1
|
Krause H, Engelmann UM. Fundamentals and Applications of Dual-Frequency Magnetic Particle Spectroscopy: Review for Biomedicine and Materials Characterization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416838. [PMID: 39985275 PMCID: PMC11967826 DOI: 10.1002/advs.202416838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/31/2025] [Indexed: 02/24/2025]
Abstract
Superparamagnetic nanoparticles (MNP) offer exciting applications for engineering and biomedicine in imaging, diagnostics, and therapy upon magnetic excitation. Specifically, if excited at two distinct frequencies f1 and f2, MNP responds with magnetic intermodulation frequencies m·f1 ± n·f2 caused by their nonlinear magnetization. These mixing frequencies are highly specific for MNP properties, uniquely characterizing their presence. In this review, the fundamentals of frequency mixing magnetic detection (FMMD) as a special case of magnetic particle spectroscopy (MPS) are reviewed, elaborating its functional principle that enables a large dynamic range of detection of MNP. Mathematical descriptions derived from Langevin modeling and micromagnetic Monte-Carlo simulations show matching predictions. The latest applications of FMMD in nanomaterials characterization as well as diagnostic and therapeutic biomedicine are highlighted: analysis of the phase of the FMMD signal characterizes the magnetic relaxation of MNP, allowing to determine hydrodynamic size and binding state. Variation of excitation amplitudes or magnetic offset fields enables determining the size distribution of the particles' magnetic cores. This permits multiplex detection of polydisperse MNP in magnetic immunoassays, realized successfully for various biomolecular targets such as viruses, bacteria, proteins, and toxins. A portable magnetic reader enables portable immunodetection at point-of-care. Future applications toward theranostics are summarized and elaborated.
Collapse
Affiliation(s)
- Hans‐Joachim Krause
- Institute of Biological Information ProcessingBioelectronics (IBI‐3)Forschungszentrum Jülich52425JülichGermany
| | - Ulrich M. Engelmann
- Medical Engineering and Applied MathematicsFH Aachen University of Applied Sciences52428JülichGermany
| |
Collapse
|
2
|
Jung W, Lee D, Kim H, Son B, Oh S, Gong JE, Kim D, Yoon J, Yeom J. Universal Chiral Nanopaint for Metal Oxide Biomaterials. ACS NANO 2025; 19:8632-8645. [PMID: 40025726 DOI: 10.1021/acsnano.4c14460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Chirality is widespread in nature and governs the properties of various materials including inorganic nanomaterials. However, previously reported chiral inorganic materials have been limited to a handful of compositions owing to the physicochemical restrictions that impart chirality. Herein, chiral nanopaint applicable to diverse inorganic materials is presented. Various metal oxide nanoparticles (NPs) show chiroptical properties after coating with our chiral nanopaint, while maintaining their properties, such as magnetic properties. The combination of magnetism and chirality brings biomedical functionalities to chiral NPs, such as anticancer hyperthermia treatment. In vitro, d-nanopainted iron oxide NPs showed more than 50% higher cellular uptake compared to l-nanopainted iron oxide NPs, and this was due to the enantiospecific interaction between the cellular receptors on the cell surface and the chiral NPs. In vivo, d-nanopainted iron oxide NPs showed 4-fold superior anticancer efficiency by magnetic hyperthermia compared to l-nanopainted iron oxide NPs owing to improved adsorption to tumors. These chiral nanoparticles may provide potential synthesis strategies for chiral inorganic biomaterials, which exhibit elaborate combinations of intrinsic physical properties and extrinsic enantioselective properties for a variety of applications.
Collapse
Affiliation(s)
- Wookjin Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dongkyu Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hohyeon Kim
- School of Integrated Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Boyoung Son
- School of Integrated Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Seungjun Oh
- School of Integrated Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jeong Eun Gong
- Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu Goyang 10408, Republic of Korea
| | - Daehong Kim
- Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu Goyang 10408, Republic of Korea
| | - Jungwon Yoon
- School of Integrated Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jihyeon Yeom
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- NanoCentury Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
3
|
Solovyova AY, Grohotova EV, Ivanov AO, Elfimova EA. Magnetization of immobilized multi-core particles with varying internal structures. Phys Chem Chem Phys 2025; 27:3442-3454. [PMID: 39868698 DOI: 10.1039/d4cp03995e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
This work is devoted to the study of the static magnetization of immobilized multi-core particles (MCPs) and their ensembles. These objects model aggregates of superparamagnetic nanoparticles that are taken up by biological cells and subsequently used, for example, as magnetoactive agents for cell imaging. In this study, we derive an analytical formula that allows us to predict the static magnetization of MCPs consisting of immobilized granules, in which the magnetic moment rotates freely via the Néel mechanism. The formula takes into account intergranule dipole-dipole interactions at the level of pair correlations and is suitable for determining the magnetization of MCPs with any structure. The theory is tested using Monte Carlo computer simulations on a series of MCP samples with 4 and 7 superparamagnetic granules. The results demonstrate that the formulas accurately describe the magnetization of MCPs with the intergranule dipolar coupling constant λ ≤ 2. We propose a method for determining the magnetization of an ensemble of non-interacting immobilized MCPs with interacting granules by identifying this system with an ensemble of single-core immobilized non-interacting superparamagnetic particles for which the effective magnetic anisotropy parameter is determined. The results obtained in this work represent a significant step towards predicting the magnetic response of MCPs in biological media, such as biological cells.
Collapse
|
4
|
Che Dji LV, Kaddah R, Girardet T, Fleutot S, Bouguet-Bonnet S. Effect of the Dispersion Medium on NMR Relaxation Properties of Superparamagnetic Iron Oxide Nanoparticles between 0.24 mT and 14.1 T. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22089-22097. [PMID: 39392228 DOI: 10.1021/acs.langmuir.4c02448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Due to weak exchange interactions, magnetite particles at a critical diameter of about 20 nm are considered monodomain. At this size, they exhibit a phenomenological magnetic property called superparamagnetism, making them useful as magnetic resonance imaging contrast agents, or MRI CAs. However, questions persist regarding the impact of using different physiological solvents and varying the environment in which these particles are dispersed on their performance, determined by their relaxivity. A colloidal suspension of superparamagnetic iron oxide nanoparticles (SPIONs) electrostatically stabilized by citrate ligand was synthesized using a fast, reliable, and reproducible developed microwave approach, ensuring high stability over time at pH 7. We studied the effects of three physiological media on these MRI CAs. Ultrapure water was used for the synthesis, while phosphate-buffered saline and physiological liquid were used to disperse the nanoparticles, as these media contain essential electrolytes for the functioning of the human body. The SPIONs underwent systematic characterizations to determine their physicochemical and magnetic properties. This study reports the longitudinal relaxivities of SPIONs at medically relevant magnetic field strengths. Field dependence of their relaxivity (efficacy) was evaluated using a nuclear magnetic resonance dispersion (NMRD) profile measured over a wide range of proton resonance frequencies between 5 kHz and 600 MHz. The Roch et al. model (Roch, A.; et al. J. Chem. Phys., 1999, 110, 5403-5411) was used to analyze the NMRD profile and evaluate the impact of SPIONs on water proton relaxation in the different redispersion media. It was observed in this study that the dynamics of water protons are not influenced by the redispersion media of these citrate-coated SPIONs. However, the presence of salt ions notably reduces their relaxivities by lowering the saturation magnetization of SPIONs.
Collapse
Affiliation(s)
- Lyns Verel Che Dji
- CRM2 (Cristallographie, Résonance Magnétique et Modélisations), CNRS, Université de Lorraine, Vandœuvre-lès-Nancy F-54500, France
- IJL (Institut Jean Lamour), CNRS, Université de Lorraine, Nancy F-5400, France
| | - Roua Kaddah
- IJL (Institut Jean Lamour), CNRS, Université de Lorraine, Nancy F-5400, France
| | - Thomas Girardet
- IJL (Institut Jean Lamour), CNRS, Université de Lorraine, Nancy F-5400, France
| | - Solenne Fleutot
- IJL (Institut Jean Lamour), CNRS, Université de Lorraine, Nancy F-5400, France
| | - Sabine Bouguet-Bonnet
- CRM2 (Cristallographie, Résonance Magnétique et Modélisations), CNRS, Université de Lorraine, Vandœuvre-lès-Nancy F-54500, France
| |
Collapse
|
5
|
Xie M, Meng F, Wang P, Díaz-García AM, Parkhats M, Santos-Oliveira R, Asim MH, Bostan N, Gu H, Yang L, Li Q, Yang Z, Lai H, Cai Y. Surface Engineering of Magnetic Iron Oxide Nanoparticles for Breast Cancer Diagnostics and Drug Delivery. Int J Nanomedicine 2024; 19:8437-8461. [PMID: 39170101 PMCID: PMC11338174 DOI: 10.2147/ijn.s477652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
Data published in 2020 by the International Agency for Research on Cancer (IARC) of the World Health Organization show that breast cancer (BC) has become the most common cancer globally, affecting more than 2 million women each year. The complex tumor microenvironment, drug resistance, metastasis, and poor prognosis constitute the primary challenges in the current diagnosis and treatment of BC. Magnetic iron oxide nanoparticles (MIONPs) have emerged as a promising nanoplatform for diagnostic tumor imaging as well as therapeutic drug-targeted delivery due to their unique physicochemical properties. The extensive surface engineering has given rise to multifunctionalized MIONPs. In this review, the latest advancements in surface modification strategies of MIONPs over the past five years are summarized and categorized as constrast agents and drug delivery platforms. Additionally, the remaining challenges and future prospects of MIONPs-based targeted delivery are discussed.
Collapse
Affiliation(s)
- Mengjie Xie
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Key Laboratory of Traditional Chinese Medicine Informatization / International Science and Technology Cooperation Base of Guangdong Province/School of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Fansu Meng
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, 528400, People’s Republic of China
| | - Panpan Wang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | | | - Marina Parkhats
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, 220072, Belarus
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Rio de Janeiro, RJ, 21941906, Brazil
| | | | - Nazish Bostan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Honghui Gu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Lina Yang
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Qi Li
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Zhenjiang Yang
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Haibiao Lai
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, 528400, People’s Republic of China
| | - Yu Cai
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Key Laboratory of Traditional Chinese Medicine Informatization / International Science and Technology Cooperation Base of Guangdong Province/School of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| |
Collapse
|
6
|
Botez CE, Knoop J. Non-Debye Behavior of the Néel and Brown Relaxation in Interacting Magnetic Nanoparticle Ensembles. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3957. [PMID: 39203139 PMCID: PMC11356192 DOI: 10.3390/ma17163957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024]
Abstract
We used ac-susceptibility measurements to study the superspin relaxation in Fe3O4/Isopar M nanomagnetic fluids of different concentrations. Temperature-resolved data collected at different frequencies, χ″ vs. T|f, reveal magnetic events both below and above the freezing point of the carrier fluid (TF = 197 K): χ″ shows peaks at temperatures Tp1 and Tp2 around 75 K and 225 K, respectively. Below TF, the Néel mechanism is entirely responsible for the superspin relaxation (as the carrier fluid is frozen), and we found that the temperature dependence of the relaxation time, τN(Tp1), is well described by the Dorman-Bessais-Fiorani (DBF) model: τNT=τrexpEB+EadkB T. Above TF, both the internal (Néel) and the Brownian superspin relaxation mechanisms are active. Yet, we found evidence that the effective relaxation times, τeff, corresponding to the Tp2 peaks observed in the denser samples do not follow the typical Debye behavior described by the Rosensweig formula 1τeff=1τN+1τB. First, τeff is 5 × 10-5 s at 225 K, almost three orders of magnitude more that its Néel counterpart, τN~8 × 10-8 s, estimated by extrapolating the above-mentioned DBF analysis. Thus, 1τN≫1τeff, which is clearly not consistent with the Rosensweig formula. Second, the observed temperature dependence of the effective relaxation time, τeff(Tp2), is excellently described by τB-1T=Tγ0exp-E'kBT-T0', a model solely based on the hydrodynamic Brown relaxation, τB(T)=3ηTVHkBT, combined with an activation law for the temperature variation of the viscosity, ηT=η0expE'/kB(T-T0'. The best fit yields γ0=3ηVHkB = 1.6 × 10-5 s·K, E'/kB = 312 K, and T0' = 178 K. Finally, the higher temperature Tp2 peaks vanish in the more diluted samples (δ ≤ 0.02). This indicates that the formation of larger hydrodynamic particles via aggregation, which is responsible for the observed Brownian relaxation in dense samples, is inhibited by dilution. Our findings, corroborating previous results from Monte Carlo calculations, are important because they might lead to new strategies to synthesize functional magnetic ferrofluids for biomedical applications.
Collapse
Affiliation(s)
- Cristian E. Botez
- Department of Physics and Astronomy, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA;
| | | |
Collapse
|
7
|
Bravo M, Fortuni B, Mulvaney P, Hofkens J, Uji-I H, Rocha S, Hutchison JA. Nanoparticle-mediated thermal Cancer therapies: Strategies to improve clinical translatability. J Control Release 2024; 372:751-777. [PMID: 38909701 DOI: 10.1016/j.jconrel.2024.06.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Despite significant advances, cancer remains a leading global cause of death. Current therapies often fail due to incomplete tumor removal and nonspecific targeting, spurring interest in alternative treatments. Hyperthermia, which uses elevated temperatures to kill cancer cells or boost their sensitivity to radio/chemotherapy, has emerged as a promising alternative. Recent advancements employ nanoparticles (NPs) as heat mediators for selective cancer cell destruction, minimizing damage to healthy tissues. This approach, known as NP hyperthermia, falls into two categories: photothermal therapies (PTT) and magnetothermal therapies (MTT). PTT utilizes NPs that convert light to heat, while MTT uses magnetic NPs activated by alternating magnetic fields (AMF), both achieving localized tumor damage. These methods offer advantages like precise targeting, minimal invasiveness, and reduced systemic toxicity. However, the efficacy of NP hyperthermia depends on many factors, in particular, the NP properties, the tumor microenvironment (TME), and TME-NP interactions. Optimizing this treatment requires accurate heat monitoring strategies, such as nanothermometry and biologically relevant screening models that can better mimic the physiological features of the tumor in the human body. This review explores the state-of-the-art in NP-mediated cancer hyperthermia, discussing available nanomaterials, their strengths and weaknesses, characterization methods, and future directions. Our particular focus lies in preclinical NP screening techniques, providing an updated perspective on their efficacy and relevance in the journey towards clinical trials.
Collapse
Affiliation(s)
- M Bravo
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia; Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - B Fortuni
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - P Mulvaney
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - J Hofkens
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium; Max Planck Institute for Polymer Research, Mainz D-55128, Germany
| | - H Uji-I
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium; Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Kita ward, Sapporo 001-0020, Hokkaido, Japan
| | - S Rocha
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium.
| | - J A Hutchison
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
8
|
Subbotin IM, Ivanov AO, Camp PJ. Dynamics of magnetization growth and relaxation in ferrofluids. Phys Rev E 2024; 110:024610. [PMID: 39295041 DOI: 10.1103/physreve.110.024610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/06/2024] [Indexed: 09/21/2024]
Abstract
The dynamics of the growth and relaxation of the magnetization in ferrofluids are determined using theory based on the Fokker-Planck-Brown equation, and Brownian-dynamics simulations. Magnetization growth starting from an equilibrium nonmagnetized state in zero field, and following an instantaneous application of a uniform field of arbitrary strength, is studied with and without interparticle interactions. Similarly, magnetization relaxation is studied starting from an equilibrium magnetized state in a field of arbitrary strength, and following instantaneous removal of the field. In all cases, the dynamics are studied in terms of the time-dependent magnetization m(t). The field strength is described by the Langevin parameter α, the strength of the interparticle interactions is described by the Langevin susceptibility χ_{L}, and the individual particles undergo Brownian rotation with time τ_{B}. For noninteracting particles, the average growth time decreases with increasing α due to the torque exerted by the field, while the average relaxation time stays constant at τ_{B}; with vanishingly weak fields, the timescales coincide. The same basic picture emerges for interacting particles, but the weak-field timescales are larger due to collective particle motions, and the average relaxation time exhibits a weak, nonmonotonic field dependence. A comparison between theoretical and simulation results is excellent for noninteracting particles. For interacting particles with χ_{L}=1 and 2, theory and simulations are in qualitative agreement, but there are quantitative deviations, particularly in the weak-field regime, for reasons that are connected with the description of interactions using effective fields.
Collapse
|
9
|
Poperechny IS. Superparamagnetic effects in the linear magnetic response of polydisperse ensembles of nanoparticles suspended in a fluid. Phys Rev E 2024; 109:044601. [PMID: 38755891 DOI: 10.1103/physreve.109.044601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/08/2024] [Indexed: 05/18/2024]
Abstract
Within a kinetic theory, the linear magnetic response of uniaxial single-domain particles suspended in a fluid is analyzed. The main qualitatively different types of frequency dependence of the longitudinal dynamic magnetic susceptibility of such particles are described. It is shown that superparamagnetic (related to orientation thermal fluctuations of the magnetic moment inside a particle) peculiarities of the response of a particle to a probing magnetic field are not fully determined by the ratio of anisotropy energy to thermal energy when a stationary bias field is applied. For a case where the indicated ratio is much greater than one, a simple approximate expression for the dynamic magnetic susceptibility of a particle is proposed. The developed approach is extended to polydisperse suspensions of noninteracting uniaxial nanoparticles. It is shown that polydispersity does not vanish away specific superparamagnetic features in the dynamic magnetic response of such systems. Quantitative estimates of the corresponding effects are performed in different frequency ranges of the applied field. It is demonstrated that under certain restrictions on the disperse composition of a suspension, the internal diffusion of the magnetic moment can lead to a splitting of the absorption spectrum of the system. The significant role of the bias field is revealed. In particular, it can cause an additional absorption maximum provided the particle-size distribution meets the outlined condition. Also, it enables one to assess how important it is to take into account superparamagnetism of particles: the effect of the biasing is stronger for particles with smaller anisotropy and thereby more pronounced superparamagnetic properties. A qualitative agreement of some of the inferences with the experimental data is briefly discussed.
Collapse
Affiliation(s)
- I S Poperechny
- Institute of Continuous Media Mechanics, Russian Academy of Sciences, Ural Branch, Perm 614018, Russia and Perm State National Research University, Perm 614068, Russia
| |
Collapse
|
10
|
Shen X, Zhang Y, Wang D, Huang Y, Song Y, Wang S. Mediator Monomer Regulated Emulsion Interfacial Polymerization to Synthesize Nanofractal Magnetic Particles for Nucleic Acid Separation. SMALL METHODS 2024; 8:e2300531. [PMID: 37491768 DOI: 10.1002/smtd.202300531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/14/2023] [Indexed: 07/27/2023]
Abstract
Polymer-based magnetic particles have been widely used for the separation of biological samples including nucleic acids, proteins, virus, and cells. Existing magnetic particles are almost prepared by coating polymers on magnetic nanoparticles (NPs). However, this strategy usually encounters the problem of poor magnetic NPs loading capacity. Here, a series of nanofractal magnetic particles (nanoFMPs) synthesized by a strategy of mediator monomer regulated emulsion interfacial polymerization is presented, which allows effective magnetic NPs loading and show efficient nucleic acid separation performance. The mediator monomers facilitate the dispersion of magnetic NPs in internal phase to achieve higher loading, and the hydrophilic monomers use electrostatic interactions to form surface nanofractal structures with functional groups. Compared with magnetic particles without nanofractal structure, nanoFMPs exhibit a higher nucleic acid extraction capability. This strategy offers an effective and versatile way for the synthesis of nanoFMPs toward efficient separation in various fields from clinical diagnosis to food safety and environmental monitoring.
Collapse
Affiliation(s)
- Xinyi Shen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yue Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Duanda Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanling Huang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yongyang Song
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City, Shandong Province, 256606, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City, Shandong Province, 256606, P. R. China
| |
Collapse
|
11
|
Ilg P. Nonequilibrium response of magnetic nanoparticles to time-varying magnetic fields: Contributions from Brownian and Néel processes. Phys Rev E 2024; 109:034603. [PMID: 38632745 DOI: 10.1103/physreve.109.034603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/07/2024] [Indexed: 04/19/2024]
Abstract
Many technical and biomedical applications of magnetic nanoparticles rely on their response to time-varying magnetic fields. While well-established models exist for either immobile or thermally blocked nanoparticles, the intermediate regime where Brownian as well as Néel relaxation occur at the same time is less well explored. Here, we use an efficient model that allows us to study the nonlinear dynamics of individual magnetic nanoparticles in response to different time-varying magnetic fields over a broad range of field parameters, taking into account both relaxation mechanisms. We provide quasiexact solutions for the longitudinal dynamics as well as approximate formulas from dynamic mean-field theory. Our results are relevant, e.g., for magnetorelaxometry, magnetic fluid hyperthermia, and magnetic particle imaging. For these example applications, we show that the ratio of characteristic Brownian to Néel relaxation time can have a profound impact on characteristic response quantities, especially at large field strengths.
Collapse
Affiliation(s)
- Patrick Ilg
- School of Mathematical, Physical, and Computational Sciences, University of Reading, Reading RG6 6AX, United Kingdom
| |
Collapse
|
12
|
Xu X, Xu S, Wan J, Wang D, Pang X, Gao Y, Ni N, Chen D, Sun X. Disturbing cytoskeleton by engineered nanomaterials for enhanced cancer therapeutics. Bioact Mater 2023; 29:50-71. [PMID: 37621771 PMCID: PMC10444958 DOI: 10.1016/j.bioactmat.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 08/26/2023] Open
Abstract
Cytoskeleton plays a significant role in the shape change, migration, movement, adhesion, cytokinesis, and phagocytosis of tumor cells. In clinical practice, some anti-cancer drugs achieve cytoskeletal therapeutic effects by acting on different cytoskeletal protein components. However, in the absence of cell-specific targeting, unnecessary cytoskeletal recombination in organisms would be disastrous, which would also bring about severe side effects during anticancer process. Nanomedicine have been proven to be superior to some small molecule drugs in cancer treatment due to better stability and targeting, and lower side effects. Therefore, this review summarized the recent developments of various nanomaterials disturbing cytoskeleton for enhanced cancer therapeutics, including carbon, noble metals, metal oxides, black phosphorus, calcium, silicon, polymers, peptides, and metal-organic frameworks, etc. A comprehensive analysis of the characteristics of cytoskeleton therapy as well as the future prospects and challenges towards clinical application were also discussed. We aim to drive on this emerging topic through refreshing perspectives based on our own work and what we have also learnt from others. This review will help researchers quickly understand relevant cytoskeletal therapeutic information to further advance the development of cancer nanomedicine.
Collapse
Affiliation(s)
- Xueli Xu
- School of Science, Shandong Jianzhu University, Jinan, 250101, China
| | - Shanbin Xu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Jipeng Wan
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Diqing Wang
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Xinlong Pang
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Yuan Gao
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Nengyi Ni
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Dawei Chen
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Xiao Sun
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| |
Collapse
|
13
|
Ilg P, Kröger M. Field- and concentration-dependent relaxation of magnetic nanoparticles and optimality conditions for magnetic fluid hyperthermia. Sci Rep 2023; 13:16523. [PMID: 37783724 PMCID: PMC10545801 DOI: 10.1038/s41598-023-43140-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023] Open
Abstract
The field-dependent relaxation dynamics of suspended magnetic nanoparticles continues to present a fascinating topic of basic science that at the same time is highly relevant for several technological and biomedical applications. Renewed interest in the intriguing behavior of magnetic nanoparticles in response to external fields has at least in parts be driven by rapid advances in magnetic fluid hyperthermia research. Although a wealth of experimental, theoretical, and simulation studies have been performed in this field in recent years, several contradictory findings have so far prevented the emergence of a consistent picture. Here, we present a dynamic mean-field theory together with comprehensive computer simulations of a microscopic model system to systematically discuss the influence of several key parameters on the relaxation dynamics, such as steric and dipolar interactions, the external magnetic field strength and frequency, as well as the ratio of Brownian and Néel relaxation time. We also discuss the specific and intrinsic loss power as measures of the efficiency of magnetic fluid heating and discuss optimality conditions in terms of fluid and field parameters. Our results are helpful to reconcile contradictory findings in the literature and provide an important step towards a more consistent understanding. In addition, our findings also help to select experimental conditions that optimize magnetic fluid heating applications.
Collapse
Affiliation(s)
- Patrick Ilg
- School of Mathematical, Physical, and Computational Sciences, University of Reading, Reading, RG6 6AX, UK.
| | - Martin Kröger
- Magnetism and Interface Physics, Computational Polymer Physics, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland
| |
Collapse
|
14
|
Tabacchi G, Armenia I, Bernardini G, Masciocchi N, Guagliardi A, Fois E. Energy Transfer from Magnetic Iron Oxide Nanoparticles: Implications for Magnetic Hyperthermia. ACS APPLIED NANO MATERIALS 2023; 6:12914-12921. [PMID: 37533540 PMCID: PMC10391739 DOI: 10.1021/acsanm.3c01643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/05/2023] [Indexed: 08/04/2023]
Abstract
Magnetic iron oxide nanoparticles (IONPs) have gained momentum in the field of biomedical applications. They can be remotely heated via alternating magnetic fields, and such heat can be transferred from the IONPs to the local environment. However, the microscopic mechanism of heat transfer is still debated. By X-ray total scattering experiments and first-principles simulations, we show how such heat transfer can occur. After establishing structural and microstructural properties of the maghemite phase of the IONPs, we built a maghemite model functionalized with aminoalkoxysilane, a molecule used to anchor (bio)molecules to oxide surfaces. By a linear response theory approach, we reveal that a resonance mechanism is responsible for the heat transfer from the IONPs to the surroundings. Heat transfer occurs not only via covalent linkages with the IONP but also through the solvent hydrogen-bond network. This result may pave the way to exploit the directional control of the heat flow from the IONPs to the anchored molecules-i.e., antibiotics, therapeutics, and enzymes-for their activation or release in a broader range of medical and industrial applications.
Collapse
Affiliation(s)
- Gloria Tabacchi
- Dipartimento
di Scienza e Alta Tecnologia (DSAT), University
of Insubria, and INSTM, Via Valleggio 11, I-22100 Como, Italy
| | - Ilaria Armenia
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Giovanni Bernardini
- Dipartimento
di Biotecnologie e Scienze della Vita (DBSV), University of Insubria, Via Dunant 3, I-21100 Varese, Italy
| | - Norberto Masciocchi
- Dipartimento
di Scienza e Alta Tecnologia (DSAT), University
of Insubria, and INSTM, Via Valleggio 11, I-22100 Como, Italy
| | - Antonietta Guagliardi
- Istituto
di Cristallografia − To.Sca.Lab and INSTM, CNR, Via Valleggio 11, I-22100 Como, Italy
| | - Ettore Fois
- Dipartimento
di Scienza e Alta Tecnologia (DSAT), University
of Insubria, and INSTM, Via Valleggio 11, I-22100 Como, Italy
| |
Collapse
|
15
|
Hybrid Magnetic Lipid-Based Nanoparticles for Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15030751. [PMID: 36986612 PMCID: PMC10058222 DOI: 10.3390/pharmaceutics15030751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
Cancer is one of the major public health problems worldwide. Despite the advances in cancer therapy, it remains a challenge due to the low specificity of treatment and the development of multidrug resistance mechanisms. To overcome these drawbacks, several drug delivery nanosystems have been investigated, among them, magnetic nanoparticles (MNP), especially superparamagnetic iron oxide nanoparticles (SPION), which have been applied for treating cancer. MNPs have the ability to be guided to the tumor microenvironment through an external applied magnetic field. Furthermore, in the presence of an alternating magnetic field (AMF) this nanocarrier can transform electromagnetic energy in heat (above 42 °C) through Néel and Brown relaxation, which makes it applicable for hyperthermia treatment. However, the low chemical and physical stability of MNPs makes their coating necessary. Thus, lipid-based nanoparticles, especially liposomes, have been used to encapsulate MNPs to improve their stability and enable their use as a cancer treatment. This review addresses the main features that make MNPs applicable for treating cancer and the most recent research in the nanomedicine field using hybrid magnetic lipid-based nanoparticles for this purpose.
Collapse
|
16
|
Peng D, Hu C, Luo X, Huang J, Ding Y, Zhou W, Zhou H, Yang Y, Yu T, Lei W, Yuan C. Electrochemical Reconstruction of NiFe/NiFeOOH Superparamagnetic Core/Catalytic Shell Heterostructure for Magnetic Heating Enhancement of Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205665. [PMID: 36404111 DOI: 10.1002/smll.202205665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Although (oxy)hydroxides generated by electrochemical reconstruction (EC-reconstruction) of transition-metal catalysts exhibit highly catalytic activities, the amorphous nature fundamentally impedes the electrochemical kinetics due to its poor electrical conductivity. Here, EC-reconstructed NiFe/NiFeOOH core/shell nanoparticles in highly conductive carbon matrix based on the pulsed laser deposition prepared NiFe nanoparticles is successfully confined. Electrochemical characterizations and first-principles calculations demonstrate that the reconstructed NiFe/NiFeOOH core/shell nanoparticles exhibit high oxygen evolution reaction (OER) electrocatalytic activity (a low overpotential of 342.2 mV for 10 mA cm-2 ) and remarkable durability due to the efficient charge transfer in the highly conductive confined heterostructure. More importantly, benefit from the superparamagnetic nature of the reconstructed NiFe/NiFeOOH core/shell nanoparticles, a large OER improvement is achieved (an ultralow overpotential of 209.2 mV for 10 mA cm-2 ) with an alternating magnetic field stimulation. Such OER improvement can be attributed to the Néel relaxation related magnetic heating effect functionalized superparamagnetic NiFe cores, which are generally underutilized in reconstructed core/shell nanoparticles. This work demonstrates that the designed superparamagnetic core/shell nanoparticles, combined with the large improvement by magnetic heating effect, are expected to be highly efficient OER catalysts along with the confined structure guaranteed high conductivity and catalytic stability.
Collapse
Affiliation(s)
- Dongquan Peng
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022, China
| | - Ce Hu
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022, China
- Analytical & Testing Center, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022, China
| | - Xingfang Luo
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022, China
| | - Jinli Huang
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022, China
| | - Yan Ding
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022, China
| | - Wenda Zhou
- School of Materials Science and Engineering, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China
| | - Hang Zhou
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022, China
| | - Yong Yang
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022, China
| | - Ting Yu
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022, China
| | - Wen Lei
- Department of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Australia
| | - Cailei Yuan
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022, China
| |
Collapse
|
17
|
Magnetic Nanoparticles: Current Advances in Nanomedicine, Drug Delivery and MRI. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Magnetic nanoparticles (MNPs) have evolved tremendously during recent years, in part due to the rapid expansion of nanotechnology and to their active magnetic core with a high surface-to-volume ratio, while their surface functionalization opened the door to a plethora of drug, gene and bioactive molecule immobilization. Taming the high reactivity of the magnetic core was achieved by various functionalization techniques, producing MNPs tailored for the diagnosis and treatment of cardiovascular or neurological disease, tumors and cancer. Superparamagnetic iron oxide nanoparticles (SPIONs) are established at the core of drug-delivery systems and could act as efficient agents for MFH (magnetic fluid hyperthermia). Depending on the functionalization molecule and intrinsic morphological features, MNPs now cover a broad scope which the current review aims to overview. Considering the exponential expansion of the field, the current review will be limited to roughly the past three years.
Collapse
|
18
|
Gawel AM, Singh R, Debinski W. Metal-Based Nanostructured Therapeutic Strategies for Glioblastoma Treatment-An Update. Biomedicines 2022; 10:1598. [PMID: 35884903 PMCID: PMC9312866 DOI: 10.3390/biomedicines10071598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/29/2022] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) is the most commonly diagnosed and most lethal primary malignant brain tumor in adults. Standard treatments are ineffective, and despite promising results obtained in early phases of experimental clinical trials, the prognosis of GBM remains unfavorable. Therefore, there is need for exploration and development of innovative methods that aim to establish new therapies or increase the effectiveness of existing therapies. One of the most exciting new strategies enabling combinatory treatment is the usage of nanocarriers loaded with chemotherapeutics and/or other anticancer compounds. Nanocarriers exhibit unique properties in antitumor therapy, as they allow highly efficient drug transport into cells and sustained intracellular accumulation of the delivered cargo. They can be infused into and are retained by GBM tumors, and potentially can bypass the blood-brain barrier. One of the most promising and extensively studied groups of nanostructured therapeutics are metal-based nanoparticles. These theranostic nanocarriers demonstrate relatively low toxicity, thus they might be applied for both diagnosis and therapy. In this article, we provide an update on metal-based nanostructured constructs in the treatment of GBM. We focus on the interaction of metal nanoparticles with various forms of electromagnetic radiation for use in photothermal, photodynamic, magnetic hyperthermia and ionizing radiation sensitization applications.
Collapse
Affiliation(s)
- Agata M. Gawel
- Histology and Embryology Students’ Science Association, Department of Histology and Embryology, Faculty of Medicine, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland;
| | - Ravi Singh
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - Waldemar Debinski
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
- Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| |
Collapse
|
19
|
AL-Harbi L, Darwish MS. Functionalized iron oxide nanoparticles: Synthesis through ultrasonic-assisted co-precipitation and performance as hyperthermic agents for biomedical applications. Heliyon 2022; 8:e09654. [PMID: 35711994 PMCID: PMC9192808 DOI: 10.1016/j.heliyon.2022.e09654] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/01/2022] [Accepted: 05/31/2022] [Indexed: 12/31/2022] Open
Abstract
Dual-functional iron oxide nanoparticles (IONPs), displaying self-heating and antibacterial effects are highly desired for biomedical application. This study involved the synthesis of functionalized IONPs coated with 3-aminopropyltriethoxysilane and polyethylene glycol via ultrasonic-assisted co-precipitation technique. The synthesized IONPs were then characterized by using Fourier-transform infrared spectroscopy, X-ray diffraction, dynamic light scattering, scanning electron microscopy, zeta potential, vibrating sample magnetometer and thermogravimetric analysis techniques. In addition, the effect of the synthesized IONPs on bacterial growth (S. aureus and E. coli) was studied. The influence of magnetic field power, as well as the viscous carriers on the heating efficiency of the synthesized IONPs was investigated. The specific absorption rate values increased as the power increased and decreased with the increase in the carrier viscosity. These characteristics render the synthesized iron oxide nanoparticles synthesized in the present study suitable for biomedical application as hyperthermic agents.
Collapse
Affiliation(s)
- L.M. AL-Harbi
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Mohamed S.A. Darwish
- Egyptian Petroleum Research Institute, 1 Ahmed El-Zomor Street, El Zohour Region, Nasr City, Cairo, 11727, Egypt
- Corresponding author.
| |
Collapse
|
20
|
Ivanov AO, Camp PJ. Effects of interactions, structure formation, and polydispersity on the dynamic magnetic susceptibility and magnetic relaxation of ferrofluids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Effect of Ti Atoms on Néel Relaxation Mechanism at Magnetic Heating Performance of Iron Oxide Nanoparticles. COATINGS 2022. [DOI: 10.3390/coatings12040481] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The study was based on understanding the relationship between titanium (Ti) doping amount and magnetic heating performance of magnetite (Fe3O4). Superparamagnetic nanosized Ti-doped magnetite ((Fe1−x,Tix)3O4; x = 0.02, 0.03 and 0.05) particles were synthesized by sol-gel technique. In addition to (Fe1−x,Tix)3O4 nanoparticles, SiO2 coated (Fe1−x,Tix)3O4 nanoparticles were produced as core-shell structures to understand the effects of silica coating on the magnetic properties of nanoparticles. Moreover, the magnetic properties were associated with the Néel relaxation mechanism due to the magnetic heating ability of single-domain state nanoparticles. In terms of results, it was observed that the induced RF magnetic field for SiO2 coated (Fe0.97,Ti0.03)3O4 nanoparticles caused an increase in temperature difference (ΔT), which reached up to 22 °C in 10 min. The ΔT values of SiO2 coated (Fe0.97,Ti0.03)3O4 nanoparticles were very close to the values of uncoated Fe3O4 nanoparticles.
Collapse
|
22
|
Socoliuc V, Avdeev MV, Kuncser V, Turcu R, Tombácz E, Vékás L. Ferrofluids and bio-ferrofluids: looking back and stepping forward. NANOSCALE 2022; 14:4786-4886. [PMID: 35297919 DOI: 10.1039/d1nr05841j] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ferrofluids investigated along for about five decades are ultrastable colloidal suspensions of magnetic nanoparticles, which manifest simultaneously fluid and magnetic properties. Their magnetically controllable and tunable feature proved to be from the beginning an extremely fertile ground for a wide range of engineering applications. More recently, biocompatible ferrofluids attracted huge interest and produced a considerable increase of the applicative potential in nanomedicine, biotechnology and environmental protection. This paper offers a brief overview of the most relevant early results and a comprehensive description of recent achievements in ferrofluid synthesis, advanced characterization, as well as the governing equations of ferrohydrodynamics, the most important interfacial phenomena and the flow properties. Finally, it provides an overview of recent advances in tunable and adaptive multifunctional materials derived from ferrofluids and a detailed presentation of the recent progress of applications in the field of sensors and actuators, ferrofluid-driven assembly and manipulation, droplet technology, including droplet generation and control, mechanical actuation, liquid computing and robotics.
Collapse
Affiliation(s)
- V Socoliuc
- Romanian Academy - Timisoara Branch, Center for Fundamental and Advanced Technical Research, Laboratory of Magnetic Fluids, Mihai Viteazu Ave. 24, 300223 Timisoara, Romania.
| | - M V Avdeev
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie Str. 6, 141980 Dubna, Moscow Reg., Russia.
| | - V Kuncser
- National Institute of Materials Physics, Bucharest-Magurele, 077125, Romania
| | - Rodica Turcu
- National Institute for Research and Development of Isotopic and Molecular Technologies (INCDTIM), Donat Str. 67-103, 400293 Cluj-Napoca, Romania
| | - Etelka Tombácz
- University of Szeged, Faculty of Engineering, Department of Food Engineering, Moszkvai krt. 5-7, H-6725 Szeged, Hungary.
- University of Pannonia - Soós Ernő Water Technology Research and Development Center, H-8800 Zrínyi M. str. 18, Nagykanizsa, Hungary
| | - L Vékás
- Romanian Academy - Timisoara Branch, Center for Fundamental and Advanced Technical Research, Laboratory of Magnetic Fluids, Mihai Viteazu Ave. 24, 300223 Timisoara, Romania.
- Politehnica University of Timisoara, Research Center for Complex Fluids Systems Engineering, Mihai Viteazul Ave. 1, 300222 Timisoara, Romania
| |
Collapse
|
23
|
Darwish MSA, Mostafa MH, Al-Harbi LM. Polymeric Nanocomposites for Environmental and Industrial Applications. Int J Mol Sci 2022; 23:1023. [PMID: 35162946 PMCID: PMC8835668 DOI: 10.3390/ijms23031023] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/10/2022] [Accepted: 01/16/2022] [Indexed: 12/20/2022] Open
Abstract
Polymeric nanocomposites (PNC) have an outstanding potential for various applications as the integrated structure of the PNCs exhibits properties that none of its component materials individually possess. Moreover, it is possible to fabricate PNCs into desired shapes and sizes, which would enable controlling their properties, such as their surface area, magnetic behavior, optical properties, and catalytic activity. The low cost and light weight of PNCs have further contributed to their potential in various environmental and industrial applications. Stimuli-responsive nanocomposites are a subgroup of PNCs having a minimum of one promising chemical and physical property that may be controlled by or follow a stimulus response. Such outstanding properties and behaviors have extended the scope of application of these nanocomposites. The present review discusses the various methods of preparation available for PNCs, including in situ synthesis, solution mixing, melt blending, and electrospinning. In addition, various environmental and industrial applications of PNCs, including those in the fields of water treatment, electromagnetic shielding in aerospace applications, sensor devices, and food packaging, are outlined.
Collapse
Affiliation(s)
- Mohamed S A Darwish
- Egyptian Petroleum Research Institute, 1 Ahmed El-Zomor Street, El Zohour Region, Nasr City, Cairo 11727, Egypt
| | - Mohamed H Mostafa
- Egyptian Petroleum Research Institute, 1 Ahmed El-Zomor Street, El Zohour Region, Nasr City, Cairo 11727, Egypt
| | - Laila M Al-Harbi
- Chemistry Department, Faculty of Science, King Abdul-Aziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
24
|
Fang A. Dynamical effective field model for interacting ferrofluids: I. Derivations for homogeneous, inhomogeneous, and polydisperse cases. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:115102. [PMID: 34911056 DOI: 10.1088/1361-648x/ac4345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Quite recently I have proposed a nonperturbative dynamical effective field model (DEFM) to quantitatively describe the dynamics of interacting ferrofluids. Its predictions compare very well with the results from Brownian dynamics simulations. In this paper I put the DEFM on firm theoretical ground by deriving it within the framework of dynamical density functional theory, taking into account nonadiabatic effects. The DEFM is generalized to inhomogeneous finite-size samples for which the macroscopic and mesoscopic scale separation is nontrivial due to the presence of long-range dipole-dipole interactions. The demagnetizing field naturally emerges from microscopic considerations and is consistently accounted for. The resulting mesoscopic dynamics only involves macroscopically local quantities such as local magnetization and Maxwell field. Nevertheless, the local demagnetizing field essentially couples to magnetization at distant macroscopic locations. Thus, a two-scale parallel algorithm, involving information transfer between different macroscopic locations, can be applied to fully solve the dynamics in an inhomogeneous sample. I also derive the DEFM for polydisperse ferrofluids, in which different species can be strongly coupled to each other dynamically. I discuss the underlying assumptions in obtaining a thermodynamically consistent polydisperse magnetization relaxation equation, which is of the same generic form as that for monodisperse ferrofluids. The theoretical advances presented in this paper are important for both qualitative understanding and quantitative modeling of the dynamics of ferrofluids and other dipolar systems.
Collapse
Affiliation(s)
- Angbo Fang
- School of Physics and Electronics, North China University of Water Resources and Electric Power, Zhengzhou 450011, People's Republic of China
| |
Collapse
|
25
|
Fang A. Dynamical effective field model for interacting ferrofluids: II. The proper relaxation time and effects of dynamic correlations. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:115103. [PMID: 34911049 DOI: 10.1088/1361-648x/ac4346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
The recently proposed dynamical effective field model (DEFM) is quantitatively accurate for ferrofluid dynamics. It is derived in paper I within the framework of dynamical density functional theory (DDFT) along with a phenomenological description of nonadiabatic effects. However, it remains to clarify how the characteristic rotational relaxation time of a dressed particle, denoted byτr, is quantitatively related to that of a bare particle, denoted byτr0. By building macro-micro connections via two different routes, I reveal that under some gentle assumptionsτrcan be identified with the mean time characterizing long-time rotational self-diffusion. I further introduce two simple but useful integrated correlation factors, describing the effects of quasi-static (adiabatic) and dynamic (nonadiabatic) inter-particle correlations, respectively. In terms of both the dynamic magnetic susceptibility is expressed in an illuminating and elegant form. Remarkably, it shows that the macro-micro connection is established via two successive steps: a dynamical coarse-graining with nonadiabatic effects accounted for by the dynamic factor, followed by equilibrium ensemble averaging captured by the static factor. By analyzing data from Brownian dynamics simulations on monodisperse interacting ferrofluids, I findτr/τr0is, somehow unexpectedly, insensitive to changes of particle volume fraction. A physical picture is proposed to explain it. Furthermore, an empirical formula is proposed to characterize the dependence ofτr/τr0on dipole-dipole interaction strength. The DEFM supplemented with this formula leads to parameter-free predictions in good agreement with results from Brownian dynamics simulations. The theoretical developments presented in this paper may have important consequences to studies of ferrofluid dynamics in particular and other systems modeled by DDFTs in general.
Collapse
Affiliation(s)
- Angbo Fang
- School of Physics and Electronics, North China University of Water Resources and Electric Power, Zhengzhou 450011, People's Republic of China
| |
Collapse
|
26
|
Effects of an Alternating Magnetic Field towards Dispersion of α-Fe 2O 3/TiO 2 Magnetic Filler in PPO dm Polymer for CO 2/CH 4 Gas Separation. MEMBRANES 2021; 11:membranes11080641. [PMID: 34436404 PMCID: PMC8401501 DOI: 10.3390/membranes11080641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022]
Abstract
Magnetic-field-induced dispersion of magnetic fillers has been proven to improve the gas separation performance of mixed matrix membranes (MMMs). However, the magnetic field induced is usually in a horizontal or vertical direction. Limited study has been conducted on the effects of alternating magnetic field (AMF) direction towards the dispersion of particles. Thus, this work focuses on the incorporation and dispersion of ferromagnetic iron oxide-titanium (IV) dioxide (αFe2O3/TiO2) particles in a poly (2,6-dimethyl-1,4-phenylene) oxide (PPOdm) membrane via an AMF to investigate its effect on the magnetic filler dispersion and correlation towards gas separation performance. The fillers were incorporated into PPOdm polymer via a spin-coating method at a 1, 3, and 5 wt% filler loading. The MMM with the 3 wt% loading showed the best performance in terms of particle dispersion and gas separation performance. The three MMMs were refabricated in an alternating magnetic field, and the MMM with the 3 wt% loading presented the best performance. The results display an increment in selectivity by 100% and a decrement in CO2 permeability by 97% to an unmagnetized MMM for the 3 wt% loading. The degree of filler dispersion was quantified and measured using Area Disorder of Delaunay Triangulation mapped onto the filler on binarized MMM images. The results indicate that the magnetized MMM presents a greater degree of dispersion than the unmagnetized MMM.
Collapse
|
27
|
Marć M, Drzewiński A, Wolak WW, Najder-Kozdrowska L, Dudek MR. Filtration of Nanoparticle Agglomerates in Aqueous Colloidal Suspensions Exposed to an External Radio-Frequency Magnetic Field. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1737. [PMID: 34361123 PMCID: PMC8307179 DOI: 10.3390/nano11071737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/07/2022]
Abstract
The study investigated the phenomenon of the fast aggregation of single-domain magnetic iron oxide nanoparticles in stable aqueous colloidal suspensions due to the presence of a radio-frequency (RF) magnetic field. Single-domain nanoparticles have specific magnetic properties, especially the unique property of absorbing the energy of such a field and releasing it in the form of heat. The localized heating causes the colloid to become unstable, leading to faster agglomeration of nanoparticles and, consequently, to rapid sedimentation. It has been shown that the destabilization of a stable magnetic nanoparticle colloid by the RF magnetic field can be used for the controlled filtration of larger agglomerates of the colloid solution. Two particular cases of stable colloidal suspensions were considered: a suspension of the bare nanoparticles in an alkaline solution and the silica-stabilized nanoparticles in a neutral solution. The obtained results are important primarily for biomedical applications and wastewater treatment.
Collapse
Affiliation(s)
| | - Andrzej Drzewiński
- Institute of Physics, University of Zielona Góra, ul. Szafrana 4a, 65-069 Zielona Góra, Poland; (M.M.); (W.W.W.); (L.N.-K.); (M.R.D.)
| | | | | | | |
Collapse
|
28
|
Engelmann UM, Shalaby A, Shasha C, Krishnan KM, Krause HJ. Comparative Modeling of Frequency Mixing Measurements of Magnetic Nanoparticles Using Micromagnetic Simulations and Langevin Theory. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1257. [PMID: 34064640 PMCID: PMC8151130 DOI: 10.3390/nano11051257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 12/23/2022]
Abstract
Dual frequency magnetic excitation of magnetic nanoparticles (MNP) enables enhanced biosensing applications. This was studied from an experimental and theoretical perspective: nonlinear sum-frequency components of MNP exposed to dual-frequency magnetic excitation were measured as a function of static magnetic offset field. The Langevin model in thermodynamic equilibrium was fitted to the experimental data to derive parameters of the lognormal core size distribution. These parameters were subsequently used as inputs for micromagnetic Monte-Carlo (MC)-simulations. From the hysteresis loops obtained from MC-simulations, sum-frequency components were numerically demodulated and compared with both experiment and Langevin model predictions. From the latter, we derived that approximately 90% of the frequency mixing magnetic response signal is generated by the largest 10% of MNP. We therefore suggest that small particles do not contribute to the frequency mixing signal, which is supported by MC-simulation results. Both theoretical approaches describe the experimental signal shapes well, but with notable differences between experiment and micromagnetic simulations. These deviations could result from Brownian relaxations which are, albeit experimentally inhibited, included in MC-simulation, or (yet unconsidered) cluster-effects of MNP, or inaccurately derived input for MC-simulations, because the largest particles dominate the experimental signal but concurrently do not fulfill the precondition of thermodynamic equilibrium required by Langevin theory.
Collapse
Affiliation(s)
- Ulrich M. Engelmann
- Department of Medical Engineering and Applied Mathematics, FH Aachen University of Applied Sciences, 52428 Jülich, Germany;
| | - Ahmed Shalaby
- Department of Medical Engineering and Applied Mathematics, FH Aachen University of Applied Sciences, 52428 Jülich, Germany;
| | - Carolyn Shasha
- Department of Physics, University of Washington, Seattle, WA 98195, USA; (C.S.); (K.M.K.)
| | - Kannan M. Krishnan
- Department of Physics, University of Washington, Seattle, WA 98195, USA; (C.S.); (K.M.K.)
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Hans-Joachim Krause
- Department of Medical Engineering and Applied Mathematics, FH Aachen University of Applied Sciences, 52428 Jülich, Germany;
- Institute of Biological Information Processing—Bioelectronics (IBI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|