1
|
Yusaf ZZ, Egleston BD, Avci G, Jelfs KE, Lewis JEM, Greenaway RL. Organic Cage Rotaxanes. Chemistry 2025:e202501014. [PMID: 40367335 DOI: 10.1002/chem.202501014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 05/08/2025] [Accepted: 05/13/2025] [Indexed: 05/16/2025]
Abstract
Organic cages are a robust class of molecular hosts with a myriad of applications in materials science. Despite this, there has been a paucity of explorations into the modification of their properties via external functionalization. In this work, [n]rotaxanes featuring unoccupied organic cages as stopper components and a small 2,2'-bipyridine macrocycle were constructed using the active metal template (AMT) approach. By exploiting a scrambling methodology, it was possible to synthesize cages with a defined number of interlocked components (n = 2-4). The gas uptake, solubility, and thermal properties of the interlocked systems were compared against those of their constituent, non-interlocked components. In this manner, we were able to demonstrate the potential of exploiting the mechanical bond for modulating the physiochemical properties of these molecular materials.
Collapse
Affiliation(s)
- Zarik Zaheer Yusaf
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - Benjamin D Egleston
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - Gokay Avci
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - Kim E Jelfs
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - James E M Lewis
- School of Chemistry, University of Birmingham, Molecular Sciences Building, Edgbaston, Birmingham, B15 2TT, UK
| | - Rebecca L Greenaway
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| |
Collapse
|
2
|
Závodná A, Janovský P, Kolařík V, Ward JS, Prucková Z, Rouchal M, Rissanen K, Vícha R. Allosteric release of cucurbit[6]uril from a rotaxane using a molecular signal. Chem Sci 2024; 16:83-89. [PMID: 39568923 PMCID: PMC11575564 DOI: 10.1039/d4sc03970j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/31/2024] [Indexed: 11/22/2024] Open
Abstract
Rotaxanes can be regarded as storage systems for their wheel components, which broadens their application potential as a complement to the supramolecular systems that retain a mechanically interlocked structure. However, utilising rotaxanes in this way requires a method to release the wheel while preserving the integrity of all molecular constituents. Herein, we present simple rotaxanes based on cucurbit[6]uril (CB6), with an axis equipped with an additional binding motif that enables the binding of another macrocycle, cucurbit[7]uril (CB7). We demonstrate that the driving force behind the wheel dethreading originates from the binding of the signalling macrocycle to the allosteric site, leading to an increase in the system's strain. Consequently, the CB6 wheel leaves the rotaxane station overcoming the mechanical barrier. Portal-portal repulsive interactions between the two cucurbituril units play a crucial role in this process. Thus, the repulsive strength and the related rate of slipping off can be finely tuned by the length of the allosteric binding motif. Finally, we show that the CB6 wheel can be utilised within complexes with other guests in the mixture once released from the rotaxane.
Collapse
Affiliation(s)
- Aneta Závodná
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín Vavrečkova 5669 760 01 Zlín Czech Republic
| | - Petr Janovský
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín Vavrečkova 5669 760 01 Zlín Czech Republic
| | - Václav Kolařík
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín Vavrečkova 5669 760 01 Zlín Czech Republic
| | - Jas S Ward
- Department of Chemistry, University of Jyväskylä P.O. Box 35, Survontie 9 B 40014 Jyväskylä Finland
| | - Zdeňka Prucková
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín Vavrečkova 5669 760 01 Zlín Czech Republic
| | - Michal Rouchal
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín Vavrečkova 5669 760 01 Zlín Czech Republic
| | - Kari Rissanen
- Department of Chemistry, University of Jyväskylä P.O. Box 35, Survontie 9 B 40014 Jyväskylä Finland
| | - Robert Vícha
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín Vavrečkova 5669 760 01 Zlín Czech Republic
| |
Collapse
|
3
|
Speakman NA, Heard AW, Nitschke JR. A Cu I6L 4 Cage Dynamically Reconfigures to Form Suit[4]anes and Selectively Bind Fluorinated Steroids. J Am Chem Soc 2024; 146:10234-10239. [PMID: 38578086 PMCID: PMC11027141 DOI: 10.1021/jacs.4c00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
Simple organic ligands can self-assemble with metal ions to generate metal-organic cages, whose cavities bind guests selectively. This binding may enable new methods of chemical separation or sensing, among other useful functions. Here we report the preparation of a CuI6L4 pseudo-octahedral metal-organic cage, the ligands of which self-assemble from simple organic building blocks. Temperature, solvent, and the presence of different guests governed which structure predominated from a dynamic mixture of cage diastereomers with different arrangements of right- or left-handed metal vertices. Dissolution in dimethyl sulfoxide or the binding of tetrahedral guests led to a chiral tetrahedral T-symmetric framework, whereas low temperatures favored the achiral S4-symmetric diastereomer. Tetrahedral guests with long arms were encapsulated to form mechanically bonded suit[4]anes, with guest arms protruding out through host windows. The cage was also observed to bind fluorinated steroids, an important class of drug molecules, but not non-fluorinated steroids, providing the basis for new separation processes.
Collapse
Affiliation(s)
- Natasha
M. A. Speakman
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Andrew W. Heard
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- Astex
Pharmaceuticals, 436
Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K.
| | - Jonathan R. Nitschke
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
4
|
Oda K, Nishiyama H, Nishida JI, Kawase T. 9,9-Bis[4-(N-aryl)phenyl]methylidene-xanthylidene Derivatives Displaying Mechano-, Crystallo-, and Thermochromism. Chempluschem 2023; 88:e202200360. [PMID: 36515279 DOI: 10.1002/cplu.202200360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/11/2022] [Indexed: 11/30/2022]
Abstract
Tetraphenylethylene (TPE) derivatives bearing a xanthene moiety are of interest because they have novel optical properties. 9,9-Bis[4-(N,N-diphenylamino)phenyl] and 9,9-bis[4-(9-carbazolyl)-phenyl]methylidene-xanthylidenes 3 and 4 were synthesized using Suzuki-Miyaura coupling of 9,9-dibromomethylidene-xanthylidene with the corresponding boronic acids. Diphenylamino derivative 3 exhibits mechanochromism and mechanofluorochromism (MC and MFC) reflected in absorption and fluorescence color changes. In contrast, carbazolyl derivative 4 displays thermo- and crystallo-chromism in addition to MC and MFC in the solid state. Powder X-ray diffraction and single crystal X-ray crystallographic analysis reveal that the solid state photophysical properties of these substances are governed by conformational changes rather by the creation of planar π-conjugation extended geometries.
Collapse
Affiliation(s)
- Kasane Oda
- Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo, 671-2280, Japan
| | - Hiroki Nishiyama
- Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo, 671-2280, Japan
| | - Jun-Ichi Nishida
- Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo, 671-2280, Japan
| | - Takeshi Kawase
- Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo, 671-2280, Japan
| |
Collapse
|
5
|
Li X, Xie J, Du Z, Jiang L, Li G, Ling S, Zhu K. Docking rings in a solid: reversible assembling of pseudorotaxanes inside a zirconium metal-organic framework. Chem Sci 2022; 13:6291-6296. [PMID: 35733896 PMCID: PMC9159108 DOI: 10.1039/d2sc01497a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022] Open
Abstract
An unprecedented zirconium metal–organic framework featuring a T-shaped benzimidazole strut was constructed and employed as a sponge-like material for selective absorption of macrocyclic guests. The neutral benzimidazole domain of the as-synthesized framework can be readily protonated and fully converted to benzimidazolium. Mechanical threading of [24]crown-8 ether wheels onto recognition sites to form pseudorotaxanes was evidenced by solution nuclear magnetic resonance, solid-state fluorescence, and infrared spectroscopy. Selective absorption of [24]crown-8 ether rather than its dibenzo counterpart was also observed. Further study reveals that this binding process is reversible and acid–base switchable. The success of docking macrocyclic guests in crystals via host–guest interactions provides an alternative route to complex functional materials with interpenetrated structures. A T-shaped ligand was designed as struts for building a zirconium metal–organic framework. Acid–base switchable docking and releasing a 24-membered crown ether inside crystals was successfully accomplished via post-synthetic modification.![]()
Collapse
Affiliation(s)
- Xia Li
- School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Jialin Xie
- School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Zhenglin Du
- School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Long Jiang
- Instrumental Analysis and Research Centre, Sun Yat-Sen University Guangzhou 510275 China
| | - Guangqin Li
- School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Sanliang Ling
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham Nottingham NG7 2RD UK
| | - Kelong Zhu
- School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| |
Collapse
|
6
|
Li X, Xie J, Du Z, Yu R, Jia J, Chen Z, Zhu K. 2D and 3D metal-organic frameworks constructed with a mechanically rigidified [3]rotaxane ligand. Chem Commun (Camb) 2022; 58:5829-5832. [PMID: 35388851 DOI: 10.1039/d2cc01198k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mechanically interlocked [3]rotaxane was newly designed, synthesized, and employed as a ligand for constructing metal-organic frameworks (MOFs). The nano-confinement by macrocycles forces the soft bis-isophthalate axle into a pseudo-rigid conformation and coordinates to zinc(II) ions, affording a two- or three-dimensional MOF under controlled conditions. The 2D MOF exhibits a neutral framework with a periodic puckering sheet structure, while an anionic framework with a pts topology was observed for the 3D MOF. The phase purity of both bulk materials was confirmed by powder X-ray diffraction. Thermogravimetric analysis reveals that both materials are stable up to 250 °C. The success of applying mechanical bonds to rigidify flexible ligands provides new insights for the design of metal-organic frameworks.
Collapse
Affiliation(s)
- Xia Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Jialin Xie
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Zhenglin Du
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Ruiyang Yu
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Jianhua Jia
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Zhong Chen
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China.
| | - Kelong Zhu
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| |
Collapse
|
7
|
Liu Q, Chen L, Wang Z, Yang Z, Sun Y, Wang S, Gu W. A highly sensitive “turn-on” dehydroabietic acid-based fluorescent probe for rapid sensing HSO3− and its application in sugar samples, living cells, and zebrafish. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Wan J, Zhang Z, Wang Y, Zhao J, Qi Y, Zhang X, Liu K, Yu C, Yan X. Synergistic covalent-and-supramolecular polymers connected by [2]pseudorotaxane moieties. Chem Commun (Camb) 2021; 57:7374-7377. [PMID: 34231574 DOI: 10.1039/d1cc02873a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Synergistic covalent-and-supramolecular polymers, in which covalent polymers and supramolecular polymers connect with each other through [2]pseudorotaxane moieties, are designed and synthesized. The unique topological structure effectively enhances the synergistic effect between these two polymers, thereby generating a novel class of mechanically adaptive materials.
Collapse
Affiliation(s)
- Junjun Wan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Yongming Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Yumeng Qi
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Xinhai Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Kai Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| |
Collapse
|
9
|
Song X, Cai X, Zhang X, Fan X. Synthesis of N-acylbenzimidazoles through [4 + 1] annulation of N-arylpivalimidamides with dioxazolones. Org Chem Front 2021. [DOI: 10.1039/d1qo01137e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Presented herein is a novel and efficient synthesis of N-acylbenzimidazoles through an unprecedented [4 + 1] annulation of N-arylpivalimidamides with dioxazolones.
Collapse
Affiliation(s)
- Xia Song
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinyuan Cai
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|