1
|
Ou Y, Zhang Y, Luo W, Wu Y, Wang Y. Rational Design of Covalent Organic Frameworks for Photocatalytic Hydrogen Peroxide Production. Macromol Rapid Commun 2025; 46:e2401149. [PMID: 39937547 DOI: 10.1002/marc.202401149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/28/2025] [Indexed: 02/13/2025]
Abstract
Photocatalytic production of hydrogen peroxide (H2O2) represents a significant approach to achieving sustainable energy generation through solar energy, addressing both energy shortages and environmental pollution. Among various photocatalytic materials, covalent organic frameworks (COFs) have gained widespread attention and in-depth research due to their unique advantages, including high porosity, predesignability, and atomic-level tunability. In recent years, significant progress has been made in the development, performance enhancement, and mechanistic understanding of COF-based photocatalysts. This review focuses on the latest advancements in photocatalytic H2O2 production using COFs, particularly emphasizing the rational design of COF structures to regulate catalytic performance and exploring the fundamental processes involved in photocatalysis. Based on current research achievements in this field, this paper also discusses existing challenges and future opportunities, aiming to provide a reference for the application of COFs in photocatalytic H2O2 production.
Collapse
Affiliation(s)
- Yang Ou
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Yifan Zhang
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Wen Luo
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Yang Wu
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Yong Wang
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| |
Collapse
|
2
|
Bao CH, Li L, Wang XF, Xia SS, Wang X, Jin CC, Chen Z. Bringing Porous Framework Materials toward Photocatalytic H 2O 2 Production. NANO LETTERS 2025; 25:4115-4136. [PMID: 40047263 DOI: 10.1021/acs.nanolett.4c06680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Photocatalytic H2O2 production driven by renewable solar energy is a promising and sustainable approach, with porous framework materials such as metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and hydrogen-bonded organic frameworks (HOFs) emerging as highly efficient catalysts. This Review first presents the current research state of porous framework materials in H2O2 photosynthesis, focusing on the progress in H2O2 production across different porous frameworks and mechanism insights gained through advanced techniques. Furthermore, a systematic categorization of material modifications aimed at enhancing the photocatalytic efficiency is provided, linking structural modifications to improved H2O2 production performance. Key factors such as charge carrier separation and transfer, reaction pathways, and material stability are comprehensively analyzed. Finally, the challenges related to stability, scalability, and cost-effectiveness, are discussed alongside opportunities for future advancements. This Review aims to provide insights into understanding and optimizing porous framework materials for efficient and scalable H2O2 photosynthesis.
Collapse
Affiliation(s)
- Chen-Hao Bao
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Lan Li
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Xiao-Fei Wang
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Sa-Sa Xia
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Xusheng Wang
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Cheng-Chao Jin
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Zhi Chen
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China
| |
Collapse
|
3
|
Li YX, Hu Y, Bae HS, Du J, Zhao S, Pan D, Choi W. Designing 1-nm-Thick MOF Nanosheets with Donor-Acceptor Complexes for Photosynthesis of H 2O 2 Using Water and Dioxygen Only. ACS NANO 2024; 18:29233-29247. [PMID: 39387278 DOI: 10.1021/acsnano.4c11606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Artificial photosynthesis of hydrogen peroxide (H2O2) presents a promising environmentally friendly alternative to the industrial anthraquinone process. This work designed ultrathin metal-organic framework (MOF) nanosheets on which porphyrin ligand as an electron donor (D) and anthraquinone (AQ) as an electron acceptor (A) are integrated as the D-A complexes. The porphyrin component allows the MOF nanosheets to absorb full-spectrum solar light while the acceptor AQ motif promotes central aluminum ion coordination, hindering layer stacking to achieve a thickness of 1.0 nm. The ultrathin D-A design facilitates the separation of electrons from the MOF skeleton to the AQ motif, which induces the direct two-electron oxygen reduction reaction (ORR) mediated by the reversible redox couple of AQ-AQH2 and multielectron water oxidation reaction (WOR) driven by holes remaining on the porphyrin part. In O2-saturated water, the ultrathin MOF nanosheets outperformed the AQ-free bulk and multilayered counterparts by 2.9 and 2.6 times in H2O2 production, respectively, achieving the apparent quantum yield of 4.8% at 420 nm. It also surpasses other benchmark photocatalysts, including the typical MOF photocatalyst, MIL-125-NH2, and organic polymeric photocatalysts. The ultrathin D-A MOF photocatalyst generated H2O2 via both two-electron ORR as a major path and two-electron WOR as a minor path. This approach presents a promising strategy for the rational design of efficient nanostructured photocatalysts for solar fuels and chemicals.
Collapse
Affiliation(s)
- Yu-Xia Li
- Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju 58330, Korea
- Nanjing Tech University, Nanjing 210009, China
| | - Yi Hu
- Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju 58330, Korea
| | - Ho-Sub Bae
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Juanshan Du
- Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju 58330, Korea
| | - Shen Zhao
- Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju 58330, Korea
| | - Donglai Pan
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Wonyong Choi
- Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju 58330, Korea
| |
Collapse
|
4
|
Wang J, Lai YJS, Wang TH, Zeng C, Westerhoff P, Mu Y. Water quality constraints H 2O 2 production in a dual-fiber photocatalytic reactor. WATER RESEARCH 2024; 260:121880. [PMID: 38870861 DOI: 10.1016/j.watres.2024.121880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
In-situ hydrogen peroxide (H2O2) finds applications in disinfection and oxidation processes. Photoproduction of H2O2 from water and oxygen, avoids reliance upon organic chemicals, and potentially enables smaller-sized or lower-cost reactors than electrochemical methods. In ultrapure water, we previously demonstrated a novel dual-fiber system coupling a light emitting diode (LED) with a metal-organic framework (MOF) catalyst-coated optical fiber (POF-MIL-101(Fe)) and O2-based hollow-membrane fibers and achieved a remarkable H2O2 yield, 308 ± 1.4 mM h-1 catalyst-g-1. To enable H2O2 production anywhere we sought to understand the impacts of common water quality parameters. The production of H2O2 was not affected by added sodium, potassium, hydroxide, sulfate or nitrate ions. There was consistent performance over a wide pH range (4-10), maintaining a high production rate of 232 ± 3.5 mM h-1 catalyst-g-1 even at pH 10, a condition typically unfavorable for H2O2 photoproduction. Chloride ions produced hypochlorous acid, consuming in-situ produced H2O2. Phosphate adsorption on the iron-based MOF catalysts blocked H2O2 production. Inorganic carbon species inhibited H2O2 production due to in-situ formic acid. Encouraging results were obtained using atmospheric water (i.e., condensate), with rates reaching 288 ± 6.1 mM h-1 catalyst-g-1, comparable to ultrapure water. This underscores atmospheric water as a variable alternative, available in nearly all building air conditioning systems or could overcome geographical constraints, particularly in regions where obtaining pure water resources is challenging, offering a cost-effective solution. The dual-fiber reactor using atmospheric water enables high-efficiency H2O2 production anytime and anywhere.
Collapse
Affiliation(s)
- Jing Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yen-Jung Sean Lai
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe 85287-5001, United States
| | - Tzu-Heng Wang
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85287-3005, United States
| | - Chao Zeng
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85287-3005, United States; State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Paul Westerhoff
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85287-3005, United States.
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
5
|
Ali SA, Sarkar S, Patra AK. Solar Light-Driven Molecular Oxygen Activation by BiOCl Nanosheets: Synergy of Coexposed {001}, {110} Facets and Oxygen Vacancies. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38061-38072. [PMID: 38984982 DOI: 10.1021/acsami.4c06647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Single-crystalline BiOCl nanosheets with coexposed {001} and {110} facets, as well as oxygen vacancies, were synthesized using a simple method. These nanosheets have the ability to activate molecular oxygen, producing reactive superoxide radicals (77.8%) and singlet oxygen (22.2%) when exposed to solar light. The BiOCl demonstrated excellent photocatalytic efficiency in producing H2O2 under simulated solar light and in oxidatively hydroxylating phenylboronic acid under blue LED light. Our research highlights the significance of constructing coexposed {001} and {110} facets, as well as oxygen vacancies, in enhancing photocatalytic performance. The BiOCl nanosheets have the capability to produce H2O2 with a solar-to-chemical energy conversion efficiency of 0.11%.
Collapse
Affiliation(s)
- Sk Afsar Ali
- Department of Chemistry, University of Kalyani, Kalyani ,West Bengal 741235, India
| | - Sunny Sarkar
- Department of Chemistry, University of Kalyani, Kalyani ,West Bengal 741235, India
| | - Astam K Patra
- Department of Chemistry, University of Kalyani, Kalyani ,West Bengal 741235, India
| |
Collapse
|
6
|
Hu J, Li J, Pu Z, Xiao W, Yu H, Zhang Z, Yu F, Liu C, Zhang Q. S-scheme NiO/C 3N 5 heterojunctions with enhanced interfacial electric field for boosting photothermal-assisted photocatalytic H 2 and H 2O 2 production. J Colloid Interface Sci 2024; 665:780-792. [PMID: 38554468 DOI: 10.1016/j.jcis.2024.03.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
Heterostructured visible-light-responsive photocatalysts represent a prospective approach to achieve efficient solar-to-chemical energy conversion. Herein, we propose a facile self-assembly technique to synthesize NiO nanoparticles/C3N5 nanosheets (NOCN) heterojunctions for hydrogen (H2) evolution catalysis and hydrogen peroxide (H2O2) production under visible light. In this regard, the black NiO nanoparticles (NPs) were tightly anchored on the surface of C3N5 nanosheets (CNNS) to construct S-scheme NOCN heterojunction, enabling efficient charge separation and high redox capability. Obtained results elucidated that the incorporated NiO NPs significantly promote light-harvesting efficiency and photo-to-thermal capacity over the NOCN composites. The enhanced photothermal effect facilitates the charge carrier transfer rate across the heterojunction and boosts the surface reaction kinetics. Accordingly, the photocatalytic performances of CNNS for H2 release and H2O2 production can be manipulated by introducing NiO NPs. The modified photocatalytic properties of NOCN composites are ascribed to the synergistic effects of all integrated components and the S-scheme heterojunction formation. Impressively, the high H2 evolution photocatalysis efficiency of NOCN nano-catalysts in seawater certifies their potential environmental applicability. Among all, the 12-NOCN nano-catalyst exhibits a higher photocatalytic efficiency for H2 release (112.2 μmol∙g-1∙h-1) and H2O2 production (91.2 μmol∙L-1∙h-1). Besides, the 12-NOCN nano-catalyst reveals excellent recyclability and structural stability. Additionally, the possible mechanism for photothermal-assisted photocatalysis is proposed. This work affords a feasible pathway to design photothermal-assisted S-scheme heterojunctions for diverse photocatalytic applications.
Collapse
Affiliation(s)
- Jiawei Hu
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jiaming Li
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Zhongyi Pu
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Wen Xiao
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Huan Yu
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Zhihao Zhang
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Fang Yu
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Chao Liu
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Provincial Key Laboratory of Eco-Environmental Materials, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Qinfang Zhang
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| |
Collapse
|
7
|
Zhang Y, Luo Z, Zhou T, Huang H, Tang H. Structure determines performance: isomeric Ti-MOFs for photocatalytic synthesis of hydrogen peroxide. Chem Commun (Camb) 2024. [PMID: 38264840 DOI: 10.1039/d3cc05845j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
NH2-UiO-66(Ti) and NH2-MIL-125(Ti) were successfully prepared by using post-synthesis exchange (PSE) and hydrothermal methods, and then these frameworks were tested for photocatalytic hydrogen peroxide production in pure water under visible light. NH2-MIL-125(Ti) exhibits superior activity compared to NH2-UiO-66(Ti) due to its shorter Ti-O bond. In addition, NH2-MIL-125-D (defective) demonstrates a high photocatalytic yield of hydrogen peroxide owing to the presence of defect-rich titanium rich sites.
Collapse
Affiliation(s)
- Yongzhou Zhang
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Ze Luo
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Tianqing Zhou
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Haibo Huang
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Hua Tang
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
8
|
Hoefnagel ME, Rademaker D, Hetterscheid DGH. Directing the Selectivity of Oxygen Reduction to Water by Confining a Cu Catalyst in a Metal Organic Framework. CHEMSUSCHEM 2023; 16:e202300392. [PMID: 37326580 DOI: 10.1002/cssc.202300392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/17/2023]
Abstract
Electrocatalysis is to play a key role in the transition towards a sustainable chemical and energy industry and active, stable and selective redox catalysts are much needed. Porous structures such as metal organic frameworks (MOFs) are interesting materials as these may influence selectivity of chemical reactions through confinement effects. In this work, the oxygen reduction catalyst Cu-tmpa was incorporated into the NU1000 MOF. Confinement of the catalyst within NU1000 steers the selectivity of the oxygen reduction reaction (ORR) towards water rather than peroxide. This is attributed to retention of the obligatory H2 O2 intermediate in close proximity to the catalytic center. Moreover, the resulting NU1000|Cu-tmpa MOF shows an excellent activity and stability in prolonged electrochemical studies, illustrating the potential of this approach.
Collapse
Affiliation(s)
- Marlene E Hoefnagel
- Leiden Institute of Chemistry, Leiden University, P.O Box 9502, 2300 RA, Leiden, The Netherlands
| | - Dana Rademaker
- Leiden Institute of Chemistry, Leiden University, P.O Box 9502, 2300 RA, Leiden, The Netherlands
| | - Dennis G H Hetterscheid
- Leiden Institute of Chemistry, Leiden University, P.O Box 9502, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
9
|
ÖZCAN E, MERMER Z, ZORLU Y. Metal-organic frameworks as photocatalysts in energetic and environmental applications. Turk J Chem 2023; 47:1018-1052. [PMID: 38173745 PMCID: PMC10760874 DOI: 10.55730/1300-0527.3592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/31/2023] [Accepted: 10/11/2023] [Indexed: 01/05/2024] Open
Abstract
Metal-organic frameworks (MOFs) are an exciting new class of porous materials with great potential for photocatalytic applications in the environmental and energy sectors. MOFs provide significant advantages over more traditional materials when used as photocatalysts due to their high surface area, adaptable topologies, and functional ability. In this article, we summarize current developments in the use of MOFs as photocatalysts for a variety of applications, such as CO2 reduction, water splitting, pollutant degradation, and hydrogen production. We discuss the fundamental properties of MOFs that make them ideal for photocatalytic applications, as well as strategies for improving their performance. The opportunities and challenges presented by this rapidly expanding field are also highlighted.
Collapse
Affiliation(s)
- Elif ÖZCAN
- Gebze Technical University, Department of Chemistry, Kocaeli,
Turkiye
| | - Zeliha MERMER
- Gebze Technical University, Department of Chemistry, Kocaeli,
Turkiye
| | - Yunus ZORLU
- Gebze Technical University, Department of Chemistry, Kocaeli,
Turkiye
| |
Collapse
|
10
|
Kondo Y, Honda K, Kuwahara Y, Mori K, Kobayashi H, Yamashita H. Boosting Photocatalytic Hydrogen Peroxide Production from Oxygen and Water Using a Hafnium-Based Metal–Organic Framework with Missing-Linker Defects and Nickel Single Atoms. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yoshifumi Kondo
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka565-0871, Japan
| | - Kotaro Honda
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka565-0871, Japan
| | - Yasutaka Kuwahara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka565-0871, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama332-0012, Japan
| | - Kohsuke Mori
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka565-0871, Japan
| | - Hisayoshi Kobayashi
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka565-0871, Japan
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka565-0871, Japan
| |
Collapse
|
11
|
Kondo Y, Kuwahara Y, Mori K, Yamashita H. Design of metal-organic framework catalysts for photocatalytic hydrogen peroxide production. Chem 2022. [DOI: 10.1016/j.chempr.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Behera A, Kar AK, Srivastava R. Oxygen Vacancy-Mediated Z-Scheme Charge Transfer in a 2D/1D B-Doped g-C 3N 4/rGO/TiO 2 Heterojunction Visible Light-Driven Photocatalyst for Simultaneous/Efficient Oxygen Reduction Reaction and Alcohol Oxidation. Inorg Chem 2022; 61:12781-12796. [PMID: 35913785 DOI: 10.1021/acs.inorgchem.2c01899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogen peroxide (H2O2) is a powerful oxidant that directly or indirectly oxidizes many organic and inorganic contaminants. The photocatalytic generation of H2O2 is achieved by using a semiconductor photocatalyst in the presence of alcohol as a proton source. Herein, we have synthesized oxygen vacancy (Ov)-mediated TiO2/B-doped g-C3N4/rGO (TBCN@rGO) ternary heterostructures by a simple hydrothermal technique. Several characterization techniques were employed to explore the existence of oxygen vacancies in the crystal structure and investigate their impact on the optoelectronic properties of the catalyst. Oxygen vacancies offered additional sites for adsorbing molecular oxygen, activating alcohols, and facilitating electron migration from TBCN@rGO to the surface-adsorbed O2. The defect creation (oxygen vacancy) and Z-scheme mechanistic pathways create a suitable platform for generating H2O2 by two-electron reduction processes. The optimized catalyst showed the highest photocatalytic H2O2 evolution rate of 172 μmol/h, which is 1.9 and 2.5 times greater than that of TBCN and BCN, respectively. The photocatalytic oxidation of various lignocellulose-derived alcohols (such as furfural alcohol and vanillyl alcohol) and benzyl alcohol was also achieved. Photocatalytic activity data, physicochemical and optoelectronic features, and trapping experiments were conducted to elucidate the structure-activity relationships. The TBCN@rGO acts as a multifunctional Z-scheme photocatalyst having an oxygen vacancy, modulates surface acidity-basicity required for the adsorption and activation of the reactant molecules, and displays excellent photocatalytic performance due to the formation of a large number of active surface sites, increased electrical conductivity, improved charge transfer properties, outstanding photostability, and reusability. The present study establishes a unique strategy for improving H2O2 generation and alcohol oxidation activity and also provides insights into the significance of a surface vacancy in the semiconductor photocatalyst.
Collapse
Affiliation(s)
- Arjun Behera
- Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, India
| | - Ashish Kumar Kar
- Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, India
| | - Rajendra Srivastava
- Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, India
| |
Collapse
|
13
|
Constructing dual-functional porphyrin-based thorium metal-organic framework toward photocatalytic uranium(VI) reduction integrated with organic oxidation. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1284-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Gopakumar A, Ren P, Chen J, Manzolli Rodrigues BV, Vincent Ching HY, Jaworski A, Doorslaer SV, Rokicińska A, Kuśtrowski P, Barcaro G, Monti S, Slabon A, Das S. Lignin-Supported Heterogeneous Photocatalyst for the Direct Generation of H 2O 2 from Seawater. J Am Chem Soc 2022; 144:2603-2613. [PMID: 35129333 DOI: 10.1021/jacs.1c10786] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The development of smart and sustainable photocatalysts is in high priority for the synthesis of H2O2 because the global demand for H2O2 is sharply rising. Currently, the global market share for H2O2 is around 4 billion US$ and is expected to grow by about 5.2 billion US$ by 2026. Traditional synthesis of H2O2 via the anthraquinone method is associated with the generation of substantial chemical waste as well as the requirement of a high energy input. In this respect, the oxidative transformation of pure water is a sustainable solution to meet the global demand. In fact, several photocatalysts have been developed to achieve this chemistry. However, 97% of the water on our planet is seawater, and it contains 3.0-5.0% of salts. The presence of salts in water deactivates the existing photocatalysts, and therefore, the existing photocatalysts have rarely shown reactivity toward seawater. Considering this, a sustainable heterogeneous photocatalyst, derived from hydrolysis lignin, has been developed, showing an excellent reactivity toward generating H2O2 directly from seawater under air. In fact, in the presence of this catalyst, we have been able to achieve 4085 μM of H2O2. Expediently, the catalyst has shown longer durability and can be recycled more than five times to generate H2O2 from seawater. Finally, full characterizations of this smart photocatalyst and a detailed mechanism have been proposed on the basis of the experimental evidence and multiscale/level calculations.
Collapse
Affiliation(s)
- Aswin Gopakumar
- Department of Chemistry, Universiteit Antwerpen, Antwerp 2020, Belgium
| | - Peng Ren
- Department of Chemistry, Universiteit Antwerpen, Antwerp 2020, Belgium
| | - Jianhong Chen
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | | | - H Y Vincent Ching
- Department of Chemistry, Universiteit Antwerpen, Wilrijk 2610, Belgium
| | - Aleksander Jaworski
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | | | - Anna Rokicińska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków 30-387, Poland
| | - Piotr Kuśtrowski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków 30-387, Poland
| | - Giovanni Barcaro
- CNR-IPCF, Institute for Chemical and Physical Processes, Area della Ricerca, via Moruzzi 1, Pisa I-56124, Italy
| | - Susanna Monti
- CNR-ICCOM, Institute of Chemistry of Organometallic Compounds, Area della Ricerca, via Moruzzi 1, Pisa I-56124, Italy
| | - Adam Slabon
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Shoubhik Das
- Department of Chemistry, Universiteit Antwerpen, Antwerp 2020, Belgium
| |
Collapse
|
15
|
Jiang Z, Zhang Y, Zhang L, Cheng B, Wang L. Effect of calcination temperatures on photocatalytic H2O2-production activity of ZnO nanorods. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63832-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Wang L, Zhang J, Zhang Y, Yu H, Qu Y, Yu J. Inorganic Metal-Oxide Photocatalyst for H 2 O 2 Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104561. [PMID: 34716646 DOI: 10.1002/smll.202104561] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen peroxide (H2 O2 ) is a mild but versatile oxidizing agent with extensive applications in bleaching, wastewater purification, medical treatment, and chemical synthesis. The state-of-art H2 O2 production via anthraquinone oxidation is hardly considered a cost-efficient and environment-friendly process because it requires high energy input and generates hazardous organic wastes. Photocatalytic H2 O2 production is a green, sustainable, and inexpensive process which only needs water and gaseous dioxygen as the raw materials and sunlight as the power source. Inorganic metal oxide semiconductors are good candidates for photocatalytic H2 O2 production due to their abundance in nature, biocompatibility, exceptional stability, and low cost. Progress has been made to enhance the photocatalytic activity toward H2 O2 production, however, H2 O2 photosynthesis is still in the laboratory research phase since the productivity is far from satisfaction. To inspire innovative ideas for boosting the H2 O2 yield in photocatalysis, the most well-studied metal oxide photocatalysts are selected and the modification strategies to improve their activity are listed. The mechanisms for H2 O2 production over modified photocatalysts are discussed to highlight the facilitating role of the modification methods. Besides, methods for the quantification of H2 O2 and associated radical intermediates are provided to guide future studies in this field.
Collapse
Affiliation(s)
- Linxi Wang
- School of Materials Science & Engineering, Xi'an Polytechnic University, Jinhua South Road 19, Xi'an, Shaanxi, 710048, P. R. China
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, P. R. China
| | - Jianjun Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, P. R. China
| | - Yong Zhang
- College of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi, 435003, P. R. China
| | - Huogen Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, P. R. China
| | - Yinhu Qu
- School of Materials Science & Engineering, Xi'an Polytechnic University, Jinhua South Road 19, Xi'an, Shaanxi, 710048, P. R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, P. R. China
| |
Collapse
|
17
|
Liang Q, Cheng H, Li C, Ning L, Shao L. A covalent modification strategy for di-alkyne tagged metal–organic frameworks to access efficient heterogeneous catalysts toward C–C bond formation. NEW J CHEM 2022. [DOI: 10.1039/d1nj04982h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A di-alkyne tagged MOF was proposed to introduce diverse metals, and UiO-66-(alkyne-Co)2 displayed an efficient catalytic performance for the Knoevenagel reaction.
Collapse
Affiliation(s)
- Qianqian Liang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Zhangjiang Hi-tech Park, Pudong, Shanghai, 201203, China
| | - Hua Cheng
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Zhangjiang Hi-tech Park, Pudong, Shanghai, 201203, China
| | - Chengwen Li
- DezhouDeyao Pharmaceutical Co, Ltd, No. 6000 East Dongfanghong Road, Shandong, 253084, China
| | - Liangmin Ning
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Liming Shao
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Zhangjiang Hi-tech Park, Pudong, Shanghai, 201203, China
- State Key Laboratory of Medical Neurobiology, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| |
Collapse
|
18
|
Shi H, Wu Q, Wu Z, Liu Y, Wang X, Huang H, Liu Y, Kang Z. A metal free catalyst for efficient and stable one-step photocatalytic production of pure hydrogen peroxide. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00008c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen peroxide (H2O2) is widely used as a green and clean energy. The pure H2O2 solution has attracted much attention for its special applications in many fields. Photocatalytic water splitting...
Collapse
|
19
|
Kondo Y, Hino K, Kuwahara Y, Mori K, Kobayashi H, Yamashita H. Lewis acid-triggered photocatalytic hydrogen peroxide production in an aluminum-based metal–organic framework. Chem Commun (Camb) 2022; 58:12345-12348. [DOI: 10.1039/d2cc04454d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Al-based MIL-101-NH2, which was previously regarded as having silent photo-features, exhibits photocatalytic H2O2 production via O2 reduction accompanied by efficient suppression of undesired H2O2 decomposition.
Collapse
Affiliation(s)
- Yoshifumi Kondo
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kenta Hino
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasutaka Kuwahara
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Kohsuke Mori
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hisayoshi Kobayashi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiromi Yamashita
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
20
|
Zheng Y, Zhou H, Zhou B, Mao J, Zhao Y. Photocatalytic production of H2O2 over facet-dependent Ti-MOF. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02166d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Z-scheme structure between Ti-MOF (001) and (111) facets for photocatalytic H2O2 production.
Collapse
Affiliation(s)
- Yuanzhou Zheng
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Jiangsu, China
| | - Hualan Zhou
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Jiangsu, China
| | - Bosen Zhou
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Jiangsu, China
| | - Jingchen Mao
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Jiangsu, China
| | - Yinghao Zhao
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Jiangsu, China
| |
Collapse
|
21
|
Syzgantseva MA, Stepanov NF, Syzgantseva OA. Effect of Ligand Functionalization on the Rate of Charge Carrier Recombination in Metal-Organic Frameworks: A Case Study of MIL-125. J Phys Chem Lett 2021; 12:829-834. [PMID: 33417462 DOI: 10.1021/acs.jpclett.0c03634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ligand functionalization is a powerful approach for modifying the electronic structure of metal-organic frameworks when targeting the optimal electronic properties for photocatalysis and photovoltaics. However, its effect on the charge carrier lifetimes and recombination pathways remains unexplored. In this work, first-principles simulations, including nonadiabatic molecular dynamics, are performed for the representative TiO2-based metal-organic framework systems MIL-125-X to unravel the impact of ligand functionalization on the nonradiative electron-hole recombination process, decoherence rates, and phonon modes giving the largest contribution to the nonradiative decay. Nonradiative recombination rates, simulated using the PBE0 density functional, are in excellent agreement with experiment. The ligand functionalization in MIL-125-X influences the recombination rates, unraveling the trend opposite to the evolution of the band gap and affecting the nonadiabatic coupling coefficients. Ligand modification impacts the phonon modes, which contribute most to the recombination process, altering the distribution between soft phonon modes and vibrational modes associated with specific structural motifs.
Collapse
Affiliation(s)
- Maria A Syzgantseva
- Laboratory of Quantum Mechanics and Molecular Structure, Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Nikolay F Stepanov
- Laboratory of Quantum Mechanics and Molecular Structure, Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Olga A Syzgantseva
- Laboratory of Quantum Photodynamics, Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
22
|
Yamaguchi R, Tanaka R, Maetani M, Tabe H, Yamada Y. Efficient capturing of hydrogen peroxide in dilute aqueous solution by co-crystallization with amino acids. CrystEngComm 2021. [DOI: 10.1039/d1ce00688f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
X-ray structure analyses of co-crystals of H2O2 and l-Phe, dl-Phe, or dl-Asp prepared in a dilute aqueous solution (30 wt%) indicated that multi-layer motifs including water molecule is important for highly efficient H2O2 capture in dilute solutions.
Collapse
Affiliation(s)
- Ryota Yamaguchi
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Rika Tanaka
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
- Analytical Center of Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Mayu Maetani
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Hiroyasu Tabe
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
- Research Center for Artificial Photosynthesis (ReCAP), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Yusuke Yamada
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
- Research Center for Artificial Photosynthesis (ReCAP), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| |
Collapse
|
23
|
Recent Advances in Photocatalytic CO2 Utilisation Over Multifunctional Metal–Organic Frameworks. Catalysts 2020. [DOI: 10.3390/catal10101176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The efficient conversion of carbon dioxide (CO2) to high-value chemicals using renewable solar energy is a highly attractive but very challenging process that is used to address ever-growing energy demands and environmental issues. In recent years, metal–organic frameworks (MOFs) have received significant research attention owing to their tuneability in terms of their composition, structure, and multifunctional characteristics. The functionalisation of MOFs by metal nanoparticles (NPs) is a promising approach used to enhance their light absorption and photocatalytic activity. The efficient charge separation and strong CO2 binding affinity of hybrid MOF-based photocatalysts facilitate the CO2 conversion process. This review summarises the latest advancements involving noble metal, non-noble-metal, and miscellaneous species functionalised MOF-based hybrid photocatalysts for the reduction of CO2 to carbon monoxide (CO) and other value-added chemicals. The novel synthetic strategies and their corresponding structure–property relationships have also been discussed for solar-to-chemical energy conversion. Furthermore, the current challenges and prospects in practical applications are also highlighted for sustainable energy production.
Collapse
|