1
|
Shen Y, Kaewraung W, Gao M. Theoretical understanding and prediction of metal-doped CeO 2 catalysts for ammonia dissociation. Phys Chem Chem Phys 2025. [PMID: 40026052 DOI: 10.1039/d5cp00430f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Ammonia plays a critical role in energy and environmental catalysis, particularly in ammonia dissociation reactions. Understanding the adsorption and dissociation of ammonia-related species on catalysts is essential for the development of new chemical reactions and high-performance catalysts. However, establishing the relationship between catalyst properties and the adsorption of dissociated species remains challenging, particularly for metal oxide catalysts. This study employs density functional theory calculations to investigate the adsorption properties of ammonia and dissociated intermediate species on metal-doped CeO2. Through a feature correlation heat map, certain descriptors, such as single atom formation energy, gaseous atom formation heat, valence band maximum, and work function, were determined to exhibit a strong linear relationship with the adsorption properties of NHx species. As deduced from the density of states properties and orbital theory, it is also found that the energy difference between the lowest unoccupied orbital of the metal and the highest occupied orbital of ammonia, has a good relationship with the adsorption energy of NH3.
Collapse
Affiliation(s)
- Yongjie Shen
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan.
| | - Wongsathorn Kaewraung
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Min Gao
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan.
| |
Collapse
|
2
|
Chen X, Yu T. Simulating Crystal Structure, Acidity, Proton Distribution, and IR Spectra of Acid Zeolite HSAPO-34: A High Accuracy Study. Molecules 2023; 28:8087. [PMID: 38138579 PMCID: PMC10745790 DOI: 10.3390/molecules28248087] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
It is a challenge to characterize the acid properties of microporous materials in either experiments or theory. This study presents the crystal structure, acid site, acid strength, proton siting, and IR spectra of HSAPO-34 from the SCAN + rVV10 method. The results indicate: the crystal structures of various acid sites of HSAPO-34 deviate from the space group of R3¯; the acid strength inferred from the DPE value likely decreases with the proton binding sites at O(2), O(4), O(1),and O(3), contrary to the stability order in view of the internal energy; the calculated ensemble-averaged DPE is about 1525 kJ/mol at 673.15 K; and the proton siting and the proton distribution are distinctly influenced by the temperature: at low temperatures, the proton is predominantly located at O(3), while it prefers O(2) at high temperatures, and the proton at O(4) assumedly has the least distribution at 273.15-773.15 K. In line with the neutron diffraction experiment, a correction factor of 0.979 is needed to correct for the calculated hydroxyl stretching vibration (ν(O-H)) of HSAPO-34. It seems that the SCAN meta-GGA method, compensating for some drawbacks of the GGA method, could provide satisfying results regarding the acid properties of HSAPO-34.
Collapse
Affiliation(s)
- Xiaofang Chen
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China;
| | | |
Collapse
|
3
|
Chen D, Khetan A, Lei H, Rizzotto V, Yang JY, Jiang J, Sun Q, Peng B, Chen P, Palkovits R, Ye D, Simon U. Copper Site Motion Promotes Catalytic NO x Reduction under Zeolite Confinement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16121-16130. [PMID: 37842921 DOI: 10.1021/acs.est.3c03422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Ammonia-mediated selective catalytic reduction (NH3-SCR) is currently the key approach to abate nitrogen oxides (NOx) emitted from heavy-duty lean-burn vehicles. The state-of-art NH3-SCR catalysts, namely, copper ion-exchanged chabazite (Cu-CHA) zeolites, perform rather poorly at low temperatures (below 200 °C) and are thus incapable of eliminating effectively NOx emissions under cold-start conditions. Here, we demonstrate a significant promotion of low-temperature NOx reduction by reinforcing the dynamic motion of zeolite-confined Cu sites during NH3-SCR. Combining complex impedance-based in situ spectroscopy (IS) and extended density-functional tight-binding molecular dynamics simulation, we revealed an environment- and temperature-dependent nature of the dynamic Cu motion within the zeolite lattice. Further coupling in situ IS with infrared spectroscopy allows us to unravel the critical role of monovalent Cu in the overall Cu mobility at a molecular level. Based on these mechanistic understandings, we elicit a boost of NOx reduction below 200 °C by reinforcing the dynamic Cu motion in various Cu-zeolites (Cu-CHA, Cu-ZSM-5, Cu-Beta, etc.) via facile postsynthesis treatments, either in a reductive mixture at low temperatures (below 250 °C) or in a nonoxidative atmosphere at high temperatures (above 450 °C).
Collapse
Affiliation(s)
- Dongdong Chen
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Abhishek Khetan
- Multiscale Modelling of Heterogeneous Catalysis in Energy Systems, RWTH Aachen University, Schinkelstrasse 8, 52062 Aachen, Germany
| | - Huarong Lei
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen Germany
| | - Valentina Rizzotto
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen Germany
| | - Jia-Yue Yang
- Optics & Thermal Radiation Research Center, Shandong University, 266237 Qingdao, China
| | - Jiuxing Jiang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, 510275 Guangzhou, China
| | - Qiming Sun
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
| | - Baoxiang Peng
- Laboratory of Industrial Chemistry, Ruhr University Bochum, 44780 Bochum, Germany
| | - Peirong Chen
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Regina Palkovits
- Chair of Heterogeneous Catalysis and Chemical Technology, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Daiqi Ye
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Ulrich Simon
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen Germany
| |
Collapse
|