1
|
Ji H, Luo Z, Yang X, Jin X, Zhao T, Duan P. Chiral dual-annihilator model for controllable photon upconversion and multi-dimensional optical modulation. Nat Commun 2025; 16:4952. [PMID: 40436922 PMCID: PMC12119800 DOI: 10.1038/s41467-025-60290-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 05/16/2025] [Indexed: 06/01/2025] Open
Abstract
Triplet-triplet annihilation photon upconversion seeks efficient conversion of low-energy photons to high-energy emission. However, the triplet-triplet annihilation photon upconversion system faces limitations in emission gamut because efficient triplet-triplet energy transfer between sensitizer and annihilator relies on triplet energy matching, making it challenging to realize multi-channel luminescence and multi-dimensional optical control. Here, to overcome this barrier, we propose a chiral dual-annihilator model, which mitigates the restriction of energy matching and achieves facile manipulation of circularly polarized luminescence through a dual-channel triplet-triplet energy transfer process. A theoretical equation for quantifying the overall triplet-triplet energy transfer efficiency and the energy flow between the sensitizer and two kinds of annihilators is proposed. Its accuracy is demonstrated by fine-controlling the emission bandwidth of triplet-triplet annihilation photon upconversion (average error less than 4.5%) in the experimental aspect. In addition, by introducing chiral liquid crystals, the dual-annihilator model achieves data coding and multi-dimensional optical encryption applications. This dual-annihilator model deepens the understanding of energy flow and lays the foundation for accurate, multidimensional modulation of photon upconversion.
Collapse
Affiliation(s)
- Honghan Ji
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing, People's Republic of China
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Road, Huairou District, Beijing, People's Republic of China
| | - Zhiwang Luo
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing, People's Republic of China
| | - Xuefeng Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing, People's Republic of China
| | - Xue Jin
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing, People's Republic of China
| | - Tonghan Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing, People's Republic of China.
| | - Pengfei Duan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing, People's Republic of China.
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Road, Huairou District, Beijing, People's Republic of China.
| |
Collapse
|
2
|
Mendonsa AA, Cash KJ. Oxygen-Sensitive Optical Nanosensors: Current Advances and Future Perspectives. ACS Sens 2025; 10:3194-3206. [PMID: 40272943 DOI: 10.1021/acssensors.5c00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Oxygen sensing is essential across a wide range of fields, from understanding cellular metabolism and disease mechanisms to optimizing industrial and environmental processes. In this Perspective, we highlight key developments in optical architectures (at the nanometer to sub-micrometer scale), including their transduction methods and applications to in vitro, in vivo/in situ, and nonbiological systems. We also discuss future directions for the field in the domain of expanding extra/intracellular and nonbiological sensing. We address improving accessibility for nonexpert users through the need for standardized protocols and scalable production methods. Furthermore, we advocate for fostering interdisciplinary collaborations through academic incubators, conference networking, and strategic citation practices to bridge gaps between fundamental research and applied science to expand the impact of these tools to researchers outside the sensing field. Addressing these challenges will help drive the development of more versatile and widely accessible oxygen sensors, thus advancing innovation across diverse disciplines.
Collapse
Affiliation(s)
- Adrian A Mendonsa
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Kevin J Cash
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
3
|
Zhang W, Xu T, Kong J, Li Y, Zhou X, Zhang J, Zhang Q, Song Y, Luo Y, Zhou M. Intensive near-infrared emitting Au 7Cu 10 nanoclusters for both energy and electron harvesting. Chem Sci 2025; 16:8910-8921. [PMID: 40271028 PMCID: PMC12012834 DOI: 10.1039/d5sc00671f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025] Open
Abstract
Triplet excitons have gained increasing recognition as inherent characteristics of various nanomaterials. However, the practical application of triplet excitons is limited due to their confinement within the material where they originate, posing significant challenges to harnessing their potential. In this work, we report direct extraction of both triplet energy and electrons from newly synthesized atomically precise Au7Cu10 nanoclusters (NCs). These NCs exhibit intensive near-infrared (NIR) emission with a quantum yield of 31% at room temperature. They also display near-unity quantum yield of intersystem crossing (ISC) with strong spin-orbit coupling (SOC) up to 864 cm-1. Consequently, Au7Cu10 NCs can act as triplet sensitizers, facilitating efficient triplet-triplet annihilation and achieving upconverted emission with an efficiency of 18.4% in perylene. Furthermore, rapid electron injection from Au7Cu10 NCs in the triplet state to methyl viologen was clearly observed. This study represents the first direct extraction of both triplet energy and electrons from the same metal NCs, indicating their potential as molecular triplet energy and electron surrogates in optoelectronics, photocatalysis, and solar energy conversion.
Collapse
Affiliation(s)
- Wei Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China Hefei Anhui 230026 China
| | - Tingting Xu
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University Hefei Anhui 230032 China
| | - Jie Kong
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China Hefei Anhui 230026 China
| | - Yuanming Li
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China Hefei Anhui 230026 China
| | - Xiaoguo Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China Hefei Anhui 230026 China
| | - Jiachen Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China Hefei Anhui 230026 China
| | - Qun Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China Hefei Anhui 230026 China
| | - Yongbo Song
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University Hefei Anhui 230032 China
| | - Yi Luo
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China Hefei Anhui 230026 China
- Hefei National Laboratory, University of Science and Technology of China Hefei Anhui 230088 China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
4
|
Zeng W, Zhong C, Bronstein H, Plasser F. Understanding and Tuning Singlet-Triplet (S 1-T 1) Energy Gaps in Planar Organic Chromophores. Angew Chem Int Ed Engl 2025; 64:e202502485. [PMID: 40062484 PMCID: PMC12087868 DOI: 10.1002/anie.202502485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 04/08/2025]
Abstract
Molecules with large gaps between their first singlet and triplet excited states (ΔEST) are key components of various modern technologies, most prominently singlet fission photovoltaics and triplet-triplet annihilation upconversion (TTA-UC). The design of these molecules is hampered by the fact that only limited rules for maximizing ΔEST exist, other than increasing the overlap between the frontier molecular orbitals (FMO). Here we suggest a new strategy for tuning and maximizing ΔEST based on a detailed analysis of the underlying quantum mechanical energy terms. We present a model based on the transition density and derive three straightforward design rules: ΔEST values can be maximized by (i) minimizing the overall number of π-electrons, (ii) reducing delocalization, and (iii) optimizing specific geometric interactions. The validity of these rules is first exemplified for a set of 18 hydrocarbon backbones before proceeding to a varied set of dye molecules, highlighting their transferability to realistic settings. We believe that the developed rules will provide an enormous boost to the field, enabling rational design instead of trial-and-error screening. More generally, this work demonstrates the power of going beyond the FMO approximation in designing advanced molecular materials.
Collapse
Affiliation(s)
- Weixuan Zeng
- Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Cheng Zhong
- Hubei Key Lab on Organic and Polymeric Opto‐Electronic Materials, Sauvage Center for Molecular SciencesDepartment of ChemistryWuhan UniversityWuhan430072China
| | - Hugo Bronstein
- Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
- Cavendish LaboratoryUniversity of CambridgeCambridgeCB3 0HEUK
| | - Felix Plasser
- Department of ChemistryLoughborough UniversityLoughboroughLE11 3TUUK
| |
Collapse
|
5
|
Ju Z, Deng R. Cascade Lanthanide-Triplet Energy Transfer for Nanocrystal-Sensitized Organic Photon Upconversion. Angew Chem Int Ed Engl 2025; 64:e202422575. [PMID: 39967267 DOI: 10.1002/anie.202422575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/05/2025] [Accepted: 02/18/2025] [Indexed: 02/20/2025]
Abstract
Sensitized organic photon upconversion via triplet-triplet annihilation (TTA) shows significant potential for energy conversion and photocatalysis, but achieving efficient upconversion across multiple wavelengths with single-wavelength near-infrared (NIR) excitation remains a daunting challenge. Here, we report a strategy utilizing lanthanide-doped nanocrystals (LnNCs) to sensitize TTA upconversion in multiple organic emitters under NIR excitation, achieving an anti-Stokes shift of up to 1.1 eV. This approach leverages a cascade lanthanide-triplet energy transfer design, adopting an interfacial energy transfer pathway via lanthanide ions to surface energy relay molecules for extended triplet sensitization. It allows consecutive transfer of photon energy from LnNCs to TTA emitters, mitigating energy mismatch between the triplet levels of emitters and excitation photon energies. The use of LnNCs enhances energy transfer efficiency through the unique spin-orbital coupling and narrow-band absorption properties of lanthanide ions. Our approach offers tunable upconversion emission, minimized energy loss during sensitization, and improved chemical stability of LnNCs. Additionally, we demonstrate the utility of this system in NIR-induced photopolymerization, showcasing its potential for applications such as 3D printing and photocatalysis.
Collapse
Affiliation(s)
- Zhijie Ju
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Renren Deng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
6
|
Taarit I, Sommer Q, Guénée L, Piguet C. Dinuclear Heteroleptic Erbium Complexes for Improving Molecular-Based Light Upconversion in Solution? Inorg Chem 2025; 64:6575-6588. [PMID: 39981708 DOI: 10.1021/acs.inorgchem.4c05481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
In an attempt to boost molecular-based excited-state absorption (ESA) via cross-relaxation (CR), the back-to-back ditridentate polyaromatic 2,2',6,6'-tetrakis(1-methyl-1H-benzo[d]imidazole-2-yl)-4,4'-bipyridine ligand (L4) was reacted with neutral [Ln(hfac)3] lanthanide cargoes (Ln = Y, Eu, and Er and H-hfac = 1,1,1,5,5,5-hexafluoropentane-2,4-dione) to give dinuclear erbium [(hfac)3LnL4Ln(hfac)3] ≡ [L4Ln2(hfac)6] adducts. Their crystal structures confirm the formation of dimeric molecular scaffolds made of two nine-coordinated trivalent [LnN3O6] chromophores separated by a 4,4'-bipyridine bridge with Ln···Ln distances within the nanometric range (Eu···Eu = 11.69 Å, Y···Y = 11.65 Å, and Er···Er = 12.12 Å). Thermodynamic studies in dichloromethane provide critical insights into the formation and stability of these adducts. Under near-infrared (NIR) excitation at 801 nm in solution, [L4Er2(hfac)6] exhibits ESA light upconversion with blueish-green emissions at 525 and 542 nm corresponding to Er(2H11/2,4S3/2 → 4I15/2) transitions. Thanks to the pertinent speciation in dichloromethane, we could extract a reliable upconversion quantum yield and brightness for the targeted dinuclear [L4Er2(hfac)6] adduct in solution. They largely overpass by 2 orders of magnitude those of the unsaturated mononuclear [L4Er(hfac)3] intermediate but remain comparable to data reported for related saturated monomeric adducts in the same conditions. No global beneficial cross-relaxation effect could thus be unambiguously identified.
Collapse
Affiliation(s)
- Inès Taarit
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 Quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Quentin Sommer
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 Quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Laure Guénée
- Laboratory of Crystallography, University of Geneva, 24 Quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 Quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
7
|
Hu X, Pollice L, Ronchi A, Roccanova M, Mauri M, Lardani D, Vanhecke D, Monguzzi A, Weder C. Confinement-Enhanced Multi-Wavelength Photon Upconversion Based on Triplet-Triplet Annihilation in Nanostructured Glassy Polymers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415160. [PMID: 39950941 PMCID: PMC11984915 DOI: 10.1002/advs.202415160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Indexed: 04/12/2025]
Abstract
Sensitized triplet-triplet annihilation photon upconversion (sTTA-UC) allows blue-shifting non-coherent low-intensity light and is potentially useful in solar-powered devices, bioimaging, 3D printing, and other applications. For technologically viable solar energy harvesting systems, solid materials that capture a large fraction of the solar spectrum and efficiently upconvert the absorbed energy must be developed. Here, it is shown that broadband-to-blue UC is possible in air-tolerant, easy-to-access, nanostructured polymers comprising a rigid hydrophilic matrix and liquid nanodroplets with dimensions on the order of tens of nanometers. The droplets contain 9,10-bis[(triisopropylsilyl)ethynyl] anthracene (TIPS-Ac) as emitter/annihilator and palladium(II) octaethyl porphyrin (PdOEP) and palladium(II) meso-tetraphenyl tetrabenzoporphine (PdTPBP) as sensitizers. The confinement of the three dyes in the liquid domains renders the various bimolecular energy transfer processes that are pivotal for the TIPS-Ac's triplet sensitization highly efficient, and the simultaneous use of multiple light harvesters with triplet energy levels resonant with the emitter/annihilator increases the absorption bandwidth to ca. 150 nm. The UC process at low power densities is most efficient when both sensitizers are simultaneously excited, thanks to their confinement in the nanodroplets, which leads to an increase in the triplet density, and therefore TTA rate and yield, optimizing the use of the harvested energy.
Collapse
Affiliation(s)
- Xueqian Hu
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 4Fribourg1700Switzerland
| | - Luca Pollice
- Dipartimento di Scienza dei MaterialiUniversità degli Studi Milano‐BicoccaVia Roberto Cozzi 55Milano20125Italy
| | - Alessandra Ronchi
- Dipartimento di Scienza dei MaterialiUniversità degli Studi Milano‐BicoccaVia Roberto Cozzi 55Milano20125Italy
| | - Marco Roccanova
- Dipartimento di Scienza dei MaterialiUniversità degli Studi Milano‐BicoccaVia Roberto Cozzi 55Milano20125Italy
| | - Michele Mauri
- Dipartimento di Scienza dei MaterialiUniversità degli Studi Milano‐BicoccaVia Roberto Cozzi 55Milano20125Italy
| | - Davide Lardani
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 4Fribourg1700Switzerland
| | - Dimitri Vanhecke
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 4Fribourg1700Switzerland
| | - Angelo Monguzzi
- Dipartimento di Scienza dei MaterialiUniversità degli Studi Milano‐BicoccaVia Roberto Cozzi 55Milano20125Italy
| | - Christoph Weder
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 4Fribourg1700Switzerland
| |
Collapse
|
8
|
Su XD, Li XN, Liu Q, Yang ZS, Wang ZX, Chen XY. Near-Infrared-Light-Induced Iron(I) Dimer Enabled Abstraction of Ester Group from Cycloketone Oxime Esters. Org Lett 2025; 27:3043-3047. [PMID: 40110589 DOI: 10.1021/acs.orglett.5c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Photoinduced dimeric metal complexes have been extensively utilized in halogen atom transfer (XAT) reactions. In this study, we successfully achieved the abstraction of ester group from cyclobutanone oxime esters via iron(I)-dimer catalysis under near-infrared (NIR) light (730 nm) excitation, enabling the efficient synthesis of cyanoalkylated alkenes, quinazolinones, and 3,3-disubstituted oxindoles. Mechanistic investigations confirmed the NIR-induced functional group abstraction process.
Collapse
Affiliation(s)
- Xiao-Di Su
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue-Ning Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhu-Sheng Yang
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| |
Collapse
|
9
|
Wu Y, Chang B, Li H, Wang L, Liu Z, Yin L. Low-Dimensional Hetero-Interlayer Enabling Sub-Bandgap Photovoltaic Conversion for Perovskite Solar Cells. Angew Chem Int Ed Engl 2025; 64:e202416284. [PMID: 39887847 DOI: 10.1002/anie.202416284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 01/17/2025] [Accepted: 01/29/2025] [Indexed: 02/01/2025]
Abstract
Actualizing sub-band gap photovoltaic conversion is effective in remitting energy loss and pushing theoretical efficiency limits for perovskite solar cells (PSCs). Herein, a zero-dimensional organic metal halide based on hydroxyquinoline (HQ) is developed to sensitize PSCs for near-infrared region gain to implement sub-band gap photovoltaic conversion for enhancing power-conversion-efficiency (PCE) of PSCs. [ZnI4]2- skeletons containing heavy atoms intensify the direct singlet-to-triplet state transition of organic chromophores HQ. Meanwhile, the triplet energy of HQ is close to resonance with perovskite band gap, favoring the energy transfer to perovskite and exciting the additional electron-hole pairs, which was observed by transient absorption spectroscopy, confirming the sensitization of perovskite to increase sub-band gap photocurrent. HQ2ZnI4 modifies electronic and crystal structure, optimizes energy-level arrangement, and acts as a protective layer, realizing considerable PCEs in small (6.25 mm2)-/larger-area (1 cm2) devices and excellent operational stability. This low-cost strategy brings vitality to the light management of PSCs and expands low-dimensional materials.
Collapse
Affiliation(s)
- Yutong Wu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Bohong Chang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Lian Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Zhen Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Longwei Yin
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
- Shandong Research Institute of Industrial Technology, Jinan, 250100, P. R. China
| |
Collapse
|
10
|
Bi P, Wang J, Chen Z, Li Z, Tan C, Qiao J, Dai J, Zhang T, Gao J, Goh WP, Lyu C, Jiang C, Hao X, Hou J, Yang L. Weak Near-Infrared Light Visualization Enabled by Smart Multifunctional Optoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416785. [PMID: 39924800 DOI: 10.1002/adma.202416785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/25/2025] [Indexed: 02/11/2025]
Abstract
Visualizing weak NIR light is critical for sensing, imaging, and communication, but remains challenging due to inefficient detection and upconversion (UC) mechanisms. A smart NIR-to-visible photon-UC organic optoelectronic device is reported that integrates photodetection, light-emitting diode (LED), and photovoltaic capabilities to enable clear visualization of weak NIR light. The programmable device has continuous photodetection monitoring of the incident NIR intensity. When the incident intensity falls below a preset threshold, the LED function is automatically triggered to compensate for the UC emission, amplifying the visualization. The smart multifunctional device uses a carefully designed ternary bulk heterojunction sensitizer doped with rubrene:DBP as the emitter. It demonstrates high UC efficiency (>1.5%) for upconversion from 808 to 608 nm, allowing NIR visualization without external power under strong illumination. It also shows excellent NIR photodetection with photoresponsivity of 0.35 A W-1 at 800 nm and specific detectivity reaching 10¹2-10¹3 Jones, enabling sensitive detection under low-light conditions. It also exhibits a low turn-on voltage (0.9 V) and luminance exceeding 1200 cd m- 2 at 5 V, ensuring energy-efficient light compensation. Furthermore, it achieves >10% power conversion efficiency, enabling sustainable self-powered operation. This multifunctional, high-performance system offers great potential in sensing, energy harvesting, and display technologies.
Collapse
Affiliation(s)
- Pengqing Bi
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Jianqiu Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhihao Chen
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zelong Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Cheng Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Jiawei Qiao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Jiangbo Dai
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Tao Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jiajia Gao
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Wei Peng Goh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Chengkun Lyu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Changyun Jiang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Xiaotao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Le Yang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| |
Collapse
|
11
|
Garain S, Würthner F. Photofunctional cyclophane host-guest systems. Chem Commun (Camb) 2025; 61:3081-3092. [PMID: 39851135 DOI: 10.1039/d4cc06070a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Modulation of optical properties through smart protein matrices is exemplified by a few examples in nature such as rhodopsin (absorption wavelength tuning) and the green fluorescence protein (emission), but in general, the scope found in nature for the matrix-controlled photofunctions remains rather limited. In this review, we present cyclophane-based supramolecular host-guest complexes for which electronic interactions between the cyclophane host and mostly planar aromatic guest molecules can actively modulate excited-state properties in a more advanced way involving both singlet and triplet excited states. We begin by highlighting photofunctional host-guest systems for on-off fluorescence switching and chiroptical functions using bay-functionalized perylene bisimide cyclophanes. Next, we examine the impact of π-extension in perylene bisimide cyclophanes for multiple guest binding, showcasing photofunctional properties including circularly polarized luminescence (CPL). We then focus on triplet-generating cyclophanes, i.e. coronene bisimide cyclophane, with high intersystem crossing (ISC) rates, where we demonstrate modulation of excited state pathways upon guest encapsulation and triplet sensitization through phosphorescence and thermally activated delayed fluorescence (TADF). Furthermore, using supramolecular strategies, we advance non-covalent designs, involving either heavy-atom-based Pt(acac)2 guests or heavy-atom free charge transfer complexes, for triplet harvesting under ambient conditions and demonstrate the role of supramolecular nanoenvironments in stabilizing triplet excitons in aerated solutions. Additionally, we showcase examples for triplet-triplet annihilation (TTA) upconversion in defined cyclophane complexes in aqueous solutions and the application of host-guest chemistry in organic light-emitting diodes (OLEDs).
Collapse
Affiliation(s)
- Swadhin Garain
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| |
Collapse
|
12
|
Toigo J, Tong KM, Farhat R, Kamal S, Nichols EM, Wolf MO. Rationalizing Photophysics of Co(III) Complexes with Pendant Pyrene Moieties. Inorg Chem 2025; 64:835-844. [PMID: 39788568 DOI: 10.1021/acs.inorgchem.4c03689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Pendant organic chromophores have been used to improve the photocatalytic performance of many metal-based photosensitizers, particularly in first-row metals, by increasing π conjugation in ligands and lowering the energy of the photoactive absorption band. Using a combination of spectroscopic studies and computational modeling, we rationalize the excited state dynamics of a Co(III) complex containing pendant pyrene moieties, CoL1, where L1 = 1,1'-(4-(pyren-1-yl)pyridine-2,6-diyl)bis(3-methyl-1H-imidazol-3-ium). CoL1 displays higher visible absorptivity, and blue luminescence from pyrene singlet excited states compared with CoL0 [L0 = 1,1'-(pyridine-2,6-diyl)bis(3-methyl-1H-imidazol-3-ium)] in which the pyrene moiety is absent. Emissive properties are highly influenced by the metal center, reducing the fluorescence lifetime from 5.9 to 3.5 ns, and a blue shift of 43 nm. The lower energy of the d orbitals in Co(III) compared with Fe(II) drastically affects the character of the excited state, resulting in a mixture of singlet intraligand charge-transfer (1ILCT) and ligand-to-metal charge-transfer (1LMCT) character. Transient absorption experiments revealed that although the dark triplet intraligand pyrene (3ILPyrene) state is present, it is not efficiently populated and possesses a short nanosecond-scale lifetime. Instead, triplet metal-centered (3MC) states dominate the decay path with a 2.4 ps lifetime, no photoactivity toward singlet oxygen formation or triplet-triplet energy transfer (TTET). This work shows how various factors can influence excited-state dynamics.
Collapse
Affiliation(s)
- Jessica Toigo
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Ka-Ming Tong
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Rida Farhat
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Saeid Kamal
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Eva M Nichols
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Michael O Wolf
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
13
|
Carrod AJ, Berghuis AM, Gopalakrishnan VN, Monkman A, Danos A, Börjesson K. Separating triplet exciton diffusion from triplet-triplet annihilation by the introduction of a mediator. Chem Sci 2025; 16:1293-1301. [PMID: 39677941 PMCID: PMC11639907 DOI: 10.1039/d4sc07004f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/01/2024] [Indexed: 12/17/2024] Open
Abstract
Triplet-triplet annihilation photon upconversion (TTA-UC) combines the energy of two photons to provide one of higher energy that can be used to drive photochemical or photophysical processes. TTA-UC proceeds at high efficiencies in dilute solution, but in solid state the efficiency drastically reduces. This is because exciton diffusion, compared to molecular diffusion in solid annihilator films, suffers concentration induced quenching, undermining efficient emission. Here, we provide a method to decouple the triplet exciton diffusion and the annihilation processes using an exciton transporting mediator as host. At low exciton densities emission occurs from the annihilator, while at higher exciton intensities TTA and emission from the mediator is observed. The low concentration of the annihilator dopant gives evidence for a hetero-TTA mechanism being active, i.e. annihilation occurring between the mediator and an annihilator molecule. Monte-Carlo simulations qualitatively reproduced the experimental results and give a direction for future optimization. This work hence demonstrates successful separation of exciton diffusion from annihilation by the introduction of a triplet mediator host, and with this approach support the development of highly efficient solid-state TTA-UC materials.
Collapse
Affiliation(s)
- Andrew J Carrod
- University of Gothenburg, Department of Chemistry and Molecular Biology Medicinaregatan 7B 41390 Gothenburg Sweden
| | - Anton M Berghuis
- Dutch Institute for Fundamental Energy Research P.O. Box 6336 5600 HH Eindhoven The Netherlands
| | - Vishnu Nair Gopalakrishnan
- University of Gothenburg, Department of Chemistry and Molecular Biology Medicinaregatan 7B 41390 Gothenburg Sweden
| | - Andrew Monkman
- Department of Physics, Durham University South Road Durham DH13LE UK
| | - Andrew Danos
- Department of Physics, Durham University South Road Durham DH13LE UK
- School of Physical and Chemical Sciences, Queen Mary University of London London E1 4NS UK
| | - Karl Börjesson
- University of Gothenburg, Department of Chemistry and Molecular Biology Medicinaregatan 7B 41390 Gothenburg Sweden
| |
Collapse
|
14
|
Chen X, Zhang X, Zhao Y. Metal-organic framework-based hybrids with photon upconversion. Chem Soc Rev 2025; 54:152-177. [PMID: 39540626 DOI: 10.1039/d4cs00571f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Upconversion materials (UCMs) featuring an anti-Stokes type emission establish them as an important category of photoluminescent materials. Metal-organic frameworks (MOFs) are rapidly gaining prominence as a class of versatile materials with favourable physical and chemical properties, including high porosity, controllable pore size, flexible design, and diverse functional sites. To endow MOFs with upconversion capability and improve the properties and performance of UCMs, the hybrids integrating UCMs and MOFs are proven to be successful. This review focuses on the research advancements of upconverting MOF-based hybrids, encompassing classifications, luminescence mechanisms, designs, properties, and applications in energy, catalysis, and biomedical fields. The analyses on the functions of upconversion and MOFs, as well as the advantages and disadvantages of various upconverting MOF-based hybrids, are included. Future research directions spanning from properties and performance to applications are explored. This review will be valuable in highlighting the research accomplishments, inspiring more ideas, facilitating deeper investigations in diverse avenues, and further advancing the research field.
Collapse
Affiliation(s)
- Xiaokai Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang link, Singapore, 637371, Singapore.
| | - Xiaodong Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang link, Singapore, 637371, Singapore.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang link, Singapore, 637371, Singapore.
| |
Collapse
|
15
|
Dong Y, Shi Y, Chen S, Guo C, Zheng D, Gou H, Wan S, Ye C. Low blue-hazard white-light emission based on color-tunable triplet-triplet annihilation upconversion. J Colloid Interface Sci 2025; 677:504-512. [PMID: 39154443 DOI: 10.1016/j.jcis.2024.08.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/29/2024] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
The commonly used artificial light sources, such as fluorescent lamps and white light-emitting diodes, often have a high ratio of blue light emission, which poses potential blue light hazards, especially one of the main culprits leading to eye diseases. Therefore, developing novel white lighting sources with low blue-hazard is highly appreciated. In this work, an air-stable and color-tunable triplet-triplet annihilation upconversion (TTA-UC) mechanism was proposed to realize the low blue-hazard white-light emission. The proposed design was composed of three primary RGB colors from the annihilator (9,10-diphenylanthracene, DPA), the laser excitation source, and the photosensitizer (palladium (II) octaetylporphyrin, PdOEP), respectively. The introduction of oil-in-water (o/w) microemulsion can effectively block the potential oxygen-induced triplet-quenching and benefit high UC efficiency. Moreover, either raising ambient temperatures or adding isobutanol can activate the UC process to yield white-light emission. Notably, the white-light emission with a Commission Internationale de l'Eclairage (CIE) coordinate of (0.33, 0.33) as well as a low ratio of blue emission (14.2 %) was achieved at an ambient temperature of 42 °C. Therefore, the proposed air-stable TTA-UC mechanism can significantly lower the blue-hazard and provide a novel solution for applications in lighting and display.
Collapse
Affiliation(s)
- Yuxiang Dong
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yizhong Shi
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Shuoran Chen
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Cheng Guo
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Daoyuan Zheng
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Haodong Gou
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Shigang Wan
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Changqing Ye
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
16
|
Jin P, Xu X, Yan Y, Hammecke H, Wang C. Luminescent Fe(III) Complex Sensitizes Aerobic Photon Upconversion and Initiates Photocatalytic Radical Polymerization. J Am Chem Soc 2024; 146:35390-35401. [PMID: 39658028 DOI: 10.1021/jacs.4c14248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Light energy conversion often relies on photosensitizers with long-lived excited states, which are mostly made of precious metals such as ruthenium or iridium. Photoactive complexes based on highly abundant iron seem attractive for sustainable energy conversion, but this remains very challenging due to the short excited state lifetimes of the current iron complexes. This study shows that a luminescent Fe(III) complex sensitizes triplet-triplet annihilation upconversion with anthracene derivatives via underexplored doublet-triplet energy transfer, which is assisted by preassociation between the photosensitizer and the annihilator. In the presence of an organic mediator, the green-to-blue upconversion efficiency ΦUC with 9,10-diphenylanthracene (DPA) as the annihilator achieves a 6-fold enhancement to ∼0.2% in aerated solution at room temperature. The singlet excited state of DPA, accessed via photon upconversion in the Fe(III)/DPA pair, allows efficient photoredox catalytic radical polymerization of acrylate monomers in a spatially controlled manner, whereas this process is kinetically hindered with the prompt DPA. Our study provides a new strategy of using low-cost iron and low-energy visible light for efficient polymer synthesis, which is a significant step for both fundamental research and future applications.
Collapse
Affiliation(s)
- Pengyue Jin
- Department of Biology and Chemistry, Osnabrück University, Barbarastraße 7, Osnabrück 49076, Germany
| | - Xinhuan Xu
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongli Yan
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Heinrich Hammecke
- Department of Biology and Chemistry, Osnabrück University, Barbarastraße 7, Osnabrück 49076, Germany
| | - Cui Wang
- Department of Biology and Chemistry, Osnabrück University, Barbarastraße 7, Osnabrück 49076, Germany
| |
Collapse
|
17
|
Mitsui M. Recent Advances in Understanding Triplet States in Metal Nanoclusters: Their Formation, Energy Transfer, and Applications in Photon Upconversion. J Phys Chem Lett 2024; 15:12257-12268. [PMID: 39636297 DOI: 10.1021/acs.jpclett.4c03003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Recent experimental findings, rapidly accumulating over the past few years, has revealed that in the electronic excited states of metal nanoclusters (MNCs) composed of noble metal atoms (e.g., Cu, Ag, or Au), triplet states are generated with remarkably high efficiency, exerting a pivotal influence over the photophysical properties of the MNCs, notably their photoluminescence characteristics. As a result, MNCs are increasingly recognized as promising luminescent nanomaterials that exhibit room-temperature phosphorescence and thermally activated delayed fluorescence. Furthermore, the significance of triplet-state-mediated energy transfer and charge transfer in intermolecular photophysical processes is gaining increasing recognition, particularly in the applications of MNCs as photosensitizers for singlet oxygen and organic molecular triplets. This Perspective focuses on recent advances in understanding of the formation and photophysics of triplet states in MNCs. Additionally, a brief overview is provided of a series of studies exploring the use of MNCs as triplet sensitizers for photon upconversion via triplet-triplet annihilation, and future prospects for this emerging application are discussed.
Collapse
Affiliation(s)
- Masaaki Mitsui
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishiikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
18
|
Hammecke H, Fritzler D, Vashistha N, Jin P, Dietzek-Ivanšić B, Wang C. 100 μs Luminescence Lifetime Boosts the Excited State Reactivity of a Ruthenium(II)-Anthracene Complex in Photon Upconversion and Photocatalytic Polymerizations with Red Light. Chemistry 2024; 30:e202402679. [PMID: 39298687 DOI: 10.1002/chem.202402679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/31/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
The triplet excited state lifetime of a photosensitizer is an essential parameter for diffusion-controlled energy- and electron-transfer, which occurs usually in a competitive manner to the intrinsic decay of a triplet excited state. Here we show the decisive role of luminescence lifetime in the triplet excited state reactivity toward energy- and electron transfer. Anchoring two phenyl anthracene chromophores to a ruthenium(II) polypyridyl complex (RuII ref) leads to a RuII triad with a luminescence lifetime above 100 μs, which is more than 40 times longer than that of the prototypical complex. The obtained RuII triad sensitizes energy transfer to anthracene-based annihilators more efficiently than RuII ref and enables red-to-blue photon upconversion with a pseudo anti-Stokes shift of 0.94 eV and a moderate upconversion efficiency near 1 % in aerated solution. Particularly, RuII triad allows rapid photoredox catalytic polymerizations of acrylate and acrylamide monomers under aerobic condition with red light, which are kinetically hindered for RuII ref. Our work shows that excited state lifetime of a photosensitizer governs the dynamics of the excited state reactions, which seems an overlooked but important aspect for photochemistry.
Collapse
Affiliation(s)
- Heinrich Hammecke
- Department of Biology and Chemistry, Osnabrück University, Barbarastraße 7, 49076, Osnabrück, Germany
| | - Dennis Fritzler
- Department of Biology and Chemistry, Osnabrück University, Barbarastraße 7, 49076, Osnabrück, Germany
| | - Nikita Vashistha
- Research Department Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany
- Institute for Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Pengyue Jin
- Department of Biology and Chemistry, Osnabrück University, Barbarastraße 7, 49076, Osnabrück, Germany
| | - Benjamin Dietzek-Ivanšić
- Research Department Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany
- Institute for Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Cui Wang
- Department of Biology and Chemistry, Osnabrück University, Barbarastraße 7, 49076, Osnabrück, Germany
| |
Collapse
|
19
|
Wang Z, Jones BE, Franca LG, Lawson T, Jevric M, Moth-Poulsen K, Evans RC. Multilayer films for photon upconversion-driven photoswitching. JOURNAL OF MATERIALS CHEMISTRY. C 2024; 12:19030-19034. [PMID: 39610884 PMCID: PMC11589804 DOI: 10.1039/d4tc03513e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/10/2024] [Indexed: 11/30/2024]
Abstract
Photoswitchable materials are of significant interest for diverse applications from energy and data storage to additive manufacturing and soft robotics. However, the absorption profile is often a limiting factor for practical applications. This can be overcome using indirect excitation via complementary photophysical pathways, such as triplet sensitisation or photon upconversion. Here, we demonstrate the use of triplet-triplet annihilation upconversion (TTA-UC) to drive photoswitching of the energy storing photoswitch norbornadiene-quadricyclane (NBD-QC) in the solid-state. A photoswitchable bilayer polymer film, incorporating the TTA-UC sensitiser-emitter pair of platinum octaethylporphyrin (PtOEP) and 9,10-diphenylanthracene (DPA), was used to trigger the photoinduced [2+2] cycloaddition of NBD to form QC using visible instead of UV light. The isolated TTA-UC film showed green-to-blue upconversion, with a competitive upconversion efficiency of (1.9 ± 0.1%) for the solid-state in air. Direct photoswitching of the isolated NBD film was demonstrated with a narrow UV light source (340 nm). However, in the bilayer film, spectral overlap between the upconverted blue emission in the TTA-UC film and the absorbance band of the NBD film resulted in indirect photoswitching using visible green light (532 nm, 1 W cm-2), thus extending the spectral operational window of the photoswitching film. The results demonstrate proof-of-feasibility of TTA-UC-promoted photoswitching in the solid-state, paving the way for potential applications in light-harvesting devices and smart coatings, using a wider selection of irradiation wavelengths.
Collapse
Affiliation(s)
- Zhihang Wang
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
| | - Beatrice E Jones
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
| | - Larissa G Franca
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
| | - Takashi Lawson
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
| | - Martyn Jevric
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology Kemivagen 4 Gothenburg 412 96 Sweden
| | - Kasper Moth-Poulsen
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology Kemivagen 4 Gothenburg 412 96 Sweden
- Institute of Materials Science of Barcelona, ICMAB-CSIC, Bellaterra Barcelona 08193 Spain
- Catalan Institution for Research & Advanced Studies, ICREA Pg. Lluıs Companys 23 Barcelona Spain
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, EEBE Eduard Maristany 10-14 08019 Barcelona Spain
| | - Rachel C Evans
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
| |
Collapse
|
20
|
Qu R, Jiang X, Zhen X. Light/X-ray/ultrasound activated delayed photon emission of organic molecular probes for optical imaging: mechanisms, design strategies, and biomedical applications. Chem Soc Rev 2024; 53:10970-11003. [PMID: 39380344 DOI: 10.1039/d4cs00599f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Conventional optical imaging, particularly fluorescence imaging, often encounters significant background noise due to tissue autofluorescence under real-time light excitation. To address this issue, a novel optical imaging strategy that captures optical signals after light excitation has been developed. This approach relies on molecular probes designed to store photoenergy and release it gradually as photons, resulting in delayed photon emission that minimizes background noise during signal acquisition. These molecular probes undergo various photophysical processes to facilitate delayed photon emission, including (1) charge separation and recombination, (2) generation, stabilization, and conversion of the triplet excitons, and (3) generation and decomposition of chemical traps. Another challenge in optical imaging is the limited tissue penetration depth of light, which severely restricts the efficiency of energy delivery, leading to a reduced penetration depth for delayed photon emission. In contrast, X-ray and ultrasound serve as deep-tissue energy sources that facilitate the conversion of high-energy photons or mechanical waves into the potential energy of excitons or the chemical energy of intermediates. This review highlights recent advancements in organic molecular probes designed for delayed photon emission using various energy sources. We discuss distinct mechanisms, and molecular design strategies, and offer insights into the future development of organic molecular probes for enhanced delayed photon emission.
Collapse
Affiliation(s)
- Rui Qu
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Xu Zhen
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
21
|
Li R, Ou T, Wen L, Yan Y, Li W, Qin X, Wang S. All-Visible-Light-Activated Diarylethene Photoswitches. Molecules 2024; 29:5202. [PMID: 39519843 PMCID: PMC11547923 DOI: 10.3390/molecules29215202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Photochromic compounds have attracted much attention for their potential applications in photo-actuators, optoelectronic devices and optical recording techniques. This interest is driven by their key photochemical and photophysical properties, which can be reversibly modulated by light irradiation. Among them, diarylethene compounds have garnered extensive investigation due to their excellent thermal stability of both open- and closed-form isomers, robust fatigue resistance, high photocyclization quantum yield and good photochromic performance in both solution and solid phases. However, a notable limitation in expanding the utility of diarylethene compounds is the necessity for ultraviolet light to induce their photochromism. This requirement poses challenges, as ultraviolet light can be detrimental to biological tissues, and its penetration is often restricted in various media. This review provides an overview of design strategies employed in the development of visible-light-responsive diarylethene compounds. These design strategies serve as a guideline for molecular design, with the potential to significantly broaden the applications of all-visible-light-activated diarylethene compounds in the realms of materials science and biomedical science.
Collapse
Affiliation(s)
- Ruiji Li
- School of Pharmacy, Jining Medical University, Rizhao 276826, China; (L.W.); (W.L.); (X.Q.); (S.W.)
| | - Tao Ou
- School of Pharmacy, Binzhou Medical University, Yantai 256603, China;
| | - Li Wen
- School of Pharmacy, Jining Medical University, Rizhao 276826, China; (L.W.); (W.L.); (X.Q.); (S.W.)
| | - Yehao Yan
- School of Public Health, Jining Medical University, Jining 272067, China;
| | - Wei Li
- School of Pharmacy, Jining Medical University, Rizhao 276826, China; (L.W.); (W.L.); (X.Q.); (S.W.)
| | - Xulong Qin
- School of Pharmacy, Jining Medical University, Rizhao 276826, China; (L.W.); (W.L.); (X.Q.); (S.W.)
| | - Shouxin Wang
- School of Pharmacy, Jining Medical University, Rizhao 276826, China; (L.W.); (W.L.); (X.Q.); (S.W.)
| |
Collapse
|
22
|
Lyons AJ, Naimovičius L, Zhang SK, Pun AB. Optimizing Upconversion Quantum Yield via Structural Tuning of Dipyrrolonaphthyridinedione Annihilators. Angew Chem Int Ed Engl 2024; 63:e202411003. [PMID: 39031499 DOI: 10.1002/anie.202411003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/22/2024]
Abstract
Triplet-triplet annihilation upconversion (TTA-UC) is a photophysical process in which two low-energy photons are converted into one higher-energy photon. This type of upconversion requires two species: a sensitizer that absorbs low-energy light and transfers its energy to an annihilator, which emits higher-energy light after TTA. In spite of the multitude of applications of TTA-UC, few families of annihilators have been explored. In this work, we show dipyrrolonaphthyridinediones (DPNDs) can act as annihilators in TTA-UC. We found that structural changes to DPND dramatically increase its upconversion quantum yield (UCQY). Our optimized DPND annihilator demonstrates a high maximum internal UCQY of 9.4 %, outperforming the UCQY of commonly used near-infrared-to-visible annihilator rubrene by almost double.
Collapse
Affiliation(s)
- Alexandra J Lyons
- Department of Chemistry and Biochemistry, University of California San Diego, 92093, La Jolla, CA, USA
| | - Lukas Naimovičius
- Department of Chemistry and Biochemistry, University of California San Diego, 92093, La Jolla, CA, USA
| | - Simon K Zhang
- Department of Chemistry and Biochemistry, University of California San Diego, 92093, La Jolla, CA, USA
| | - Andrew B Pun
- Department of Chemistry and Biochemistry, University of California San Diego, 92093, La Jolla, CA, USA
| |
Collapse
|
23
|
Chen X, Liang H, He X, Li W, Nian Z, Mahmood Z, Huo Y, Ji S. Exploring the triplet state properties of thio-benzothioxanthene imides with applications in TTA-upconversion and photopolymerization. Chem Commun (Camb) 2024; 60:11132-11135. [PMID: 39269145 DOI: 10.1039/d4cc04049j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Thio-benzothioxanthene imide (BTXI) exhibits long excited state lifetime (τT = 17.7 μs) and high ISC efficiency (ΦΔ = 97%). For the first time, BTXI derivatives were used as photosensitizers for triplet-triplet annihilation upconversion, achieving the highest efficiency of 13.8%. In addition, thio-BTXI derivatives were used as photoinitiators for photopolymerization, resulting in a series of green light-activated radical polymerization systems.
Collapse
Affiliation(s)
- Xiaoping Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Hui Liang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Xitong He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Weiqiang Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Zhiyao Nian
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Zafar Mahmood
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Shaomin Ji
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| |
Collapse
|
24
|
Escayola S, Labella J, Szczepanik DW, Poater A, Torres T, Solà M, Matito E. From (Sub)Porphyrins to (Sub)Phthalocyanines: Aromaticity Signatures in the UV-Vis Absorption Spectra. Inorg Chem 2024; 63:18251-18262. [PMID: 39297344 PMCID: PMC11465665 DOI: 10.1021/acs.inorgchem.4c03139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024]
Abstract
The development of novel synthetic methods has greatly expanded the toolbox available to chemists for engineering porphyrin and phthalocyanine derivatives with precise electronic and optical properties. In this study, we focus on the UV-vis absorption characteristics of substituted phthalocyanines and their contracted analogs, subphthalocyanines, which feature nonplanar, bowl-shaped geometries. These macrocycles, which are central to numerous applications in materials science and catalysis, possess extensive π-conjugated systems that drive their unique electronic properties. We explore how the change from a metalloid (B) to a metal (Zn) and the resulting coordination environments influence the aromaticity and, consequently, the spectroscopic features of these systems. A combined computational and experimental approach reveals a direct correlation between the aromaticity of the external conjugated pathways and the Q bands in the UV-vis spectra. Our findings highlight key structural modifications that can be leveraged to fine-tune the optical properties of porphyrinoid systems, offering new pathways for the design of advanced materials and catalysts with tailored functionalities.
Collapse
Affiliation(s)
- Sílvia Escayola
- Institut
de Química Computacional i Catàlisi and Departament
de Química, Universitat de Girona, C/Maria Aurèlia Capmany,
69, Girona, Catalonia 17003, Spain
- Donostia
International Physics Center (DIPC), Donostia, Euskadi 20018, Spain
| | - Jorge Labella
- Departamento
de Química Orgánica, Universidad
Autónoma de Madrid, Madrid 28049, Spain
| | - Dariusz W. Szczepanik
- Department
of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Kraków 30-387, Poland
| | - Albert Poater
- Institut
de Química Computacional i Catàlisi and Departament
de Química, Universitat de Girona, C/Maria Aurèlia Capmany,
69, Girona, Catalonia 17003, Spain
| | - Tomas Torres
- Departamento
de Química Orgánica, Universidad
Autónoma de Madrid, Madrid 28049, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
- IMDEA-Nanociencia,
Campus de Cantoblanco, Madrid 28049, Spain
| | - Miquel Solà
- Institut
de Química Computacional i Catàlisi and Departament
de Química, Universitat de Girona, C/Maria Aurèlia Capmany,
69, Girona, Catalonia 17003, Spain
| | - Eduard Matito
- Donostia
International Physics Center (DIPC), Donostia, Euskadi 20018, Spain
- Ikerbasque
Foundation for Science, Bilbao, Euskadi 48011, Spain
| |
Collapse
|
25
|
Bharmoria P, Naimovičius L, Abol-Fotouh D, Miroshnichenko M, Lekavičius J, De Luca G, Saeed U, Kazlauskas K, Candau N, Baronas P, Roig A, Moth-Poulsen K. Photon upconversion crystals doped bacterial cellulose composite films as recyclable photonic bioplastics. COMMUNICATIONS MATERIALS 2024; 5:200. [PMID: 39351279 PMCID: PMC11438599 DOI: 10.1038/s43246-024-00638-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024]
Abstract
Biopolymers currently utilized as substitutes for synthetic polymers in photonics applications are predominantly confined to linear optical color responses. Herein we expand their applications in non-linear optics by integrating with triplet-triplet annihilation photon upconversion crystals. A photon upconverting biomaterial is prepared by cultivating Pd(II) meso-tetraphenyl tetrabenzoporphine: 9,10-diphenyl anthracene (sensitizer: annihilator) crystals on bacterial cellulose hydrogel that serves both as host and template for the crystallization of photon upconversion chromophores. Coating with gelatin improves the material's optical transparency by adjusting the refractive indices. The prepared material shows an upconversion of 633 nm red light to 443 nm blue light, indicated by quadratic to linear dependence on excitation power density (non-linearly). Notably, components of this material are physically dis-assembled to retrieve 66 ± 1% of annihilator, at the end of life. Whereas, the residual clean biomass is subjected to biodegradation, showcasing the sustainability of the developed photonics material.
Collapse
Affiliation(s)
- Pankaj Bharmoria
- Institute of Materials Science of Barcelona, ICMAB-CSIC, Barcelona, Spain
| | - Lukas Naimovičius
- Institute of Materials Science of Barcelona, ICMAB-CSIC, Barcelona, Spain
- Institute of Photonics and Nanotechnology, Vilnius University, Vilnius, Lithuania
| | - Deyaa Abol-Fotouh
- Institute of Materials Science of Barcelona, ICMAB-CSIC, Barcelona, Spain
- Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab, Egypt
| | | | - Justas Lekavičius
- Institute of Photonics and Nanotechnology, Vilnius University, Vilnius, Lithuania
| | - Gabriele De Luca
- Institute of Materials Science of Barcelona, ICMAB-CSIC, Barcelona, Spain
| | - Umair Saeed
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), Barcelona, Spain
| | - Karolis Kazlauskas
- Institute of Photonics and Nanotechnology, Vilnius University, Vilnius, Lithuania
| | - Nicolas Candau
- Departament de Ciència i Enginyeria de Materials (CEM), Escola d’Enginyeria Barcelona-Est (EEBE), Universitat Politècnica de Catalunya BarcelonaTech (UPC), Barcelona, Spain
| | - Paulius Baronas
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, EEBE, Barcelona, Spain
| | - Anna Roig
- Institute of Materials Science of Barcelona, ICMAB-CSIC, Barcelona, Spain
| | - Kasper Moth-Poulsen
- Institute of Materials Science of Barcelona, ICMAB-CSIC, Barcelona, Spain
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, EEBE, Barcelona, Spain
- Catalan Institution for Research & Advanced Studies, ICREA, Barcelona, Spain
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
26
|
Arshad A, Castellano FN. Homomolecular Triplet-Triplet Annihilation in Metalloporphyrin Photosensitizers. J Phys Chem A 2024; 128:7648-7656. [PMID: 39229891 DOI: 10.1021/acs.jpca.4c05052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Metalloporphyrins are ubiquitous in their applications as triplet photosensitizers, particularly for promoting sensitized photochemical upconversion processes. In this study, bimolecular excited state triplet-triplet quenching kinetics, termed homomolecular triplet-triplet annihilation (HTTA), exhibited by the traditional triplet photosensitizers-zinc(II) tetraphenylporphyrin (ZnTPP), palladium(II) octaethylporphyrin (PdOEP), platinum(II) octaethylporphyrin (PtOEP), and platinum(II) tetraphenyltetrabenzoporphyrin (PtTPBP)─were revealed using conventional transient absorption spectroscopy. Nickel(II) tetraphenylporphyrin was used as a control sample as it is known to be rapidly quenched intramolecularly through ligand-field state deactivation and, therefore, cannot result in triplet-triplet annihilation (TTA). The single wavelength transients associated with the metalloporphyrin triplet excited state decay─measured as a function of incident laser pulse energy in toluene─were well modeled using parallel first- and second-order kinetics, consistent with HTTA being operable. The combined transient kinetic data enabled the determination of the first-order rate constants (kT) for excited triplet decay in ZnTPP (4.0 × 103 s-1), PdOEP (3.6 × 103 s-1), PtOEP (1.2 × 104 s-1), and PtTPBP (2.1 × 104 s-1) as well as the second-order rate constant (kTT) for HTTA in ZnTPP (5.5 × 109 M-1 s-1), PdOEP (1.1 × 1010 M-1 s-1), PtOEP (7.1 × 109 M-1 s-1), and PtTPBP (1.6 × 1010 M-1 s-1). In most instances, triplet excited state extinction coefficients are either reported for the first time or have been revised using ultrafast transient absorption spectroscopy and singlet depletion: ZnTPP (78,000 M-1 cm-1) at 470 nm, PdOEP (67,000 M-1 cm-1) at 430 nm, PtOEP (51,000 M-1 cm-1) at 418 nm, and PtTPBP (100,000 M-1 cm-1) at 460 nm. The combined experimental results establish competitive time scales for homo- and heteromolecular TTA rate constants, implying the significance of considering HTTA processes in future research endeavors harnessing TTA photochemistry using common metalloporphyrin photosensitizers.
Collapse
Affiliation(s)
- Azka Arshad
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
27
|
Mitsui M, Miyoshi Y, Arima D. Tailoring sensitization properties and improving near-infrared photon upconversion performance through alloying in superatomic molecular Au 25 nanoclusters. NANOSCALE 2024; 16:14757-14765. [PMID: 38973468 DOI: 10.1039/d4nr01948b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Noble-metal nanoclusters (NCs) protected by organic ligands have recently come to the forefront as potent triplet sensitizers for photon upconversion (UC) via triplet-triplet annihilation (TTA), owing to their capacity for atomic-level photophysical property customization. Among these, the rod-shaped bi-icosahedral [Au25(PPh3)10(S-C2H4Ph)5Cl2]2+ (Au-rod) NC is a particularly iconic superatomic molecular NC, recently identified as a near-infrared (NIR)-absorbing sensitizer for TTA-UC. In this study, we synthesized Cu-doped NCs, [Au25-xCux(PPh3)10(S-C2H4Ph)5Cl2]2+ (AuCu-rod), and paired them with 9,10-bis(phenylethynyl)anthracene (BPEA) annihilator/emitter to explore the impact of Cu-doping on the triplet sensitization and NIR-UC performance. The triplet state of AuCu-rod, with lifetime of 3 μs, exhibited a modest blue shift compared to the Au-rod, resulting in the increment in the driving force for triplet energy transfer (TET) to the BPEA acceptor. The TET rate constant was determined to be 5.0 × 107 M-1 s-1, which is an order of magnitude higher than the rate constant for the Au-rod/BPEA pair. This improvement has led to a remarkable increase in the TET efficiency. Notably, the AuCu-rod/BPEA pair facilitated the efficient UC of 805 nm NIR light into 510 nm visible light, realizing a large anti-Stokes shift close to 0.9 eV. The UC internal quantum yield of this combination was determined to be 2.33 ± 0.05%, marking a fivefold enhancement over the Au-rod sensitizer (0.49%). Thus, alloying NC sensitizers offers a promising route to enhance UC performance by tuning the triplet state energy and optimizing the compatibility between the sensitizer and annihilator. Additionally, in this series of experiments, the formation of small amounts of BPEA microaggregates was observed. These aggregates did not undergo singlet fission and could retain multiple long-lived triplet excitons. This characteristic facilitated TTA among triplet excitons, resulting in efficient NIR-to-visible UC emission.
Collapse
Affiliation(s)
- Masaaki Mitsui
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishiikebukuro, Toshima-ku, Tokyo 171-8501, Japan.
| | - Yuki Miyoshi
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishiikebukuro, Toshima-ku, Tokyo 171-8501, Japan.
| | - Daichi Arima
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishiikebukuro, Toshima-ku, Tokyo 171-8501, Japan.
| |
Collapse
|
28
|
Matsumoto N, Nakagawa S, Morisato K, Kanamori K, Nakanishi K, Yanai N. Crystalline organic monoliths with bicontinuous porosity. Chem Sci 2024; 15:11500-11506. [PMID: 39055017 PMCID: PMC11268461 DOI: 10.1039/d4sc01650e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Organic crystals are a promising class of materials for various optical applications. However, it has been challenging to make macroscopic organic crystals with bicontinuous porosity that are applicable to flow chemistry. In this study, a new class of porous materials, cm-scale crystalline organic monoliths (COMs) with bicontinuous porosity, are synthesized by replicating the porous structure of silica monolith templates. The COMs composed of p-terphenyl can take up more than 30 wt% of an aqueous solution, and the photophysical properties of the p-terphenyl crystals are well maintained in the COMs. The relatively high surface area of the COMs can be exploited for efficient Dexter energy transfer from triplet sensitizers on the pore surface. The resulting triplet excitons in the COMs encounter and annihilate, generating upconverted UV emission. The COMs would open a new avenue toward applications of organic crystals in flow photoreaction systems.
Collapse
Affiliation(s)
- Naoto Matsumoto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Sakura Nakagawa
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Kei Morisato
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa, Sakyo-ku Kyoto 606-8502 Japan
| | - Kazuyoshi Kanamori
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa, Sakyo-ku Kyoto 606-8502 Japan
- PRESTO, JST Honcho 4-1-8 Kawaguchi Saitama 332-0012 Japan
| | - Kazuki Nakanishi
- Institute of Materials and Systems for Sustainability, Nagoya University Furo-cho, Chikusa-ku Nagoya Aichi 464-8601 Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Nobuhiro Yanai
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
- FOREST, JST Honcho 4-1-8 Kawaguchi Saitama 332-0012 Japan
- CREST, JST Honcho 4-1-8 Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
29
|
Bi P, Zhang T, Guo Y, Wang J, Chua XW, Chen Z, Goh WP, Jiang C, Chia EEM, Hou J, Yang L. Donor-acceptor bulk-heterojunction sensitizer for efficient solid-state infrared-to-visible photon up-conversion. Nat Commun 2024; 15:5719. [PMID: 38977685 PMCID: PMC11231359 DOI: 10.1038/s41467-024-50177-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/03/2024] [Indexed: 07/10/2024] Open
Abstract
Solid-state infrared-to-visible photon up-conversion is important for spectral-tailoring applications. However, existing up-conversion systems not only suffer from low efficiencies and a need for high excitation intensity, but also exhibit a limited selection of materials and complex fabrication processes. Herein, we propose a sensitizer with a bulk-heterojunction structure, comprising both an energy donor and an energy acceptor, for triplet-triplet annihilation up-conversion devices. The up-conversion occurs through charge separation at the donor-acceptor interface, followed by the formation of charge transfer state between the energy donor and annihilator following the spin statistics. The bulk-heterojunction sensitizer ensures efficient charge generation and low charge recombination. Hence, we achieve a highly efficient solid-state up-conversion device with 2.20% efficiency and low excitation intensity (10 mW cm-2) through a one-step solution method. We also demonstrate bright up-conversion devices on highly-flexible large-area substrates. This study introduces a simple and scalable platform strategy for fabricating efficient up-conversion devices.
Collapse
Affiliation(s)
- Pengqing Bi
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Republic of Singapore
| | - Tao Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuanyuan Guo
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University (NTU), Singapore, 637371, Republic of Singapore
| | - Jianqiu Wang
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xian Wei Chua
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Republic of Singapore
| | - Zhihao Chen
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wei Peng Goh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Republic of Singapore
| | - Changyun Jiang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Republic of Singapore
| | - Elbert E M Chia
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University (NTU), Singapore, 637371, Republic of Singapore
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Le Yang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Republic of Singapore.
- Department of Materials Science & Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore, 117575, Republic of Singapore.
| |
Collapse
|
30
|
Sun R, Zang J, Lai R, Yang W, Ji B. Near-Infrared-to-Visible Photon Upconversion with Efficiency Exceeding 21% Sensitized by InAs Quantum Dots. J Am Chem Soc 2024; 146:17618-17623. [PMID: 38899905 DOI: 10.1021/jacs.4c04997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Upconversion (UC) of incoherent near-infrared (NIR) photons to visible photons through sensitized triplet-triplet annihilation (TTA) shows great potential in solar energy harvesting, photocatalysis, and bioimaging. However, the efficiencies of NIR-to-visible TTA-UC systems lag considerably behind those of their visible-to-visible counterparts. Here, we report a novel NIR-to-yellow TTA-UC system with a record quantum yield (QY) of 21.1% (out of a 100% maximum) and a threshold intensity of 20.2 W/cm2 by using InAs-based colloidal quantum dots (QDs) as triplet photosensitizers. The key to success is the epitaxial growth of an ultrathin ZnSe shell on InAs QDs that passivates the surface defects without impeding triplet energy transfer (TET) from QDs to surface-bound tetracene. Transient absorption spectroscopy verifies efficient TET efficiency of more than 80%, along with sufficiently long triplet lifetime of tetracene molecules, leading to high-performance UC. Moreover, high UC QYs (>18%) remain when larger InAs-based QDs─of which the absorption peak is red-shifted by more than 50 nm─are used as sensitizers, indicating the great potential of InAs QDs to utilize NIR photons with lower energy.
Collapse
Affiliation(s)
- Ruijia Sun
- Zhejiang University, Hangzhou, Zhejiang 310027, China
- School of Engineering, Westlake University, Hangzhou 310030, China
- Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, Westlake University, Hangzhou 310030, China
| | - Jianyang Zang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310000, China
| | - Runchen Lai
- Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou 310030, China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Westlake University, Hangzhou 310030, China
| | - Wenxing Yang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310000, China
| | - Botao Ji
- School of Engineering, Westlake University, Hangzhou 310030, China
- Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, Westlake University, Hangzhou 310030, China
| |
Collapse
|
31
|
Klimezak M, Chaud J, Brion A, Bolze F, Frisch B, Heurtault B, Kichler A, Specht A. Triplet-Triplet Annihilation Upconversion-Based Photolysis: Applications in Photopharmacology. Adv Healthc Mater 2024; 13:e2400354. [PMID: 38613491 DOI: 10.1002/adhm.202400354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/04/2024] [Indexed: 04/15/2024]
Abstract
The emerging field of photopharmacology is a promising chemobiological methodology for optical control of drug activities that could ultimately solve the off-target toxicity outside the disease location of many drugs for the treatment of a given pathology. The use of photolytic reactions looks very attractive for a light-activated drug release but requires to develop photolytic reactions sensitive to red or near-infrared light excitation for better tissue penetration. This review will present the concepts of triplet-triplet annihilation upconversion-based photolysis and their recent in vivo applications for light-induced drug delivery using photoactivatable nanoparticles.
Collapse
Affiliation(s)
- Maxime Klimezak
- Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST), Équipe Nanoparticules Intelligentes, Université de Strasbourg, CNRS, CBST UMR 7199, Illkirch Cedex, F-67401, France
| | - Juliane Chaud
- Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST), Équipe Nanoparticules Intelligentes, Université de Strasbourg, CNRS, CBST UMR 7199, Illkirch Cedex, F-67401, France
- Inserm UMR_S 1121, EMR 7003 CNRS, Université de Strasbourg, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 1 rue Eugène Boeckel, Strasbourg, F-67000, France
| | - Anaïs Brion
- Inserm UMR_S 1121, EMR 7003 CNRS, Université de Strasbourg, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 1 rue Eugène Boeckel, Strasbourg, F-67000, France
| | - Frédéric Bolze
- Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST), Équipe Nanoparticules Intelligentes, Université de Strasbourg, CNRS, CBST UMR 7199, Illkirch Cedex, F-67401, France
| | - Benoit Frisch
- Inserm UMR_S 1121, EMR 7003 CNRS, Université de Strasbourg, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 1 rue Eugène Boeckel, Strasbourg, F-67000, France
| | - Béatrice Heurtault
- Inserm UMR_S 1121, EMR 7003 CNRS, Université de Strasbourg, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 1 rue Eugène Boeckel, Strasbourg, F-67000, France
| | - Antoine Kichler
- Inserm UMR_S 1121, EMR 7003 CNRS, Université de Strasbourg, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 1 rue Eugène Boeckel, Strasbourg, F-67000, France
| | - Alexandre Specht
- Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST), Équipe Nanoparticules Intelligentes, Université de Strasbourg, CNRS, CBST UMR 7199, Illkirch Cedex, F-67401, France
| |
Collapse
|
32
|
Zuo R, Ye Z, Liang H, Huo Y, Ji S. High-efficiency triplet-triplet annihilation upconversion microemulsion with facile preparation and decent air tolerance. Photochem Photobiol Sci 2024; 23:1309-1321. [PMID: 38839722 DOI: 10.1007/s43630-024-00596-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024]
Abstract
Current research of triplet-triplet annihilation upconversion (TTA-UC) faces difficulty such as overuse of organic solvents and quenching of excited triplet sensitizers by molecular oxygen. Herein, we propose an efficient and facile preparation strategy of TTA-UC microemulsion to overcome these issues. With simple device and short preparation process, air-stable TTA-UC with a high upconversion efficiency of 16.52% was achieved in microemulsion coassembled from TritonX114, tetrahydrofuran and upconverting chromophores (platinum octaethyl-porphyrin and 9,10-diphenylanthracene). This is comparable to the highest UC efficiency ever reported for TTA-UC microemulsion systems. The excellent UC performance of TX114-THF could be attributed to two perspectives. Firstly, small-size micelle accommodated chromophores up to high concentrations in organic phase, which promoted efficient molecular collision. Additionally, high absorbance at 532 nm ensured full use of excitation light, getting more long wavelength photons involved in the TTA-UC process. Moreover, air-stable TTA-UC also performed well in microemulsion with various surfactants, including nonionic surfactants (Tween 20, Tween 80, Triton X-110, Triton X-114), ionic surfactants (sodium dodecyl sulfate, cetyltrimethyl ammonium bromide) and block copolymers (pluronic F127, pluronic P123), through three conjectural assembly models according to the structural characteristics of surfactant molecules (concentrated, uncompacted and scattered). These discoveries could provide estimable reference for selection of surfactants in relevant fields of TTA-UC.
Collapse
Affiliation(s)
- Renjie Zuo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China
| | - Zecong Ye
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China.
| | - Hui Liang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China
| | - Shaomin Ji
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China.
| |
Collapse
|
33
|
Diaz-Andres A, Tonnelé C, Casanova D. Electronic Couplings for Triplet-Triplet Annihilation Upconversion in Crystal Rubrene. J Chem Theory Comput 2024; 20:4288-4297. [PMID: 38743825 PMCID: PMC11137828 DOI: 10.1021/acs.jctc.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Triplet-triplet annihilation photon upconversion (TTA-UC) is a process able to repackage two low-frequency photons into light of higher energy. This transformation is typically orchestrated by the electronic degrees of freedom within organic compounds possessing suitable singlet and triplet energies and electronic couplings. In this work, we propose a computational protocol for the assessment of electronic couplings crucial to TTA-UC in molecular materials and apply it to the study of crystal rubrene. Our methodology integrates sophisticated yet computationally affordable approaches to quantify couplings in singlet and triplet energy transfer, the binding of triplet pairs, and the fusion to the singlet exciton. Of particular significance is the role played by charge-transfer states along the b-axis of rubrene crystal, acting as both partial quenchers of singlet energy transfer and mediators of triplet fusion. Our calculations identify the π-stacking direction as holding notable triplet energy transfer couplings, consistent with the experimentally observed anisotropic exciton diffusion. Finally, we have characterized the impact of thermally induced structural distortions, revealing their key role in the viability of triplet fusion and singlet fission. We posit that our approaches are transferable to a broad spectrum of organic molecular materials, offering a feasible means to quantify electronic couplings.
Collapse
Affiliation(s)
- Aitor Diaz-Andres
- Donostia
International Physics Center (DIPC), Donostia 20018, Euskadi, Spain
| | - Claire Tonnelé
- Donostia
International Physics Center (DIPC), Donostia 20018, Euskadi, Spain
- IKERBASQUE,
Basque Foundation for Science, Bilbao 48009, Euskadi, Spain
| | - David Casanova
- Donostia
International Physics Center (DIPC), Donostia 20018, Euskadi, Spain
- IKERBASQUE,
Basque Foundation for Science, Bilbao 48009, Euskadi, Spain
| |
Collapse
|
34
|
Alkhaibari I, Zhang X, Zhao J, Stonelake TM, Knighton RC, Horton PN, Coles SJ, Buurma NJ, Richards E, Pope SJA. Tuning Excited State Character in Iridium(III) Photosensitizers and Its Influence on TTA-UC. Inorg Chem 2024; 63:9931-9940. [PMID: 38738860 PMCID: PMC11134496 DOI: 10.1021/acs.inorgchem.4c01003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024]
Abstract
A series of mixed ligand, photoluminescent organometallic Ir(III) complexes have been synthesized to incorporate substituted 2-phenyl-1H-naphtho[2,3-d]imidazole cyclometalating ligands. The structures of three example complexes were categorically confirmed using X-ray crystallography each sharing very similar structural traits including evidence of interligand hydrogen bond contacts that account for the shielding effects observed in the 1H NMR spectra. The structural iterations of the cyclometalated ligand provide tuning of the principal electronic transitions that determine the visible absorption and emission properties of the complexes: emission can be tuned in the visible region between 550 and 610 nm and with triplet lifetimes up to 10 μs. The nature of the emitting state varies across the series of complexes, with different admixtures of ligand-centered and metal-to-ligand charge transfer triplet levels evident. Finally, the use of the complexes as photosensitizers in triplet-triplet annihilation energy upconversion (TTA-UC) was investigated in the solution state. The study showed that the complexes possessing the longest triplet lifetimes showed good viability as photosensitizers in TTA-UC. Therefore, the use of an electron-withdrawing group on the 2-phenyl-1H-naphtho[2,3-d]imidazole ligand framework can be used to rationally promote TTA-UC using this class of complex.
Collapse
Affiliation(s)
- Ibrahim
S. Alkhaibari
- School
of Chemistry, Main Building, Cardiff University, Cardiff, Cymru/Wales CF10 3AT, U.K.
- Department
of Chemistry, College of Science, Qassim
University, Buraydah 52571, Saudi Arabia
| | - Xue Zhang
- State
Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart
Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jianzhang Zhao
- State
Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart
Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Thomas M. Stonelake
- School
of Chemistry, Main Building, Cardiff University, Cardiff, Cymru/Wales CF10 3AT, U.K.
| | - Richard C. Knighton
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Peter N. Horton
- UK
National Crystallographic Service, Chemistry, Faculty of Natural and
Environmental Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Simon J. Coles
- UK
National Crystallographic Service, Chemistry, Faculty of Natural and
Environmental Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Niklaas J. Buurma
- School
of Chemistry, Main Building, Cardiff University, Cardiff, Cymru/Wales CF10 3AT, U.K.
| | - Emma Richards
- School
of Chemistry, Main Building, Cardiff University, Cardiff, Cymru/Wales CF10 3AT, U.K.
| | - Simon J. A. Pope
- School
of Chemistry, Main Building, Cardiff University, Cardiff, Cymru/Wales CF10 3AT, U.K.
| |
Collapse
|
35
|
Niihori Y, Kosaka T, Negishi Y. Triplet-triplet annihilation-based photon upconversion using nanoparticles and nanoclusters. MATERIALS HORIZONS 2024; 11:2304-2322. [PMID: 38587491 DOI: 10.1039/d4mh00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The phenomenon of photon upconversion (UC), generating high-energy photons from low-energy photons, has attracted significant attention. In particular, triplet-triplet annihilation-based UC (TTA-UC) has been achieved by combining the excitation states of two types of molecules, called the sensitizer and emitter (or annihilator). With TTA-UC, it is possible to convert weak, incoherent near-infrared (NIR) light, which constitutes half of the solar radiation intensity, into ultraviolet and visible light that are suitable for the operation of light-responsive functional materials or devices such as solar cells and photocatalysts. Research on TTA-UC is being conducted worldwide, often employing materials with high intersystem crossing rates, such as metal porphyrins, as sensitizers. This review summarizes recent research and trends in triplet energy transfer and TTA-UC for semiconductor nanoparticles or nanocrystals with diameters in the nanometer range, also known as quantum dots, and for ligand-protected metal nanoclusters, which have even smaller well-defined sub-nanostructures. Concerning nanoparticles, transmitter ligands have been applied on the surface of the nanoparticles to efficiently transfer triplet excitons formed inside the nanoparticles to emitters. Applications are expanding to solid-state UC devices that convert NIR light to visible light. Additionally, there is active research in the development of sensitizers using more cost-effective and environmentally friendly elements. Regarding metal nanoclusters, methods have been established for the evaluation of excited states, deepening the understanding of luminescent properties and excited relaxation processes.
Collapse
Affiliation(s)
- Yoshiki Niihori
- Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Taiga Kosaka
- Graduate School of Science, Department of Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuichi Negishi
- Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Graduate School of Science, Department of Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
36
|
Panguluri SPK, Jourdain E, Chakraborty P, Klyatskaya S, Kappes MM, Nonat AM, Charbonnière LJ, Ruben M. Yb-to-Eu Cooperative Sensitization Upconversion in a Multifunctional Molecular Nonanuclear Lanthanide Cluster in Solution. J Am Chem Soc 2024; 146:13083-13092. [PMID: 38701172 DOI: 10.1021/jacs.3c14527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Lanthanide metal clusters excel in combining molecular and material chemistry properties. Here, we report an efficient cooperative sensitization UC phenomenon of a Eu3+/Yb3+ nonanuclear lanthanide cluster in CD3OD. The synthesis and characterization of the heteronuclear cluster in the solid state and solution are described together with the UC phenomenon showing Eu3+ luminescence in the visible region upon 980 nm NIR excitation of Yb3+ at concentrations as low as 100 nM. Alongside being the Eu/Yb cluster to display UC (with a quantum yield value of 4.88 × 10-8 upon 1.13 W cm-2 excitation at 980 nm), the cluster exhibits downshifted light emission of Yb3+ in the NIR region upon 578 nm visible excitation of Eu3+, which is ascribed to sensitization pathways for Yb through the 5D0 energy levels of Eu3+. Additionally, a faint emission is also observed at ca. 500 nm upon 980 nm excitation, originating from the cooperative luminescence of Yb3+. The [Eu8Yb(BA)16(OH)10]Cl cluster (BA = benzoylacetonate) is also a field-induced single-molecular magnet (SMM) under 4K with a modest Ueff/kB of 8.48 K, thereby joining the coveted list of Yb-SMMs and emerging as a prototype system for next-generation devices, combining luminescence with single-molecular magnetism in a molecular cluster.
Collapse
Affiliation(s)
- Sai P K Panguluri
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology, Kaiserstraße 12, Karlsruhe 76311, Germany
| | - Elsa Jourdain
- Equipe de Synthèse pour l'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178, CNRS/Université de Strasbourg, ECPM, Strasbourg 67087, France
| | - Papri Chakraborty
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, Karlsruhe 76311, Germany
| | - Svetlana Klyatskaya
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, Karlsruhe 76311, Germany
| | - Manfred M Kappes
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, Karlsruhe 76311, Germany
| | - Aline M Nonat
- Equipe de Synthèse pour l'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178, CNRS/Université de Strasbourg, ECPM, Strasbourg 67087, France
| | - Loïc J Charbonnière
- Equipe de Synthèse pour l'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178, CNRS/Université de Strasbourg, ECPM, Strasbourg 67087, France
| | - Mario Ruben
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology, Kaiserstraße 12, Karlsruhe 76311, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, Karlsruhe 76311, Germany
- Centre Européen de Sciences Quantiques, Institut de Science et d'Ingénierie Supramoléculaires (ISIS, UMR 7006), CNRS-Université de Strasbourg, 8 allée Gaspard Monge BP 70028, Strasbourg, Cedex 67083, France
| |
Collapse
|
37
|
Payce EN, Knighton RC, Platts JA, Horton PN, Coles SJ, Pope SJA. Luminescent Pt(II) Complexes Using Unsymmetrical Bis(2-pyridylimino)isoindolate Analogues. Inorg Chem 2024; 63:8273-8285. [PMID: 38656154 PMCID: PMC11080048 DOI: 10.1021/acs.inorgchem.4c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
A series of ligands based upon a 1,3-diimino-isoindoline framework have been synthesized and investigated as pincer-type (N∧N∧N) chelates for Pt(II). The synthetic route allows different combinations of heterocyclic moieties (including pyridyl, thiazole, and isoquinoline) to yield new unsymmetrical ligands. Pt(L1-6)Cl complexes were obtained and characterized using a range of spectroscopic and analytical techniques: 1H and 13C NMR, IR, UV-vis and luminescence spectroscopies, elemental analyses, high-resolution mass spectrometry, electrochemistry, and one example via X-ray crystallography which showed a distorted square planar environment at Pt(II). Cyclic voltammetry on the complexes showed one irreversible oxidation between +0.75 and +1 V (attributed to Pt2+/3+ couple) and a number of ligand-based reductions; in four complexes, two fully reversible reductions were noted between -1.4 and -1.9 V. Photophysical studies showed that Pt(L1-6)Cl absorbs efficiently in the visible region through a combination of ligand-based bands and metal-to-ligand charge-transfer features at 400-550 nm, with assignments supported by DFT calculations. Excitation at 500 nm led to luminescence (studied in both solutions and solid state) in all cases with different combinations of the heterocyclic donors providing tuning of the emission wavelength around 550-678 nm.
Collapse
Affiliation(s)
- Ellie N Payce
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, Cymru/Wales, U.K
| | - Richard C Knighton
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England, U.K
| | - James A Platts
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, Cymru/Wales, U.K
| | - Peter N Horton
- UK National Crystallographic Service, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, England, U.K
| | - Simon J Coles
- UK National Crystallographic Service, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, England, U.K
| | - Simon J A Pope
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, Cymru/Wales, U.K
| |
Collapse
|
38
|
Shi Y, Gou H, Wu H, Wan S, Wang K, Yu J, Zhang X, Ye C. Harnessing Heavy-Atom Effects in Multiple Resonance Thermally Activated Delayed Fluorescence (MR-TADF) Sensitizers: Unlocking High-Performance Visible-to-Ultraviolet (Vis-to-UV) Triplet Fusion Upconversion. J Phys Chem Lett 2024; 15:4647-4654. [PMID: 38647524 DOI: 10.1021/acs.jpclett.4c00542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Ultraviolet (UV) light plays a crucial role in various applications, but currently, the efficiency of generating artificial UV light is low. The visible-to-ultraviolet (Vis-to-UV) system based on the triplet-triplet annihilation upconversion (TTA-UC) mechanism can be a viable solution. Metal-free multiple resonance thermally activated delayed fluorescence (MR-TADF) materials are ideal photosensitizers (PSs) apart from the drawback of high photoluminescence quantum yields (PLQYs). Herein, we systematically investigated the impact of the heavy-atom effect (HAE) on the MR-TADF sensitizers. BNCzBr was then synthesized by incorporating a bromine atom into the skeleton of the precursor BNCz. Impressively, the internal HAE (iHAE) leads to a significantly decreased PLQY and a remarkably increased intersystem crossing quantum yield (ΦISC). Consequently, a higher upconversion quantum efficiency of 12.5% was realized. While the external HAE (eHAE) harms the UC performance. This work guides the further development of MR-TADF sensitizers for high-performance Vis-to-UV TTA-UC systems.
Collapse
Affiliation(s)
- Yizhong Shi
- School of Materials Science and Engineering, Suzhou University of Science and Technology, 215009 Suzhou, PR China
| | - Haodong Gou
- School of Materials Science and Engineering, Suzhou University of Science and Technology, 215009 Suzhou, PR China
| | - Hao Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 215123 Suzhou, PR China
| | - Shigang Wan
- School of Materials Science and Engineering, Suzhou University of Science and Technology, 215009 Suzhou, PR China
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 215123 Suzhou, PR China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123 Suzhou, PR China
| | - Jia Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 215123 Suzhou, PR China
| | - Xiaohong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 215123 Suzhou, PR China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 215123 Suzhou, PR China
| | - Changqing Ye
- School of Materials Science and Engineering, Suzhou University of Science and Technology, 215009 Suzhou, PR China
| |
Collapse
|
39
|
Collins AR, Zhang B, Bennison MJ, Evans RC. Ambient solid-state triplet-triplet annihilation upconversion in ureasil organic-inorganic hybrid hosts. JOURNAL OF MATERIALS CHEMISTRY. C 2024; 12:6310-6318. [PMID: 38707254 PMCID: PMC11064974 DOI: 10.1039/d4tc00562g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/27/2024] [Indexed: 05/07/2024]
Abstract
Triplet-triplet-annihilation upconversion (TTA-UC) has attracted significant attention as an approach to harvest low energy solar photons that cannot be captured by conventional photovoltaic devices. However, device integration requires the design of solid-state TTA-UC materials that combine high upconversion efficiency with long term stability. Herein, we report an efficient solid-state TTA-UC system based on organic-inorganic hybrid polymers known as ureasils as hosts for the archetypal sensitiser/emitter pair of palladium(ii) octaethylporphyrin and diphenylanthracene. The role of the ureasil structure on the TTA-UC performance was probed by varying the branching and molecular weight of the organic precursor to tune the structural, mechanical, and thermal properties. Solid-state green-to-blue UC quantum yields of up to 1.86% were observed under ambient conditions. Notably, depending on the ureasil structure, UC emission could be retained for >70 days without any special treatment, including deoxygenation. Detailed analysis of the structure-function trends revealed that while a low glass transition temperature is required to promote TTA-UC molecular collisions, a higher inorganic content is the primary factor that determines the UC efficiency and stability, due to the inherent oxygen barrier provided by the silica nanodomains.
Collapse
Affiliation(s)
- Abigail R Collins
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
| | - Bolong Zhang
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
| | - Michael J Bennison
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
| | - Rachel C Evans
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
| |
Collapse
|
40
|
Jiang LH, Miao X, Zhang MY, Li JY, Zeng L, Hu W, Huang L, Pang DW. Near Infrared-II Excited Triplet Fusion Upconversion with Anti-Stokes Shift Approaching the Theoretical Limit. J Am Chem Soc 2024; 146:10785-10797. [PMID: 38573588 DOI: 10.1021/jacs.4c00936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The anti-Stokes shift represents the capacity of photon upconversion to convert low-energy photons to high-energy photons. Although triplet exciton-mediated photon upconversion presents outstanding performance in solar energy harvesting, photoredox catalysis, stereoscopic 3D printing, and disease therapeutics, the interfacial multistep triplet exciton transfer leads to exciton energy loss to suppress the anti-Stokes shift. Here, we report near infrared-II (NIR-II) excitable triplet exciton-mediated photon upconversion using a hybrid photosensitizer consisting of lead sulfide quantum dots (PbS QDs) and new surface ligands of thiophene-substituted diketopyrrolopyrrole (Th-DPP). Under 1064 nm excitation, this photon upconversion revealed a record-corrected upconversion efficiency of 0.37% (normalized to 100%), with the anti-Stokes shift (1.07 eV) approaching the theoretical limit (1.17 eV). The observation of this unexpected result is due to our discovery of the presence of a weak interaction between the sulfur atom on Th-DPP and Pb2+ on the PbS QDs surface, facilitating electronic coupling between PbS QDs and Th-DPP, such that the realization of triplet exciton transfer efficiency is close to 100% even when the energy gap is as small as 0.04 eV. With this premise, this photon upconversion as a photocatalyst enables the production of standing organic gel via photopolymerization under 1064 nm illumination, displaying NIR-II photon-driven photoredox catalysis. This research not only establishes the foundation for enhancing the performance of NIR-II excitable photonic upconversion but also promotes its development in photonics and photoredox catalysis.
Collapse
Affiliation(s)
- Lin-Han Jiang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiaofei Miao
- Frontiers Science Center for Flexible Electronics and Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Ming-Yu Zhang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jia-Yao Li
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Le Zeng
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Wenbo Hu
- Frontiers Science Center for Flexible Electronics and Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Ling Huang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Dai-Wen Pang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
41
|
Wellauer J, Ziereisen F, Sinha N, Prescimone A, Velić A, Meyer F, Wenger OS. Iron(III) Carbene Complexes with Tunable Excited State Energies for Photoredox and Upconversion. J Am Chem Soc 2024; 146. [PMID: 38598280 PMCID: PMC11046485 DOI: 10.1021/jacs.4c00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
Substituting precious elements in luminophores and photocatalysts by abundant first-row transition metals remains a significant challenge, and iron continues to be particularly attractive owing to its high natural abundance and low cost. Most iron complexes known to date face severe limitations due to undesirably efficient deactivation of luminescent and photoredox-active excited states. Two new iron(III) complexes with structurally simple chelate ligands enable straightforward tuning of ground and excited state properties, contrasting recent examples, in which chemical modification had a minor impact. Crude samples feature two luminescence bands strongly reminiscent of a recent iron(III) complex, in which this observation was attributed to dual luminescence, but in our case, there is clear-cut evidence that the higher-energy luminescence stems from an impurity and only the red photoluminescence from a doublet ligand-to-metal charge transfer (2LMCT) excited state is genuine. Photoinduced oxidative and reductive electron transfer reactions with methyl viologen and 10-methylphenothiazine occur with nearly diffusion-limited kinetics. Photocatalytic reactions not previously reported for this compound class, in particular the C-H arylation of diazonium salts and the aerobic hydroxylation of boronic acids, were achieved with low-energy red light excitation. Doublet-triplet energy transfer (DTET) from the luminescent 2LMCT state to an anthracene annihilator permits the proof of principle for triplet-triplet annihilation upconversion based on a molecular iron photosensitizer. These findings are relevant for the development of iron complexes featuring photophysical and photochemical properties competitive with noble-metal-based compounds.
Collapse
Affiliation(s)
- Joël Wellauer
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Fabienne Ziereisen
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Narayan Sinha
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Alessandro Prescimone
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Ajdin Velić
- University
of Göttingen, Institute of Inorganic Chemistry, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Franc Meyer
- University
of Göttingen, Institute of Inorganic Chemistry, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Oliver S. Wenger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
42
|
Paul I, Konieczny KA, Chavez R, Garcia-Garibay MA. Reaction amplification with a gain: Triplet exciton-mediated quantum chain using mixed crystals with a tailor-made triplet sensitizer. Proc Natl Acad Sci U S A 2024; 121:e2401982121. [PMID: 38536753 PMCID: PMC10998555 DOI: 10.1073/pnas.2401982121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 04/08/2024] Open
Abstract
Photochemical valence bond isomerization of a crystalline Dewar benzene (DB) diacid monoanion salt with an acetophenone-linked piperazinium cation that serves as an intramolecular triplet energy sensitizer (DB-AcPh-Pz) exhibits a quantum chain reaction with as many as 450 product molecules per photon absorbed (Φ ≈ 450). By contrast, isomorphous crystals of the DB diacid monosalt of an ethylbenzene-linked piperazinium (DB-EtPh-Pz) lacking a triplet sensitizer showed a less impressive quantum yield of ca. Φ ≈ 22. To establish the critical importance of a triplet excited state carrier in the adiabatic photochemical reaction we prepared mixed crystals with DB-AcPh-Pz as a dilute triplet sensitizer guest in crystals of DB-EtPh-Pz. As expected from their high structural similarities, solid solutions were easily formed with the triplet sensitizer salt in the range of 0.1 to 10%. Experiments carried out under conditions where light is absorbed by the triplet sensitizer-linked DB-AcPh-Pz can be used to initiate a triplet state adiabatic reaction from 3DB-AcPh-Pz to 3HB*-AcPh-Pz, which can serve as a chain carrier and transfer energy to an unreacted DB-EtPh-Pz where exciton delocalization in the crystalline solid solution can help carry out an efficient energy transfer and enable a quantum chain employing the photoproduct as a triplet chain carrier. Excitation of mixed crystals with as little as 0.1% triplet sensitizer resulted in an extraordinarily high quantum yield Φ ≈ 517.
Collapse
Affiliation(s)
- Indrajit Paul
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90024-1569
| | - Krzysztof A. Konieczny
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90024-1569
| | - Roberto Chavez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90024-1569
| | | |
Collapse
|
43
|
Zhang X, Sun W, Wang Y, Li Z, Huang X, Li T, Wang H. Mechanochemical synthesis of microscale zero-valent iron/N-doped graphene-like biochar composite for degradation of tetracycline via molecular O 2 activation. J Colloid Interface Sci 2024; 659:1015-1028. [PMID: 38241973 DOI: 10.1016/j.jcis.2024.01.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
In this study, we prepared a micron zero-valent iron/N-doped graphene-like biochar (mZVI/NGB) composite using a mechanochemical method for tetracycline (TC) degradation through O2 activation. The mZVI and NGB components formed a strong coupling catalytic system, with mZVI acting as an electron pool and NGB as a catalyst for H2O2 generation. Under circumneutral pH (5.0-6.8), the mZVI/NGB composite exhibited exceptional TC removal efficiency, reaching nearly 100 % under optimal conditions. It also showed good tolerance to co-existing anions, such as Cl-, SO42-, and humic acid. Further studies found that the TC degradation mechanism was mainly ascribed to the non-radical pathway (1O2 and electron transfer), and the Fe2+/Fe3+ redox cycle on the composite's surface also played a crucial role in maintaining catalytic activity. This research contributes to the development of advanced materials for sustainable and effective water treatment, addressing pharmaceutical pollutant contamination in water sources.
Collapse
Affiliation(s)
- Xueyi Zhang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Wenshuang Sun
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yue Wang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhen Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Xianqiang Huang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Tielong Li
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Haitao Wang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
44
|
Huang L, Han G. Triplet-triplet annihilation photon upconversion-mediated photochemical reactions. Nat Rev Chem 2024; 8:238-255. [PMID: 38514833 DOI: 10.1038/s41570-024-00585-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 03/23/2024]
Abstract
Photon upconversion is a method for harnessing high-energy excited states from low-energy photons. Such photons, particularly in the red and near-infrared wavelength ranges, can penetrate tissue deeply and undergo less competitive absorption in coloured reaction media, enhancing the efficiency of large-scale reactions and in vivo phototherapy. Among various upconversion methodologies, the organic-based triplet-triplet annihilation upconversion (TTA-UC) stands out - demonstrating high upconversion efficiencies, requiring low excitation power densities and featuring tunable absorption and emission wavelengths. These factors contribute to improved photochemical reactions for fields such as photoredox catalysis, photoactivation, 3D printing and immunotherapy. In this Review, we explore concepts and design principles of organic TTA-UC-mediated photochemical reactions, highlighting notable advancements in the field, as well as identify challenges and propose potential solutions. This Review sheds light on the potential of organic TTA-UC to advance beyond the traditional photochemical reactions and paves the way for research in various fields and clinical applications.
Collapse
Affiliation(s)
- Ling Huang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, China
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Gang Han
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
45
|
Okamoto T, Izawa S, Hiramoto M, Kobori Y. Efficient Spin Interconversion by Molecular Conformation Dynamics of a Triplet Pair for Photon Up-Conversion in an Amorphous Solid. J Phys Chem Lett 2024; 15:2966-2975. [PMID: 38479407 PMCID: PMC10961844 DOI: 10.1021/acs.jpclett.3c03602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/10/2024] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
Solid-state materials with improved light-to-energy conversions in organic photovoltaics and in optoelectronics are expected to be developed by realizing efficient triplet-triplet annihilation (TTA) by manipulating the spin conversion processes to the singlet state. In this study, we elucidate the spin conversion mechanism for delayed fluorescence by TTA from a microscopic view of the molecular conformations. We examine the time evolution of the electron spin polarization of the triplet-pair state (TT state) in an amorphous solid-state system exhibiting highly efficient up-conversion emission by using time-resolved electron paramagnetic resonance. We clarified that the spin-state population of the singlet TT increased through the spin interconversion from triplet and quintet TT states during exciton diffusion with random orientation dynamics between the two triplets for the modulation of the exchange interaction, achieving a high quantum yield of up-conversion emission. This understanding provides us with a guide for the development of efficient light-to-energy conversion devices utilizing TTA.
Collapse
Affiliation(s)
- Tsubasa Okamoto
- Molecular
Photoscience Research Center, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Department
of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657−8501, Japan
| | - Seiichiro Izawa
- Laboratory
for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- Precursory
Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Institute
for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Masahiro Hiramoto
- Institute
for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Yasuhiro Kobori
- Molecular
Photoscience Research Center, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Department
of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657−8501, Japan
- CREST,
JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
46
|
Gray V, Toolan DTW, Dowland S, Allardice JR, Weir MP, Zhang Z, Xiao J, Klimash A, Winkel JF, Holland EK, Fregoso GM, Anthony JE, Bronstein H, Friend R, Ryan AJ, Jones RAL, Greenham NC, Rao A. Ligand-Directed Self-Assembly of Organic-Semiconductor/Quantum-Dot Blend Films Enables Efficient Triplet Exciton-Photon Conversion. J Am Chem Soc 2024; 146:7763-7770. [PMID: 38456418 PMCID: PMC10958494 DOI: 10.1021/jacs.4c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
Blends comprising organic semiconductors and inorganic quantum dots (QDs) are relevant for many optoelectronic applications and devices. However, the individual components in organic-QD blends have a strong tendency to aggregate and phase-separate during film processing, compromising both their structural and electronic properties. Here, we demonstrate a QD surface engineering approach using electronically active, highly soluble semiconductor ligands that are matched to the organic semiconductor host material to achieve well-dispersed inorganic-organic blend films, as characterized by X-ray and neutron scattering, and electron microscopies. This approach preserves the electronic properties of the organic and QD phases and also creates an optimized interface between them. We exemplify this in two emerging applications, singlet-fission-based photon multiplication (SF-PM) and triplet-triplet annihilation-based photon upconversion (TTA-UC). Steady-state and time-resolved optical spectroscopy shows that triplet excitons can be transferred with near unity efficiently across the organic-inorganic interface, while the organic films maintain efficient SF (190% yield) in the organic phase. By changing the relative energy between organic and inorganic components, yellow upconverted emission is observed upon 790 nm NIR excitation. Overall, we provide a highly versatile approach to overcome longstanding challenges in the blending of organic semiconductors with QDs that have relevance for many optical and optoelectronic applications.
Collapse
Affiliation(s)
- Victor Gray
- Cavendish
Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, U.K.
- Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 532, SE-751 20 Uppsala, Sweden
| | - Daniel T. W. Toolan
- Department
of Chemistry, The University of Sheffield, Sheffield S3 7HF, U.K.
- Department
of Materials, The University of Manchester, Engineering Building A, Booth Street
East, Manchester M13 9PL, U.K.
| | - Simon Dowland
- Cambridge
Photon Technology, J.
J. Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Jesse R. Allardice
- Cavendish
Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Michael P. Weir
- School of
Physics and Astronomy, The University of
Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Zhilong Zhang
- Cavendish
Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - James Xiao
- Cavendish
Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Anastasia Klimash
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield
Road, Cambridge CB2 1EW, U.K.
| | - Jurjen F. Winkel
- Cambridge
Photon Technology, J.
J. Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Emma K. Holland
- Center
for Applied Energy Research, University
of Kentucky, Research Park Drive, Lexington, Kentucky 40511, United States
| | - Garrett M. Fregoso
- Center
for Applied Energy Research, University
of Kentucky, Research Park Drive, Lexington, Kentucky 40511, United States
| | - John E. Anthony
- Center
for Applied Energy Research, University
of Kentucky, Research Park Drive, Lexington, Kentucky 40511, United States
| | - Hugo Bronstein
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield
Road, Cambridge CB2 1EW, U.K.
| | - Richard Friend
- Cavendish
Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Anthony J. Ryan
- Department
of Chemistry, The University of Sheffield, Sheffield S3 7HF, U.K.
| | - Richard A. L. Jones
- John
Owens Building, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Neil C. Greenham
- Cavendish
Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Akshay Rao
- Cavendish
Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, U.K.
| |
Collapse
|
47
|
Maity A, Mishra VK, Dolai S, Mishra S, Patra SK. Design, Synthesis, and Characterization of Organometallic BODIPY-Ru(II) Dyads: Redox and Photophysical Properties with Singlet Oxygen Generation Capability†. Inorg Chem 2024; 63:4839-4854. [PMID: 38433436 DOI: 10.1021/acs.inorgchem.3c03610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
A series of Ru(II)-acetylide complexes (Ru1, Ru2, and Ru1m) with alkynyl-functionalized borondipyrromethene (BODIPY) conjugates were designed by varying the position of the linker that connects the BODIPY unit to the Ru(II) metal center through acetylide linkage at either the 2-(Ru1) and 2,6-(Ru2) or the meso-phenyl (Ru1m) position of the BODIPY scaffold. The Ru(II) organometallic complexes were characterized by various spectroscopic methods, including nuclear magnetic resonance (NMR) spectroscopy, infrared (IR) spectroscopy, CHN, and high-resolution mass spectrometry (HRMS) analyses. The Ru(II)-BODIPY conjugates exhibit fascinating electrochemical and photophysical properties. All BODIPY-Ru(II) complexes exhibit strong absorption (εmax = 29,000-72,000 M-1 cm-1) in the visible region (λmax = 502-709 nm). Fluorescence is almost quenched for Ru1 and Ru2, whereas Ru1m shows the residual fluorescence of the corresponding BODIPY core at 517 nm. The application of the BODIPY-Ru(II) dyads as nonporphyrin-based triplet photosensitizers was explored by a method involving the singlet oxygen (1O2)-mediated photo-oxidation of diphenylisobenzofuran. Effective π-conjugation between the BODIPY chromophore and Ru(II) center in the case of Ru1 and Ru2 was found to be necessary to improve intersystem crossing (ISC) and hence the 1O2-sensitizing ability. In addition, electrochemical studies indicate electronic interplay between the metal center and the redox-active BODIPY in the BODIPY-Ru(II) dyads.
Collapse
Affiliation(s)
- Apurba Maity
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Vipin Kumar Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Suman Dolai
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Sanjib K Patra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
48
|
Liu N, Chen H, Su J, Weng Y, Vittal JJ, Huang SL, Jiang J. Porphyrin-Sensitizers and Anthracene-Annihilators Built in Isostructural Frameworks for Investigating Triplet-Triplet Annihilation Upconversion. Inorg Chem 2024; 63:4691-4696. [PMID: 38394615 DOI: 10.1021/acs.inorgchem.3c04313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
In this study, four isostructural pillar-layered frameworks were constructed using a porphyrin layer and an anthracene pillar, which served as the sensitizer and annihilator, respectively, in the triplet-triplet annihilation upconversion (TTA-UC) system. Framework 1 demonstrated the highest upconversion quantum yield of 1.01%. Additionally, 1 and 2 also exhibited down-conversion fluorescence resulting from the porphyrin component. A twist intramolecular charge transfer (TICT) state was observed in the bianthracene chromophore of 2, resulting in transient rotation of two anthracene rings and red-shifted emission. Both computational studies and experiments confirmed the transition from a locally excited state to a TICT state upon the inclusion of polar guest molecules into the framework.
Collapse
Affiliation(s)
- Naifang Liu
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hailong Chen
- The Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jie Su
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yuxiang Weng
- The Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jagadese J Vittal
- Department of Chemistry, National University of Singapore, 3, Science Drive 3, Singapore 117542, Singapore
| | - Sheng-Li Huang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jianzhuang Jiang
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
49
|
Wang X, Ding F, Jia T, Li F, Ding X, Deng R, Lin K, Yang Y, Wu W, Xia D, Chen G. Molecular near-infrared triplet-triplet annihilation upconversion with eigen oxygen immunity. Nat Commun 2024; 15:2157. [PMID: 38461161 PMCID: PMC10924867 DOI: 10.1038/s41467-024-46541-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/01/2024] [Indexed: 03/11/2024] Open
Abstract
Molecular triplet-triplet annihilation upconversion often experiences drastic luminescence quenching in the presence of oxygen molecules, posing a significant constraint on practical use in aerated conditions. We present an oxygen-immune near-infrared triplet-triplet annihilation upconversion system utilizing non-organometallic cyanine sensitizers (λex = 808 nm) and chemically synthesized benzo[4,5]thieno[2,3-b][1,2,5]thiadiazolo[3,4-g]quinoxaline dyes with a defined dimer structure as annihilators (λem = 650 nm). This system exhibits ultrastable upconversion under continuous laser irradiance (>480 mins) or extended storage (>7 days) in aerated solutions. Mechanistic investigations reveal rapid triplet-triplet energy transfer from sensitizer to annihilators, accompanied by remarkably low triplet oxygen quenching efficiencies (η O 2 < 13% for the sensitizer, <3.7% for the annihilator), endowing the bicomponent triplet-triplet annihilation system with inherent oxygen immunity. Our findings unlock the direct and potent utilization of triplet-triplet annihilation upconversion systems in real-world applications, demonstrated by the extended and sensitive nanosensing of peroxynitrite radicals in the liver under in vivo nitrosative stress.
Collapse
Affiliation(s)
- Xinyu Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Fangwei Ding
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Tao Jia
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Feng Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Xiping Ding
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Ruibin Deng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Kaifeng Lin
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Yulin Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Wenzhi Wu
- School of Electronic Engineering, Heilongjiang University, Harbin, China
| | - Debin Xia
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.
| | - Guanying Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.
- Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
50
|
Jin T, Wagner D, Wenger OS. Luminescent and Photoredox-Active Molybdenum(0) Complexes Competitive with Isoelectronic Ruthenium(II) Polypyridines. Angew Chem Int Ed Engl 2024; 63:e202314475. [PMID: 37885363 DOI: 10.1002/anie.202314475] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 10/28/2023]
Abstract
Ruthenium(II) complexes with chelating polypyridine ligands are among the most frequently investigated compounds in photophysics and photochemistry, owing to their favorable luminescence and photoredox properties. Equally good photoluminescence performance and attractive photocatalytic behavior is now achievable with isoelectronic molybdenum(0) complexes. The zero-valent oxidation state of molybdenum is stabilized by carbonyl or isocyanide ligands, and metal-to-ligand charge transfer (MLCT) excited states analogous to those in ruthenium(II) complexes can be established. Microsecond MLCT excited-state lifetimes and photoluminescence quantum yields up to 0.2 have been achieved in solution at room temperature, and the emission wavelength has become tunable over a large range. The molybdenum(0) complexes are stronger photoreductants than ruthenium(II) polypyridines and can therefore perform more challenging chemical reductions. The triplet nature of their luminescent MLCT states allows sensitization of photon upconversion via triplet-triplet annihilation, to convert low-energy input radiation into higher-energy output fluorescence. This review summarizes the current state of the art concerning luminescent molybdenum(0) complexes and highlights their application potential. Molybdenum is roughly 140 times more abundant and far cheaper than ruthenium, hence this research is relevant in the greater context of finding more sustainable alternatives to using precious and rare transition metals in photophysics and photochemistry.
Collapse
Affiliation(s)
- Tao Jin
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Dorothee Wagner
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| |
Collapse
|