736. [PMID: 36723150 DOI: 10.1039/d2ob02230c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Tetrahydropyrrolo[1,2-d]oxadiazoles have been synthesized in good-to-excellent yields via the cycloaddition of nitrile oxides (in situ generated from aldoximes) to readily accessible functionalized Δ1-pyrrolines. The reaction proceeds smoothly at room temperature in a two-phase system in the presence of sodium hypochloride as an oxidant to diastereoselectively afford pharmaceutically prospective 1,2,4-oxadiazolines fused with a five-membered ring. The reaction tolerates a broad range of substrates, including those with oxidant-sensitive functional groups and competitive reaction sites.
Collapse
Affiliation(s)
- Evgeniya E Ivanova
- A.E. Favorsky Irkutsk Institute of Chemistry SB RAS, 1 Favorsky St., Irkutsk, 664033, Russian Federation.
| | - Dmitrii A Shabalin
- A.E. Favorsky Irkutsk Institute of Chemistry SB RAS, 1 Favorsky St., Irkutsk, 664033, Russian Federation.
| | - Igor' A Ushakov
- A.E. Favorsky Irkutsk Institute of Chemistry SB RAS, 1 Favorsky St., Irkutsk, 664033, Russian Federation.
| | - Alexander V Vashchenko
- A.E. Favorsky Irkutsk Institute of Chemistry SB RAS, 1 Favorsky St., Irkutsk, 664033, Russian Federation.
| | - Elena Yu Schmidt
- A.E. Favorsky Irkutsk Institute of Chemistry SB RAS, 1 Favorsky St., Irkutsk, 664033, Russian Federation.
| | - Boris A Trofimov
- A.E. Favorsky Irkutsk Institute of Chemistry SB RAS, 1 Favorsky St., Irkutsk, 664033, Russian Federation.
| |
Collapse
|
7
|
Jiang HM, Zhao YL, Sun Q, Ouyang XH, Li JH. Recent Advances in N-O Bond Cleavage of Oximes and Hydroxylamines to Construct N-Heterocycle. Molecules 2023; 28:molecules28041775. [PMID: 36838760 PMCID: PMC9964420 DOI: 10.3390/molecules28041775] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Oximes and hydroxylamines are a very important class of skeletons that not only widely exist in natural products and drug molecules, but also a class of synthon, which have been widely used in industrial production. Due to weak N-O σ bonds of oximes and hydroxylamines, they can be easily transformed into other functional groups by N-O bond cleavage. Therefore, the synthesis of N-heterocycle by using oximes and hydroxylamines as nitrogen sources has attracted wide attention. Recent advances for the synthesis of N-heterocycle through transition-metal-catalyzed and radical-mediated cyclization classified by the type of nitrogen sources and rings are summarized. In this paper, the recent advances in the N-O bond cleavage of oximes and hydroxylamines are reviewed. We hope that this review provides a new perspective on this field, and also provides a reference to develop environmentally friendly and sustainable methods.
Collapse
Affiliation(s)
- Hui-Min Jiang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Yi-Lin Zhao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Qing Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- Correspondence: (X.-H.O.); (J.-H.L.)
| | - Jin-Heng Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Correspondence: (X.-H.O.); (J.-H.L.)
| |
Collapse
|
8
|
Yan H, Xu G, Gu M, Zhang S, Wu Q, Meng J, Zhu N, Fang Z, Duan J, Guo K. Copper-catalyzed [4+2] oxidative annulation of α,β-unsaturated ketoxime acetates with ethyl trifluoropyruvate. Chem Commun (Camb) 2022; 58:6757-6760. [PMID: 35611963 DOI: 10.1039/d2cc01573k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel route for tandem C-N/C-O formation via copper-catalyzed [4+2] oxidative annulation of α,β-unsaturated ketoxime acetates with ethyl trifluoropyruvate to synthesize valuable trifluoromethyl-containing 2H-1,3-oxazines in moderate to good yields is developed. This procedure represents the first [4+2] oxidative annulation of oxime derivatives with activated CO bonds and provides an alternative route towards functionalized 2H-1,3-oxazines.
Collapse
Affiliation(s)
- Huan Yan
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Gaochen Xu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Meng Gu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Sai Zhang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Qinghuan Wu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Jingjing Meng
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Jindian Duan
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| |
Collapse
|
9
|
Hong P, Song X, Huang Z, Tan K, Wu A, Lu X. Insights into the Mechanism of Metal-Catalyzed Transformation of Oxime Esters: Metal-Bound Radical Pathway vs Free Radical Pathway. J Org Chem 2022; 87:6014-6024. [PMID: 35389656 DOI: 10.1021/acs.joc.2c00273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Controlling of radical reactivity by binding a radical to the metal center is an elegant strategy to overcome the challenge that radical intermediates are "too reactive to be selective". Yet, its application has seemingly been limited to a few strained-ring substrates, azide compounds, and diazo compounds. Meanwhile, first-row transition-metal-catalyzed (mainly, Fe, Ni, Cu) transformations of oxime esters have been reported recently in which the activation processes are assumed to follow free-radical mechanisms. In this work, we show by means of density functional theory calculations that the activation of oxime esters catalyzed by Fe(II) and Cu(I) catalysts more likely affords a metal-bound iminyl radical, rather than the presumed free iminyl radical, and the whole process follows a metal-bound radical mechanism. The as-formed metal-bound radical intermediates are an Fe(III)-iminyl radical (Stotal = 2, SFe = 5/2, and Siminyl = -1/2) and a Cu(II)-iminyl radical (Stotal = 0, SCu = 1/2, and Siminyl = -1/2). The discovery of such novel substrates affording metal-bound radical intermediates may facilitate the experimental design of metal-catalyzed asymmetric synthesis using oxime esters to achieve the desired enantioselectivity.
Collapse
Affiliation(s)
- Pan Hong
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaolin Song
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhengqi Huang
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kai Tan
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Anan Wu
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
10
|
Pounder A, Tam W. Iron-catalyzed domino coupling reactions of π-systems. Beilstein J Org Chem 2021; 17:2848-2893. [PMID: 34956407 PMCID: PMC8685557 DOI: 10.3762/bjoc.17.196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/24/2021] [Indexed: 12/26/2022] Open
Abstract
The development of environmentally benign, inexpensive, and earth-abundant metal catalysts is desirable from both an ecological and economic standpoint. Certainly, in the past couple decades, iron has become a key player in the development of sustainable coupling chemistry and has become an indispensable tool in organic synthesis. Over the last ten years, organic chemistry has witnessed substantial improvements in efficient synthesis because of domino reactions. These protocols are more atom-economic, produce less waste, and demand less time compared to a classical stepwise reaction. Although iron-catalyzed domino reactions require a mindset that differs from the more routine noble-metal, homogenous iron catalysis they bear the chance to enable coupling reactions that rival that of noble-metal-catalysis. This review provides an overview of iron-catalyzed domino coupling reactions of π-systems. The classifications and reactivity paradigms examined should assist readers and provide guidance for the design of novel domino reactions.
Collapse
Affiliation(s)
- Austin Pounder
- Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - William Tam
- Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
11
|
Miao CB, Guan HR, Tang Y, Wang K, Ren WL, Lyu X, Yao C, Yang HT. Copper-Catalyzed Bisannulations of Malonate-Tethered O-Acyl Oximes with Pyridine, Pyrazine, Pyridazine, and Quinoline Derivatives for the Construction of Dihydroindolizine-Fused Pyrrolidinones and Analogues. Org Lett 2021; 23:8699-8704. [PMID: 34723547 DOI: 10.1021/acs.orglett.1c03078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A copper-catalyzed bisannulation reaction of malonate-tethered O-acyl oximes with pyridine, pyrazine, pyridazine, and quinoline derivatives has been developed for the concise synthesis of structurally novel dihydroindolizine-fused pyrrolidinones and their analogues. The present reaction shows excellent regioselectivity and stereoselectivity. Theoretical calculations reveal that the coordination effect of the carbonyl group in the nucleophilic substrate determines the excellent regioselectivity. Further functionalization of the generated dihydroindolizine-fused pyrrolidinone could be easily realized through substitution, Michael addition, selective aminolysis, and hydrolysis reactions.
Collapse
Affiliation(s)
- Chun-Bao Miao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Hong-Rong Guan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - YiHan Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Kun Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Wen-Long Ren
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | | | - ChangSheng Yao
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Hai-Tao Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| |
Collapse
|
12
|
Mancuso R, Lettieri M, Ziccarelli I, Russo P, Piccionello AP, Gabriele B. Multicomponent Synthesis of Benzothiophen‐2‐acetic Esters by a Palladium Iodide Catalyzed
S
‐cyclization – Alkoxycarbonylation Sequence. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Raffaella Mancuso
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC) Department of Chemistry and Chemical Technologies University of Calabria Via Pietro Bucci 12/C 87036 Arcavacata di Rende (CS) Italy
| | - Melania Lettieri
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC) Department of Chemistry and Chemical Technologies University of Calabria Via Pietro Bucci 12/C 87036 Arcavacata di Rende (CS) Italy
| | - Ida Ziccarelli
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC) Department of Chemistry and Chemical Technologies University of Calabria Via Pietro Bucci 12/C 87036 Arcavacata di Rende (CS) Italy
| | - Patrizio Russo
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC) Department of Chemistry and Chemical Technologies University of Calabria Via Pietro Bucci 12/C 87036 Arcavacata di Rende (CS) Italy
| | - Antonio Palumbo Piccionello
- Department of Biological Chemical and Pharmaceutical Science and Technology-STEBICEF University of Palermo Viale delle Scienze Ed.17 Palermo 90128 Italy
| | - Bartolo Gabriele
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC) Department of Chemistry and Chemical Technologies University of Calabria Via Pietro Bucci 12/C 87036 Arcavacata di Rende (CS) Italy
| |
Collapse
|
13
|
Wang K, Guan HR, Ren WL, Yang HT, Miao CB. Copper-Catalyzed Cascade Annulation of Malonate-Tethered O-Acyl Oximes with Cyclic 1,3-Dicarbonyl Compounds for the Synthesis of Spiro-Pentacyclic Derivatives. J Org Chem 2021; 86:12309-12317. [PMID: 34369761 DOI: 10.1021/acs.joc.1c01122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A copper-catalyzed cascade annulation of malonate-tethered O-acyl oximes with cyclic 1,3-dicarbonyl compounds has been developed for the rapid synthesis of spiro-pentacyclic derivatives. This reaction allows the one-step formation of five C-C/N/O bonds and an angular tricyclic core under very mild conditions and shows excellent regioselectivity and stereoselectivity.
Collapse
Affiliation(s)
- Kun Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Hong-Rong Guan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Wen-Long Ren
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Hai-Tao Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Chun-Bao Miao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| |
Collapse
|
14
|
Li C, Wang J, Yang SD. Visible-light-facilitated P-center radical addition to C[double bond, length as m-dash]X (X = C, N) bonds results in cyclizations. Chem Commun (Camb) 2021; 57:7997-8002. [PMID: 34319325 DOI: 10.1039/d1cc02604f] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Visible-light-facilitated phosphorus radical reactions have been developed as a powerful and sustainable tool for the synthesis of various organophosphorus compounds. In general, these reactions require stoichiometric amounts of oxidants, and reductants, bases, and radical initiators, leading to uneconomical and complicated processes. Progress has been made over the past few years toward using reactions that proceed under eco-benign and mild reaction conditions. Furthermore, these reactions have broad functional group tolerance, with some facile and economical pathways. Herein, we summarize the discoveries and achievements pertaining to C-P bond formation through a visible light photocatalysis procedure with high atom economy, made by our group and other research groups. It was established that greener and more environmentally friendly approaches do not require an additional oxidant or base. Moreover, we have designed and synthesized a new type of P-radical precursor, which can take part in reactions without the requirement for any additional bases, oxidants, and additives. This breakthrough, pertaining to novel visible-light-induced transformations, will be discussed and a plausible mechanism is proposed, based on corresponding experiments and the literature.
Collapse
Affiliation(s)
- Chong Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
| | | | | |
Collapse
|
15
|
Singh J, Nickel GA, Cai Y, Jones DD, Nelson TJ, Small JE, Castle SL. Synthesis of Functionalized Pyrrolines via Microwave-Promoted Iminyl Radical Cyclizations. Org Lett 2021; 23:3970-3974. [PMID: 33955760 DOI: 10.1021/acs.orglett.1c01148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
O-Phenyloximes tethered to alkenes undergo 5-exo-trig iminyl radical cyclizations upon microwave irradiation. Trapping of the resulting cyclic radicals results in C-C, C-N, C-O, C-S, or C-X bond formation. Allylic sulfides undergo a tandem cyclization-thiyl radical β-elimination, affording terminal alkenes. The cyclizations exhibit a broad scope, and in some cases they are highly diastereoselective. The pyrroline adducts are versatile intermediates that can be transformed into a range of different species.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Garrison A Nickel
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Yu Cai
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Dakota D Jones
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Tanner J Nelson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Jeshurun E Small
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Steven L Castle
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
16
|
He FS, Zhang M, Zhang M, Luo X, Wu J. Iminyl radical initiated sulfonylation of alkenes with rongalite under photoredox conditions. Org Chem Front 2021. [DOI: 10.1039/d1qo00556a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A photoredox-catalyzed reaction of oximes, rongalite and electrophiles is accomplished, affording pyrrole-substituted aliphatic sulfones or sulfonamides in moderate to good yields.
Collapse
Affiliation(s)
- Fu-Sheng He
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- Taizhou 318000
- China
| | - Man Zhang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- Taizhou 318000
- China
| | - Mengke Zhang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- Taizhou 318000
- China
| | - Xiangxiang Luo
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- Taizhou 318000
- China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- Taizhou 318000
- China
- State Key Laboratory of Organometallic Chemistry
| |
Collapse
|
17
|
Zhang X, Qi D, Jiao C, Zhang Z, Liu X, Zhang G. Ni-Catalyzed direct iminoalkynylation of unactivated olefins with terminal alkynes: facile access to alkyne-labelled pyrrolines. Org Chem Front 2021. [DOI: 10.1039/d1qo01217g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The first example of iminoalkynylation of unactivated olefins with terminal alkynes was achieved by a nickel-catalyzed iminyl-radical cyclization/Sonogashira-type coupling sequence.
Collapse
Affiliation(s)
- Xingjie Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Di Qi
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Chenchen Jiao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Zhiguo Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Xiaopan Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| |
Collapse
|