1
|
Lee S, Shim S, Jang H, Jeong JK, Kang Y. Carrier-generation mechanism in Zn-doped In 2O 3 transparent conductors. Phys Chem Chem Phys 2025; 27:8764-8770. [PMID: 40200821 DOI: 10.1039/d5cp00408j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Zn-doped In2O3 (IZO) has been extensively studied as a transparent conducting oxide (TCO) due to its favorable optical and electrical characteristics. In this work, to uncover the origin of degenerate n-type doping in IZO, we investigated point defects using density functional theory (DFT) calculations. Among the two possible configurations of Zn dopants, namely interstitial (Zni) and substitutional Zn(ZnIn), ZnIn is found to be energetically more favorable. While ZnIn acts as an acceptor, potentially compensating for n-type doping, it readily forms a defect complex, ZnIn-VO, by combining with oxygen vacancies (VOs), the dominant intrinsic defects in In2O3. This defect complex exhibits a substantial binding energy of approximately 1 eV and functions as a shallow donor. By evaluating carrier concentrations that can occur in IZO films, we demonstrate that the formation of ZnIn-VO is critical to maintaining or even enhancing significant n-type conductivities of IZO. By elucidating the doping behavior of IZO, this work provides critical insights to optimize its properties, thereby helping the advancement of optoelectronic and energy devices where IZO serves as a vital TCO.
Collapse
Affiliation(s)
- Sanghyuk Lee
- Department of Materials Science and Engineering, Incheon National University, Incheon 22012, Korea.
| | - Seungwon Shim
- Department of Materials Science and Engineering, Incheon National University, Incheon 22012, Korea.
| | - Hyunwoo Jang
- Department of Materials Science and Engineering, Incheon National University, Incheon 22012, Korea.
| | - Jae Kyeong Jeong
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Korea
| | - Youngho Kang
- Department of Materials Science and Engineering, Incheon National University, Incheon 22012, Korea.
| |
Collapse
|
2
|
Wang L, Wang M, Syeda A, Ye F, Liu C, Tao Y, Chen C, Liu B. Thermocatalytic Hydrogen Production from Water at Boiling Condition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400561. [PMID: 38639024 DOI: 10.1002/smll.202400561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/19/2024] [Indexed: 04/20/2024]
Abstract
Thermochemical water-splitting cycles are technically feasible for hydrogen production from water. However, the ultrahigh operation temperature and low efficiency seriously restrict their practical application. Herein, one-step and one-pot thermocatalytic water-splitting process is reported at water boiling condition catalyzed by single atomic Pt on defective In2O3. Water splitting into hydrogen is verified by D2O isotopic experiment, with an optimized hydrogen production rate of 36.4 mmol·h-1·g-1 as calculated on Pt active sites. It is revealed that three-centered Pt1In2 surrounding oxygen vacancy as catalytic ensembles promote the dissociation of the adsorbed water into H, which transfers to singlet atomic Pt sites for H2 production. Remaining OH groups on adjacent In sites from Pt1In2 ensembles undergoes O─O bonding, hyperoxide formation and diminishing via triethylamine oxidation, water re-adsorption for completing the catalytic cycle. Current work represents an isothermal and continuous thermocatalytic water splitting under mild condition, which can re-awaken the research interest to produce H2 from water using low-grade heat and competes with photocatalytic, electrolytic, and photoelectric reactions.
Collapse
Affiliation(s)
- Lin Wang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Min Wang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Arooj Syeda
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Fei Ye
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Congyan Liu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ye Tao
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chunhui Chen
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Bo Liu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
3
|
Gericke SM, Kauppinen MM, Wagner M, Riva M, Franceschi G, Posada-Borbón A, Rämisch L, Pfaff S, Rheinfrank E, Imre AM, Preobrajenski AB, Appelfeller S, Blomberg S, Merte LR, Zetterberg J, Diebold U, Grönbeck H, Lundgren E. Effect of Different In 2O 3(111) Surface Terminations on CO 2 Adsorption. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45367-45377. [PMID: 37704018 PMCID: PMC10540140 DOI: 10.1021/acsami.3c07166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/07/2023] [Indexed: 09/15/2023]
Abstract
In2O3-based catalysts have shown high activity and selectivity for CO2 hydrogenation to methanol; however, the origin of the high performance of In2O3 is still unclear. To elucidate the initial steps of CO2 hydrogenation over In2O3, we have combined X-ray photoelectron spectroscopy and density functional theory calculations to study the adsorption of CO2 on the In2O3(111) crystalline surface with different terminations, namely, the stoichiometric, reduced, and hydroxylated surface. The combined approach confirms that the reduction of the surface results in the formation of In adatoms and that water dissociates on the surface at room temperature. A comparison of the experimental spectra and the computed core-level shifts (using methanol and formic acid as benchmark molecules) suggests that CO2 adsorbs as a carbonate on all three surface terminations. We find that the adsorption of CO2 is hindered by hydroxyl groups on the hydroxylated surface.
Collapse
Affiliation(s)
| | - Minttu M. Kauppinen
- Department
of Physics and Competence Centre for Catalysis, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Margareta Wagner
- Institute
of Applied Physics, Technische Universität
Wien, 1040 Vienna, Austria
| | - Michele Riva
- Institute
of Applied Physics, Technische Universität
Wien, 1040 Vienna, Austria
| | - Giada Franceschi
- Institute
of Applied Physics, Technische Universität
Wien, 1040 Vienna, Austria
| | - Alvaro Posada-Borbón
- Department
of Physics and Competence Centre for Catalysis, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Lisa Rämisch
- Division
of Combustion Physics, Lund University, 22100 Lund, Sweden
| | - Sebastian Pfaff
- Division
of Combustion Physics, Lund University, 22100 Lund, Sweden
| | - Erik Rheinfrank
- Institute
of Applied Physics, Technische Universität
Wien, 1040 Vienna, Austria
| | - Alexander M. Imre
- Institute
of Applied Physics, Technische Universität
Wien, 1040 Vienna, Austria
| | | | | | - Sara Blomberg
- Department
of Chemical Engineering, Lund University, 22100 Lund, Sweden
| | - Lindsay R. Merte
- Department
of Materials Science and Applied Mathematics, Malmö University, 20506 Malmö, Sweden
| | - Johan Zetterberg
- Division
of Combustion Physics, Lund University, 22100 Lund, Sweden
| | - Ulrike Diebold
- Institute
of Applied Physics, Technische Universität
Wien, 1040 Vienna, Austria
| | - Henrik Grönbeck
- Department
of Physics and Competence Centre for Catalysis, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Edvin Lundgren
- Division
of Synchrotron Radiation Research, Lund
University, 22100 Lund, Sweden
| |
Collapse
|
4
|
Ziemba M, Radtke M, Schumacher L, Hess C. Elucidating CO 2 Hydrogenation over In 2 O 3 Nanoparticles using Operando UV/Vis and Impedance Spectroscopies. Angew Chem Int Ed Engl 2022; 61:e202209388. [PMID: 35834367 DOI: 10.1002/anie.202209388] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Indexed: 01/07/2023]
Abstract
In2 O3 has emerged as a promising catalyst for CO2 activation, but a fundamental understanding of its mode of operation in CO2 hydrogenation is still missing, as the application of operando vibrational spectroscopy is challenging due to absorption effects. In this mechanistic study, we systematically address the redox processes related to the reverse water-gas shift reaction (rWGSR) over In2 O3 nanoparticles, both at the surface and in the bulk. Based on temperature-dependent operando UV/Vis spectra and a novel operando impedance approach for thermal powder catalysts, we propose oxidation by CO2 as the rate-determining step for the rWGSR. The results are consistent with redox processes, whereby hydrogen-containing surface species are shown to exhibit a promoting effect. Our findings demonstrate that oxygen/hydrogen dynamics, in addition to surface processes, are important for the activity, which is expected to be of relevance not only for In2 O3 but also for other reducible oxide catalysts.
Collapse
Affiliation(s)
- Marc Ziemba
- Eduard Zintl Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt, Alarich-Weiss-Str. 8, 64287, Darmstadt, Germany
| | - Mariusz Radtke
- Eduard Zintl Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt, Alarich-Weiss-Str. 8, 64287, Darmstadt, Germany
| | - Leon Schumacher
- Eduard Zintl Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt, Alarich-Weiss-Str. 8, 64287, Darmstadt, Germany
| | - Christian Hess
- Eduard Zintl Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt, Alarich-Weiss-Str. 8, 64287, Darmstadt, Germany
| |
Collapse
|
5
|
Ziemba M, Radtke M, Schumacher L, Hess C. Elucidating CO2 Hydrogenation over In2O3 Nanoparticles using Operando UV‐vis and Impedance Spectroscopies. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Marc Ziemba
- Technical University of Darmstadt: Technische Universitat Darmstadt Eduard Zintl Institute of Inorganic and Physical Chemistry GERMANY
| | - Mariusz Radtke
- Technical University of Darmstadt: Technische Universitat Darmstadt Eduard Zintl Institute of Inorganic and Physical Chemistry GERMANY
| | - Leon Schumacher
- Technical University of Darmstadt: Technische Universitat Darmstadt Eduard Zintl Institute of Inorganic and Physical Chemistry GERMANY
| | - Christian Hess
- Technische Universität Darmstadt Eduard-Zintl-Institut für Anorganische und Physikalische Chemie Alarich-Weiss-Str. 8 64287 Darmstadt GERMANY
| |
Collapse
|
6
|
Wei Y, Liu F, Ma J, Yang C, Wang X, Cao J. Catalytic roles of In2O3 in ZrO2-based binary oxides for CO2 hydrogenation to methanol. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Tsoukalou A, Serykh AI, Willinger E, Kierzkowska A, Abdala PM, Fedorov A, Müller CR. Hydrogen dissociation sites on indium-based ZrO2-supported catalysts for hydrogenation of CO2 to methanol. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Posada-Borbón A, Grönbeck H. A First-Principles-Based Microkinetic Study of CO 2 Reduction to CH 3OH over In 2O 3(110). ACS Catal 2021. [DOI: 10.1021/acscatal.1c01707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Alvaro Posada-Borbón
- Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Henrik Grönbeck
- Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| |
Collapse
|
9
|
Zhou Z, Qin B, Li S, Sun Y. A DFT-based microkinetic study on methanol synthesis from CO 2 hydrogenation over the In 2O 3 catalyst. Phys Chem Chem Phys 2021; 23:1888-1895. [PMID: 33458735 DOI: 10.1039/d0cp05947a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we performed density functional theory (DFT)-based microkinetic simulations to elucidate the reaction mechanism of methanol synthesis on two of the most stable facets of the cubic In2O3 (c-In2O3) catalyst, namely the (111) and (110) surfaces. Our DFT calculations show that for both surfaces, it is difficult for the H atom adsorbed at the remaining surface O atom around the O vacancy (Ov) active site to migrate to an O adsorbed at the Ov due to the very high energy barrier involved. In addition, we also find that the C-O bond in the bt-CO2* chemisorption structure can directly break to form CO with a lower energy barrier than that in its hydrogenation to the COOH* intermediate in the COOH route. However, our microkinetic simulations suggest that for both surfaces, CO2 deoxygenation to form CO in both pathways, namely the COOH and CO-O routes, are kinetically slower than methanol formation under typical steady state conditions assuming a CO2 conversion of 10% and a CO selectivity of 1%. Although these results agree with previous experimental observations at relatively low reaction temperature, where methanol formation dominates, they cannot explain the predominant formation of CO at relatively high reaction temperature. We tentatively attribute this to the simplicity of our microkinetic model as well as possible structural changes of the catalyst at relatively high reaction temperature. Furthermore, although the rate-determining step (RDS) from the degree of rate control (DRC) analysis is usually consistent with that judged from the DFT calculated energy barriers, for CO2 hydrogenation to methanol over the (111) surface, our DRC analysis suggests homolytic H2 dissociation to be the rate-controlling step, which is not apparent from the DFT-calculated energy barriers. This indicates that CO2 conversion and methanol selectivity over the (111) surface can be further enhanced if homolytic H2 dissociation can be accelerated for instance by introducing transition metal dopants as already shown by some experimental observations.
Collapse
Affiliation(s)
- Zhimin Zhou
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China.
| | | | | | | |
Collapse
|