1
|
Derradji A, Sandoval-Salinas ME, Ricci G, Pérez-Jiménez ÁJ, San-Fabián E, Olivier Y, Sancho-García JC. Functionalization of Clar's Goblet Diradical with Heteroatoms: Tuning the Excited-State Energies to Promote Triplet-to-Singlet Conversion. J Phys Chem A 2025; 129:1779-1791. [PMID: 39932708 DOI: 10.1021/acs.jpca.4c03820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The ground-state spin multiplicity as well as the energy difference between the lowest-energy spin-singlet (S1) and spin-triplet (T1) excited states of topologically frustrated organic (diradical) molecules can be tuned by doping with a pair of heteroatoms (N or B atoms). We have thus systematically studied here a set of Clar's Goblet derivatives upon a controlled substitution at different C sites, to alter the electronic structure of the molecules and disclose the positions at which: (i) the ground-state multiplicity becomes a closed-shell singlet and (ii) the energy difference between S1 and T1 is considerably small (i.e., below 0.1-0.2 eV to induce a triplet exciton recovery upon thermal effects). This electronic structure outcome is driven by strong correlation effects; therefore, we have here applied a variety of single-reference [TD-DFT, CIS(D), SCS-CC2] and multireference [CASSCF, NEVPT2, RAS-srDFT] methods. For TD-DFT, we have covered global hybrid (PBE0, M06-2X), range-separated hybrid (ωB97X), and double-hybrid (PBE-QIDH, SOS1-PBE-QIDH, and PBE0-2) functionals to ascertain whether the results were highly dependent on the functional choice. Overall, we found that the heterosubstitution strategy could largely modify the electronic and optical properties of the pristine diradical system, with these organic forms thus constituting a new set of compounds with further optoelectronic applications.
Collapse
Affiliation(s)
- Amel Derradji
- Department of Physical Chemistry, University of Alicante, E-03080 Alicante, Spain
| | | | - Gaetano Ricci
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, B-5000 Namur, Belgium
| | | | - Emilio San-Fabián
- Department of Physical Chemistry, University of Alicante, E-03080 Alicante, Spain
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, B-5000 Namur, Belgium
| | | |
Collapse
|
2
|
Dos Santos JM, Hall D, Basumatary B, Bryden M, Chen D, Choudhary P, Comerford T, Crovini E, Danos A, De J, Diesing S, Fatahi M, Griffin M, Gupta AK, Hafeez H, Hämmerling L, Hanover E, Haug J, Heil T, Karthik D, Kumar S, Lee O, Li H, Lucas F, Mackenzie CFR, Mariko A, Matulaitis T, Millward F, Olivier Y, Qi Q, Samuel IDW, Sharma N, Si C, Spierling L, Sudhakar P, Sun D, Tankelevičiu Tė E, Duarte Tonet M, Wang J, Wang T, Wu S, Xu Y, Zhang L, Zysman-Colman E. The Golden Age of Thermally Activated Delayed Fluorescence Materials: Design and Exploitation. Chem Rev 2024; 124:13736-14110. [PMID: 39666979 DOI: 10.1021/acs.chemrev.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Since the seminal report by Adachi and co-workers in 2012, there has been a veritable explosion of interest in the design of thermally activated delayed fluorescence (TADF) compounds, particularly as emitters for organic light-emitting diodes (OLEDs). With rapid advancements and innovation in materials design, the efficiencies of TADF OLEDs for each of the primary color points as well as for white devices now rival those of state-of-the-art phosphorescent emitters. Beyond electroluminescent devices, TADF compounds have also found increasing utility and applications in numerous related fields, from photocatalysis, to sensing, to imaging and beyond. Following from our previous review in 2017 ( Adv. Mater. 2017, 1605444), we here comprehensively document subsequent advances made in TADF materials design and their uses from 2017-2022. Correlations highlighted between structure and properties as well as detailed comparisons and analyses should assist future TADF materials development. The necessarily broadened breadth and scope of this review attests to the bustling activity in this field. We note that the rapidly expanding and accelerating research activity in TADF material development is indicative of a field that has reached adolescence, with an exciting maturity still yet to come.
Collapse
Affiliation(s)
- John Marques Dos Santos
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - David Hall
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Biju Basumatary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Megan Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dongyang Chen
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Praveen Choudhary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Thomas Comerford
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ettore Crovini
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Andrew Danos
- Department of Physics, Durham University, Durham DH1 3LE, UK
| | - Joydip De
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Stefan Diesing
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Mahni Fatahi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Máire Griffin
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Hassan Hafeez
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Lea Hämmerling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Emily Hanover
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Janine Haug
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Tabea Heil
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Durai Karthik
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Shiv Kumar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Oliver Lee
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Haoyang Li
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Fabien Lucas
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | | | - Aminata Mariko
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Quan Qi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Nidhi Sharma
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Changfeng Si
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Leander Spierling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Pagidi Sudhakar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dianming Sun
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Eglė Tankelevičiu Tė
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Michele Duarte Tonet
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tao Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Sen Wu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yan Xu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Le Zhang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| |
Collapse
|
3
|
Folkestad SD, Koch H. Reduced Scaling Correlated Natural Transition Orbitals for Multilevel Coupled Cluster Calculations. J Phys Chem A 2024; 128:9688-9694. [PMID: 39446053 PMCID: PMC11551955 DOI: 10.1021/acs.jpca.4c06271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Multilevel coupled cluster theory offers reduced scaling computation of intensive properties in systems that are too large for standard coupled cluster calculations. A significant benefit of the multilevel coupled cluster framework is the possibility of calculating intensive properties that are not tightly localized if an appropriate set of active orbitals is used. Correlated natural transition orbitals (CNTOs) are tailored to describe excitation processes. For multilevel coupled cluster singles and doubles (MLCCSD) and singles and perturbative doubles (MLCC2) calculations, the construction of CNTOs generally becomes the computational bottleneck. Here, we demonstrate how CNTOs can be obtained with O ( N 3 ) operations, eliminating the O ( N 5 ) -scaling steps involved in the original approach. This reduction in scaling moves the bottleneck of MLCC2 and MLCCSD calculations from the active orbital space preparation to the MLCC2 and MLCCSD equations with O ( N 4 ) -scaling.
Collapse
Affiliation(s)
- Sarai Dery Folkestad
- Department of Chemistry, Norwegian University of Science and Technology, NTNU, 7491 Trondheim, Norway
| | - Henrik Koch
- Department of Chemistry, Norwegian University of Science and Technology, NTNU, 7491 Trondheim, Norway
| |
Collapse
|
4
|
Patra A, Pipim GB, Krylov AI, Mallikarjun Sharada S. Performance of Density Functionals for Excited-State Properties of Isolated Chromophores and Exciplexes: Emission Spectra, Solvatochromic Shifts, and Charge-Transfer Character. J Chem Theory Comput 2024; 20:2520-2537. [PMID: 38488640 DOI: 10.1021/acs.jctc.4c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
This study assesses the performance of various meta-generalized gradient approximation (meta-GGA), global hybrid, and range-separated hybrid (RSH) density functionals in capturing the excited-state properties of organic chromophores and their excited-state complexes (exciplexes). Motivated by their uses in solar energy harvesting and photoredox CO2 reduction, we use oligo-(p-phenylenes) and their excited-state complexes with triethylamine as model systems. We focus on the fluorescence properties of these systems, specifically emission energies. We also consider solvatochromic shifts and wave function characteristics. The latter is described by using reduced quantities such as natural transition orbitals (NTOs) and exciton descriptors. The functionals are benchmarked against the experimental fluorescence spectra and the equation-of-motion coupled-cluster method with single and double excitations. Both in isolated chromophores and in exciplexes, meta-GGA functionals drastically underestimate the emission energies and exhibit significant exciton delocalization and anticorrelation between electron and hole motion. The performance of global hybrid functionals is strongly dependent on the percentage of exact exchange. Our study identifies RSH GGAs as the best-performing functionals, with ωPBE demonstrating the best agreement with experimental results. RSH meta-GGAs often overestimate emission energies in exciplexes and yield larger hole NTOs. Their performance can be improved by optimally tuning the range-separation parameter.
Collapse
Affiliation(s)
- Abhilash Patra
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - George Baffour Pipim
- Department of Chemistry, University of Southern California, Los Angeles ,California 90089, United States
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles ,California 90089, United States
| | - Shaama Mallikarjun Sharada
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, University of Southern California, Los Angeles ,California 90089, United States
| |
Collapse
|
5
|
Folkestad SD, Koch H. Triplet Excited States with Multilevel Coupled Cluster Theory. J Chem Theory Comput 2023; 19:8108-8117. [PMID: 37966896 PMCID: PMC10687868 DOI: 10.1021/acs.jctc.3c00763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Indexed: 11/17/2023]
Abstract
We extend the multilevel coupled cluster framework with triplet excitation energies at the singles and perturbative doubles (MLCC2) and singles and doubles (MLCCSD) levels of theory. In multilevel coupled cluster theory, we partition the orbitals and restrict the higher-order excitations in the cluster operator to a set of active orbitals. With an appropriate choice of these orbitals, the multilevel approach can give significant computational savings while maintaining the high accuracy of standard coupled cluster theory. In this work, we generated active orbitals from approximate correlated natural transition orbitals (CNTOs). The CNTOs form a compact orbital space specifically tailored to describe the triplet excited states of interest. We compare the performance of MLCCSD and MLCC2, in terms of cost and accuracy, to those of their standard coupled cluster counterparts (CC2 and CCSD) and finally show proof-of-concept calculations of the singlet-triplet gaps of molecules that are of interest for their potential use in organic light-emitting diodes.
Collapse
Affiliation(s)
- Sarai Dery Folkestad
- Department
of Chemistry, Norwegian University of Science
and Technology, Trondheim 7491, Norway
| | - Henrik Koch
- Department
of Chemistry, Norwegian University of Science
and Technology, Trondheim 7491, Norway
- Scuola
Normale Superiore, Piazza dei Cavaleri 7, Pisa 56126, Italy
| |
Collapse
|
6
|
Paredis S, Cardeynaels T, Brebels S, Deckers J, Kuila S, Lathouwers A, Van Landeghem M, Vandewal K, Danos A, Monkman AP, Champagne B, Maes W. Intramolecular locking and coumarin insertion: a stepwise approach for TADF design. Phys Chem Chem Phys 2023; 25:29842-29849. [PMID: 37888766 DOI: 10.1039/d3cp03695b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Three novel TADF (thermally activated delayed fluorescence) emitters based on the well-studied Qx-Ph-DMAC fluorophore are designed and synthesized. The photophysical properties of these materials are studied from a theoretical and experimental point of view, demonstrating the cumulative effects of multiple small modifications that combine to afford significantly improved TADF performance. First, an extra phenyl ring is added to the acceptor part of Qx-Ph-DMAC to increase the conjugation length, resulting in BQx-Ph-DMAC, which acts as an intermediate molecular structure. Next, an electron-deficient coumarin unit is incorporated to fortify the electron accepting ability, affording ChromPy-Ph-DMAC with red-shifted emission. Finally, the conjugated system is further enlarged by 'locking' the molecular structure, generating DBChromQx-DMAC with further red-shifted emission. The addition of the coumarin unit significantly impacts the charge-transfer excited state energy levels with little effect on the locally excited states, resulting in a decrease of the singlet-triplet energy gap. As a result, the two coumarin-based emitters show considerably improved TADF performance in 1 w/w% zeonex films when compared to the initial Qx-Ph-DMAC structure. 'Locking' the molecular structure further lowers the singlet-triplet energy gap, resulting in more efficient reverse intersystem crossing and increasing the contribution of TADF to the total emission.
Collapse
Affiliation(s)
- S Paredis
- Hasselt University, Institute for Materials Research (IMO-IMOMEC), Design & Synthesis of Organic Semiconductors (DSOS), Agoralaan 1, Diepenbeek 3590, Belgium.
- IMOMEC Division, IMEC, Wetenschapspark 1, Diepenbeek 3590, Belgium
- Energyville, Thorpark, Genk 3600, Belgium
| | - T Cardeynaels
- Hasselt University, Institute for Materials Research (IMO-IMOMEC), Design & Synthesis of Organic Semiconductors (DSOS), Agoralaan 1, Diepenbeek 3590, Belgium.
- IMOMEC Division, IMEC, Wetenschapspark 1, Diepenbeek 3590, Belgium
- Energyville, Thorpark, Genk 3600, Belgium
- University of Namur, Laboratory of Theoretical Chemistry, Theoretical and Structural Physical Chemistry Unit, Namur Institute of Structured Matter, Rue de Bruxelles 61, Namur 5000, Belgium
| | - S Brebels
- Hasselt University, Institute for Materials Research (IMO-IMOMEC), Design & Synthesis of Organic Semiconductors (DSOS), Agoralaan 1, Diepenbeek 3590, Belgium.
- IMOMEC Division, IMEC, Wetenschapspark 1, Diepenbeek 3590, Belgium
- Energyville, Thorpark, Genk 3600, Belgium
| | - J Deckers
- Hasselt University, Institute for Materials Research (IMO-IMOMEC), Design & Synthesis of Organic Semiconductors (DSOS), Agoralaan 1, Diepenbeek 3590, Belgium.
- IMOMEC Division, IMEC, Wetenschapspark 1, Diepenbeek 3590, Belgium
- Energyville, Thorpark, Genk 3600, Belgium
| | - S Kuila
- Durham University, Department of Physics, OEM Group, South Road, Durham DH1 3LE, UK.
| | - A Lathouwers
- Hasselt University, Institute for Materials Research (IMO-IMOMEC), Design & Synthesis of Organic Semiconductors (DSOS), Agoralaan 1, Diepenbeek 3590, Belgium.
- IMOMEC Division, IMEC, Wetenschapspark 1, Diepenbeek 3590, Belgium
- Energyville, Thorpark, Genk 3600, Belgium
| | - M Van Landeghem
- IMOMEC Division, IMEC, Wetenschapspark 1, Diepenbeek 3590, Belgium
- Energyville, Thorpark, Genk 3600, Belgium
- Hasselt University, Institute for Materials Research (IMO-IMOMEC), Organic Opto-Electronics (OOE), Wetenschapspark 1, Diepenbeek 3590, Belgium
| | - K Vandewal
- IMOMEC Division, IMEC, Wetenschapspark 1, Diepenbeek 3590, Belgium
- Energyville, Thorpark, Genk 3600, Belgium
- Hasselt University, Institute for Materials Research (IMO-IMOMEC), Organic Opto-Electronics (OOE), Wetenschapspark 1, Diepenbeek 3590, Belgium
| | - A Danos
- Durham University, Department of Physics, OEM Group, South Road, Durham DH1 3LE, UK.
| | - A P Monkman
- Durham University, Department of Physics, OEM Group, South Road, Durham DH1 3LE, UK.
| | - B Champagne
- University of Namur, Laboratory of Theoretical Chemistry, Theoretical and Structural Physical Chemistry Unit, Namur Institute of Structured Matter, Rue de Bruxelles 61, Namur 5000, Belgium
| | - W Maes
- Hasselt University, Institute for Materials Research (IMO-IMOMEC), Design & Synthesis of Organic Semiconductors (DSOS), Agoralaan 1, Diepenbeek 3590, Belgium.
- IMOMEC Division, IMEC, Wetenschapspark 1, Diepenbeek 3590, Belgium
- Energyville, Thorpark, Genk 3600, Belgium
| |
Collapse
|
7
|
Hall D, Sancho-García JC, Pershin A, Beljonne D, Zysman-Colman E, Olivier Y. Benchmarking DFT Functionals for Excited-State Calculations of Donor-Acceptor TADF Emitters: Insights on the Key Parameters Determining Reverse Inter-System Crossing. J Phys Chem A 2023. [PMID: 37196185 DOI: 10.1021/acs.jpca.2c08201] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The importance of intermediate triplet states and the nature of excited states has gained interest in recent years for the thermally activated delayed fluorescence (TADF) mechanism. It is widely accepted that simple conversion between charge transfer (CT) triplet and singlet excited states is too crude, and a more complex route involving higher-lying locally excited triplet excited states has to be invoked to witness the magnitude of the rate of reverse inter-system crossing (RISC) rates. The increased complexity has challenged the reliability of computational methods to accurately predict the relative energy between excited states as well as their nature. Here, we compare the results of widely used density functional theory (DFT) functionals, CAM-B3LYP, LC-ωPBE, LC-ω*PBE, LC-ω*HPBE, B3LYP, PBE0, and M06-2X, against a wavefunction-based reference method, Spin-Component Scaling second-order approximate Coupled Cluster (SCS-CC2), in 14 known TADF emitters possessing a diversity of chemical structures. Overall, the use of the Tamm-Dancoff Approximation (TDA) together with CAM-B3LYP, M06-2X, and the two ω-tuned range-separated functionals LC-ω*PBE and LC-ω*HPBE demonstrated the best agreement with SCS-CC2 calculations in predicting the absolute energy of the singlet S1, and triplet T1 and T2 excited states and their energy differences. However, consistently across the series and irrespective of the functional or the use of TDA, the nature of T1 and T2 is not as accurately captured as compared to S1. We also investigated the impact of the optimization of S1 and T1 excited states on ΔEST and the nature of these states for three different functionals (PBE0, CAM-B3LYP, and M06-2X). We observed large changes in ΔEST using CAM-B3LYP and PBE0 functionals associated with a large stabilization of T1 with CAM-B3LYP and a large stabilization of S1 with PBE0, while ΔEST is much less affected considering the M06-2X functional. The nature of the S1 state barely evolves after geometry optimization essentially because this state is CT by nature for the three functionals tested. However, the prediction of the T1 nature is more problematic since these functionals for some compounds interpret the nature of T1 very differently. SCS-CC2 calculations on top of the TDA-DFT optimized geometries lead to a large variation in terms of ΔEST and the excited-state nature depending on the chosen functionals, further stressing the large dependence of the excited-state features on the excited-state geometries. The presented work highlights that despite good agreement of energies, the description of the exact nature of the triplet states should be undertaken with caution.
Collapse
Affiliation(s)
- David Hall
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, KY16 9ST St Andrews, U.K
- Laboratory for Chemistry of Novel Materials, University of Mons, 7000 Mons, Belgium
| | | | - Anton Pershin
- Wigner Research Centre for Physics, P.O. Box 49, 1121 Budapest, Hungary
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, University of Mons, 7000 Mons, Belgium
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, KY16 9ST St Andrews, U.K
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| |
Collapse
|
8
|
Hall D, Sancho-García JC, Pershin A, Ricci G, Beljonne D, Zysman-Colman E, Olivier Y. Modeling of Multiresonant Thermally Activated Delayed Fluorescence Emitters─Properly Accounting for Electron Correlation Is Key! J Chem Theory Comput 2022; 18:4903-4918. [PMID: 35786892 DOI: 10.1021/acs.jctc.2c00141] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With the surge of interest in multiresonant thermally activated delayed fluorescent (MR-TADF) materials, it is important that there exist computational methods to accurately model their excited states. Here, building on our previous work, we demonstrate how the spin-component scaling second-order approximate coupled-cluster (SCS-CC2), a wavefunction-based method, is robust at predicting the ΔEST (i.e., the energy difference between the lowest singlet S1 and triplet T1 excited states) of a large number of MR-TADF materials, with a mean average deviation (MAD) of 0.04 eV compared to experimental data. Time-dependent density functional theory calculations with the most common DFT functionals as well as the consideration of the Tamm-Dancoff approximation (TDA) consistently predict a much larger ΔEST as a result of a poorer account of Coulomb correlation as compared to SCS-CC2. Very interestingly, the use of a metric to assess the importance of higher order excitations in the SCS-CC2 wavefunctions shows that Coulomb correlation effects are substantially larger in the lowest singlet compared to the corresponding triplet and need to be accounted for a balanced description of the relevant electronic excited states. This is further highlighted with coupled cluster singles-only calculations, which predict very different S1 energies as compared to SCS-CC2 while T1 energies remain similar, leading to very large ΔEST, in complete disagreement with the experiments. We compared our SCS-CC2/cc-pVDZ with other wavefunction approaches, namely, CC2/cc-pVDZ and SOS-CC2/cc-pVDZ leading to similar performances. Using SCS-CC2, we investigate the excited-state properties of MR-TADF emitters showcasing large ΔET2T1 for the majority of emitters, while π-electron extension emerges as the best strategy to minimize ΔEST. We also employed SCS-CC2 to evaluate donor-acceptor systems that contain a MR-TADF moiety acting as the acceptor and show that the broad emission observed for some of these compounds arises from the solvent-promoted stabilization of a higher-lying charge-transfer singlet state (S2). This work highlights the importance of using wavefunction methods in relation to MR-TADF emitter design and associated photophysics.
Collapse
Affiliation(s)
- David Hall
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, KY16 9ST St Andrews, U.K.,Laboratory for Chemistry of Novel Materials, University of Mons, 7000 Mons, Belgium
| | | | - Anton Pershin
- Wigner Research Centre for Physics, P.O. Box 49,Budapest 1121, Hungary
| | - Gaetano Ricci
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, University of Mons, 7000 Mons, Belgium
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, KY16 9ST St Andrews, U.K
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| |
Collapse
|
9
|
Woon K, Nikishau PA, Sini G. Fast and Accurate Determination of the Singlet–Triplet Gap in Donor–Acceptor and Multiresonance TADF Molecules by Using Hole–Hole Tamm–Dancoff Approximated Density Functional Theory. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kai‐Lin Woon
- Institute of Advanced Studies CY Cergy Paris Université 33 Bd du Port Cergy‐Pontoise 95000 France
- Low Dimensional Materials, Department of Physics University of Malaya Kuala Lumpur 50603 Malaysia
| | - Pavel A. Nikishau
- Research Institute for Physical Chemical Problems of the Belarusian State University 14 Leningradskaya st. Minsk 220006 Belarus
| | - Gjergji Sini
- Institute of Advanced Studies CY Cergy Paris Université 33 Bd du Port Cergy‐Pontoise 95000 France
- Laboratoire de Physico‐Chimie des Polymères et des Interfaces (LPPI) CY Cergy Paris Université 33 Bd du Port Cergy‐Pontoise 95000 France
| |
Collapse
|
10
|
Ivanova G, Bozova N, Petkov N, An C, Hu B, Mutovska M, Konstantinov K, Zagranyarski Y, Videva V, Yordanova A, Baumgarten M, Ivanova A. Benchmarking of Density Functionals for the Description of Optical Properties of Newly Synthesized π-Conjugated TADF Blue Emitters. Chemistry 2022; 28:e202104411. [PMID: 35107870 DOI: 10.1002/chem.202104411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Indexed: 11/10/2022]
Abstract
Computational modeling of the optical characteristics of organic molecules with potential for thermally activated delayed fluorescence (TADF) may assist markedly the development of more efficient emitting materials for organic light-emitting diodes. Recent theoretical studies in this area employ mostly methods from density functional theory (DFT). In order to obtain accurate predictions within this approach, the choice of a proper functional is crucial. In the current study, we focus on testing the performance of a set of DFT functionals for estimation of the excitation and emission energy and the excited singlet-triplet energy gap of three newly synthesized compounds with capacity for TADF. The emitters are designed specifically to enable charge transfer by π-electron conjugation, at the same time possessing high-energy excited triplet states. The functionals chosen for testing are from various groups ranging from gradient-corrected through global hybrids to range-separated ones. The results show that the monitored optical properties are especially sensitive to how the long-range part of the exchange energy is treated within the functional. The accurate functional should also be able to provide well balanced distribution of the π-electrons among the molecular fragments. Global hybrids with moderate (less than 0.4) share of exact exchange (B3LYP, PBE0) and the meta-GGA HSE06 are outlined as the best performing methods for the systems under study. They can predict all important optical parameters correctly, both qualitatively and quantitatively.
Collapse
Affiliation(s)
- Georgia Ivanova
- Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier blvd., 1164, Sofia, Bulgaria
| | - Nadezhda Bozova
- Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier blvd., 1164, Sofia, Bulgaria
| | - Nikolay Petkov
- Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier blvd., 1164, Sofia, Bulgaria
| | - Cunbin An
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Benlin Hu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Monika Mutovska
- Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier blvd., 1164, Sofia, Bulgaria
| | - Konstantin Konstantinov
- Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier blvd., 1164, Sofia, Bulgaria
| | - Yulian Zagranyarski
- Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier blvd., 1164, Sofia, Bulgaria
| | - Vladimira Videva
- Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier blvd., 1164, Sofia, Bulgaria.,Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Adelina Yordanova
- Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier blvd., 1164, Sofia, Bulgaria
| | - Martin Baumgarten
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Anela Ivanova
- Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier blvd., 1164, Sofia, Bulgaria
| |
Collapse
|
11
|
Bas EE, Ulukan P, Monari A, Aviyente V, Catak S. Photophysical Properties of Benzophenone-Based TADF Emitters in Relation to Their Molecular Structure. J Phys Chem A 2022; 126:473-484. [PMID: 35061385 PMCID: PMC8895462 DOI: 10.1021/acs.jpca.1c08320] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Thermally activated delayed fluorescence (TADF) materials are commonly used in various apparatus, including organic light-emitting device-based displays, as they remarkably improve the internal quantum efficiencies. Although there is a wide range of donor-acceptor-based compounds possessing TADF properties, in this computational study, we investigated TADF and some non-TADF chromophores, containing benzophenone or its structural derivatives as the acceptor core, together with various donor moieties. Following the computational modeling of the emitters, several excited state properties, such as the absorption spectra, singlet-triplet energy gaps (ΔEST), natural transition orbitals, and the topological ΦS indices, have been computed. Along with the donor-acceptor torsion angles and spin-orbit coupling values, these descriptors have been utilized to investigate potential TADF efficiency. Our study has shown that on the one hand, our photophysical/structural descriptors and computational methodologies predict the experimental results quite well, and on the other hand, our extensive benchmark can be useful to pinpoint the most promising functionals and descriptors for the study of benzophenone-based TADF emitters.
Collapse
Affiliation(s)
- Ekin Esme Bas
- Department of Chemistry, Bogazici University, Bebek, 34342 Istanbul, Turkey
| | - Pelin Ulukan
- Department of Chemistry, Bogazici University, Bebek, 34342 Istanbul, Turkey
| | - Antonio Monari
- Université de Lorraine and CNRS, LPCT UMR 7019, F54000 Nancy, France.,Université de Paris and CNRS, ITODYS, F75006 Paris, France
| | - Viktorya Aviyente
- Department of Chemistry, Bogazici University, Bebek, 34342 Istanbul, Turkey
| | - Saron Catak
- Department of Chemistry, Bogazici University, Bebek, 34342 Istanbul, Turkey
| |
Collapse
|
12
|
Chen WK, Cui G, Liu XY. Solvent effects on excited-state relaxation dynamics of paddle-wheel BODIPY-Hexaoxatriphenylene conjugates: Insights from non-adiabatic dynamics simulations. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2110214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Understanding the excited state dynamics of donor-acceptor (D-A) complexes is of fundamental importance both experimentally and theoretically. Herein, we have first explored the photoinduced dynamics of a recently synthesized paddle-wheel BODIPY-hexaoxatriphenylene (BODIPY is the abbreviation for BF2-chelated dipyrromethenes) conjugates D-A complexes with the combination of both electronic structure calculations and non-adiabatic dynamics simulations. On the basis of computational results, we concluded that the BODIPY-hexaoxatriphenylene (BH) conjugates will be promoted to the local excited (LE) states of the BODIPY fragments upon excitation, which is followed by the ultrafast exciton transfer from LE state to charge transfer (CT). Instead of the photoinduced electron transfer process proposed in previous experimental work, such a exciton transfer process is accompanied with the photoinduced hole transfer from BODIPY to hexaoxatriphenylene. Additionally, solvent effects are found to play an important role in the photoinduced dynamics. Specifically, the hole transfer dynamics is accelerated by the acetonitrile solvent, which can be ascribed to significant influences of the solvents on the charge transfer states, i.e. the energy gaps between LE and CT excitons are reduced greatly and the non-adiabatic couplings are increased in the meantime. Our present work not only provides valuable insights into the underlying photoinduced mechanism of BH, but also can be helpful for the future design of novel donor-acceptor conjugates with better optoelectronic performance.
Collapse
Affiliation(s)
- Wen-Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| |
Collapse
|
13
|
Spin Orbit Coupling in Orthogonal Charge Transfer States: (TD-)DFT of Pyrene-Dimethylaniline. Molecules 2022; 27:molecules27030891. [PMID: 35164162 PMCID: PMC8839636 DOI: 10.3390/molecules27030891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
The conformational dependence of the matrix element for spin-orbit coupling and of the electronic coupling for charge separation are determined for an electron donor-acceptor system containing a pyrene acceptor and a dimethylaniline donor. Different kinetic and energetic aspects that play a role in the spin-orbit charge transfer intersystem crossing (SOCT-ISC) mechanism are discussed. This includes parameters related to initial charge separation and the charge recombination pathways using the Classical Marcus Theory of electron transfer. The spin-orbit coupling, which plays a significant role in charge recombination to the triplet state, can be probed by (TD)-DFT, using the latter as a tool to understand and predict the SOCT-ISC mechanism. The matrix elements for spin-orbit coupling for acetone and 4-thio-thymine are used for benchmarking. (Time Dependent-) Density Functional Theory (DFT and TD-DFT) calculations are applied using the quantum chemical program Amsterdam Density Functional (ADF).
Collapse
|
14
|
Ahsin A, Ayub K. Extremely large static and dynamic nonlinear optical response of small superalkali clusters NM 3M' (M, M'=Li, Na, K). J Mol Graph Model 2021; 109:108031. [PMID: 34536836 DOI: 10.1016/j.jmgm.2021.108031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/14/2021] [Accepted: 09/05/2021] [Indexed: 10/20/2022]
Abstract
Exploring novel nonlinear optical (NLO) materials with excess electron properties is essential for advancing the use of excess electron compounds in optics. The studied superalkali clusters NM3M' (M, M' = Li, Na, K) are thermodynamically stable and their binding energies range from -27.10 to -53.84 kcal mol-1. The observed significant values for VIPs suggest their electronic stabilities. Being excess electron candidate these clusters show significant βo value (3.9 × 107 au), which nicely correlates the hyperpolarizability reported by a two-level model (βtl). Furthermore, these clusters exhibit a remarkable static second hyperpolarizability (γo) value of 1.1 × 1010 au for the NK4 superalkali cluster. The hyper Rayleigh scattering (βHRS) is also computed where the highest value of 2.9 × 107 is recorded for NNa3K superalkali. The obtained values of βvec values (projection of hyperpolarizability on dipole moment vector) also signify the excellent nonlinearity of clusters. Besides, the calculated electro-optica pockel's effect β(-ω; ω,0) and second harmonic generation β(-2ω; ω, ω) values are much pronounced at larger dispersion frequency ω = 1064 nm. Moreover, the frequency-dependent second hyperpolarizability γ(ω) with dc-Kerr effect γ(-ω; ω,0,0) and electric field induced second harmonic generation γ(-2ω; ω,ω,0) show larger values at ω = 1064 nm. Thus the highest value of the dc-Kerr constant increases up to 1.0 × 1011 au which also signifies the larger nonlinear refractive index of the studied cluster. We hope this work could open up new possibilities using superalkali clusters as NLO materials for optoelectronics, laser, second harmonic generation and as frequency doubler.
Collapse
Affiliation(s)
- Atazaz Ahsin
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, KPK, 22060, Pakistan
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, KPK, 22060, Pakistan.
| |
Collapse
|
15
|
Electronically excited state structures and stabilities of organic small molecules: A DFT study of triphenylamine derivatives. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Deckers J, Cardeynaels T, Lutsen L, Champagne B, Maes W. Heavy-Atom-Free Bay-Substituted Perylene Diimide Donor-Acceptor Photosensitizers. Chemphyschem 2021; 22:1488-1496. [PMID: 34031956 DOI: 10.1002/cphc.202100269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/10/2021] [Indexed: 11/05/2022]
Abstract
Perylene diimide (PDI) dyes are extensively investigated because of their favorable photophysical characteristics for a wide range of organic material applications. Fine-tuning of the optoelectronic properties is readily achieved by functionalization of the electron-deficient PDI scaffold. Here, we present four new donor-acceptor type dyads, wherein the electron donor units - benzo[1,2-b : 4,5-b']dithiophene, 9,9-dimethyl-9,10-dihydroacridine, dithieno[3,2-b : 2',3'-d]pyrrole, and triphenylamine-are attached to the bay-positions of the PDI acceptor. Intersystem crossing occurs for these systems upon photoexcitation, without the aid of heavy atoms, resulting in singlet oxygen quantum yields up to 80 % in toluene solution. Furthermore, this feature is retained when the system is directly irradiated with energy corresponding to the intramolecular charge-transfer absorption band (at 639 nm). Geometrical optimization and (time-dependent) density functional theory calculations afford more insights into the requirements for intersystem crossing such as spin-orbit coupling, dihedral angles, the involvement of charge-transfer states, and energy level alignment.
Collapse
Affiliation(s)
- Jasper Deckers
- UHasselt-Hasselt University, Institute for Materials Research (IMO), Design & Synthesis of Organic Semiconductors (DSOS), Agoralaan, 3590, Diepenbeek, Belgium.,IMEC, Associated Lab IMOMEC, Wetenschapspark 1, 3590, Diepenbeek, Belgium
| | - Tom Cardeynaels
- UHasselt-Hasselt University, Institute for Materials Research (IMO), Design & Synthesis of Organic Semiconductors (DSOS), Agoralaan, 3590, Diepenbeek, Belgium.,IMEC, Associated Lab IMOMEC, Wetenschapspark 1, 3590, Diepenbeek, Belgium.,UNamur-University of Namur, Laboratory of Theoretical Chemistry (LTC), Theoretical and Structural Physical Chemistry Unit, Namur Institute of Structured Matter, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Laurence Lutsen
- IMEC, Associated Lab IMOMEC, Wetenschapspark 1, 3590, Diepenbeek, Belgium
| | - Benoît Champagne
- UNamur-University of Namur, Laboratory of Theoretical Chemistry (LTC), Theoretical and Structural Physical Chemistry Unit, Namur Institute of Structured Matter, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Wouter Maes
- UHasselt-Hasselt University, Institute for Materials Research (IMO), Design & Synthesis of Organic Semiconductors (DSOS), Agoralaan, 3590, Diepenbeek, Belgium.,IMEC, Associated Lab IMOMEC, Wetenschapspark 1, 3590, Diepenbeek, Belgium
| |
Collapse
|
17
|
Armaković SJ, Mary YS, Mary YS, Pelemiš S, Armaković S. Optoelectronic properties of the newly designed 1,3,5-triazine derivatives with isatin, chalcone and acridone moieties. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|