1
|
Tominaga T, Inoue R, Sumitani R, Aoki K, Mochida T. Crystal Engineering of Cyanoborate-Bridged Cubane-Type Tetranuclear Ru Complex: Synthesis, Pseudopolymorphism, and Coordination Polymer Formation. Chemistry 2025; 31:e202500976. [PMID: 40207406 DOI: 10.1002/chem.202500976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/11/2025]
Abstract
Cyanoborate anions are versatile bridging ligands that lead to structurally diverse compounds from a crystal engineering perspective. Herein, we report the synthesis of a cubane-type tetranuclear Ru complex, [Ru4(Cp)4{B(CN)4}4] (1, Cp = C5H5), obtained by photoirradiation of [Ru(Cp)(C6H6)]B(CN)4 in solution or by the reaction of [CpRu(MeCN)3]+ with KB(CN)4. This complex served as a host for various solvents, generating different pseudopolymorphs, including 1·nCH2Cl2 (n = 1, 2, 3), 1·0.5C6H6, 1·C6H5Me, and 1·3THF upon recrystallization. Moreover, the four free cyano groups in 1 allow it to act as a bridging ligand, facilitating the formation of 1D and 2D coordination polymers through reactions with transition metal complexes.
Collapse
Affiliation(s)
- Takumi Tominaga
- Department of Chemistry, Graduate School of Science, Kobe University, Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Ryota Inoue
- Department of Chemistry, Graduate School of Science, Kobe University, Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Ryo Sumitani
- Department of Chemistry, Graduate School of Science, Kobe University, Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Ken'ichi Aoki
- Department of Chemistry, Faculty of Science Division II, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Department of Chemistry, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Tomoyuki Mochida
- Department of Chemistry, Graduate School of Science, Kobe University, Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
- Research Center for Membrane and Film Technology, Kobe University, Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| |
Collapse
|
2
|
Zhang CY, Wu Z, Han G, Wu DS, Chi L, Niu JY, Zhao C, Fang WH, Zhang J. Unraveling the Surface Chemistry of Aluminum Oxo Archimedean Cages for Efficient Serial Adsorption. Angew Chem Int Ed Engl 2025; 64:e202421484. [PMID: 40133229 DOI: 10.1002/anie.202421484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/17/2025] [Accepted: 03/24/2025] [Indexed: 03/27/2025]
Abstract
Multifunctional materials that meet diverse application needs hold profound significance in resource optimization, efficiency enhancement, and environmental sustainability. However, the development of these materials faces numerous challenges, including raw material acquisition, design feasibility, and long-term stability. This study demonstrates the innovative application of the surface chemistry of aluminum oxo Archimedean cages in efficient serial adsorption. The "Four-in-One" surface chemistry enables various single-crystal-to-single-crystal (SC-SC) structural transformations, involving ligand modification, cation exchange, post-synthetic metalation, and metal elimination, successfully achieving the first reversible SC-SC transformation from cluster structures to infinite frameworks. The fundamental reason behind these dynamic structural changes lies in the exceptional balance between rigidity and flexibility provided by the intercluster tri-pyrazole sites on the Archimedean cages. This diverse structural transformation characteristic offers extensive application potential for solid-liquid and solid-gas serial adsorption. For instance, this material effectively adsorbs heavy metal ions in water treatment and can subsequently be used for the permanent fixation of gaseous radionuclides. This work not only deepens our understanding of dynamic chemistry but also provides guiding significance for environmental remediation.
Collapse
Affiliation(s)
- Cheng-Yang Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Zhicheng Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Gang Han
- Shanghai Institute of Measurement and Testing Technology, 1500 Zhang-Heng Road, Shanghai, 201203, P.R. China
| | - Dong-Shuai Wu
- Shanghai Institute of Measurement and Testing Technology, 1500 Zhang-Heng Road, Shanghai, 201203, P.R. China
| | - Lisheng Chi
- Fujian College, University of Chinese Academy of Sciences, No. 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P.R. China
| | - Jing-Yang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, P.R. China
| | - Chao Zhao
- Shanghai Institute of Measurement and Testing Technology, 1500 Zhang-Heng Road, Shanghai, 201203, P.R. China
| | - Wei-Hui Fang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
- Fujian College, University of Chinese Academy of Sciences, No. 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P.R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
- Fujian College, University of Chinese Academy of Sciences, No. 155 Yangqiao West Road, Fuzhou, Fujian, 350002, P.R. China
| |
Collapse
|
3
|
Hu YH, Yin F, Hong SX, Zhou LP, Tang KH, Zhong YM, Li CC, Cai LX, Sun QF. Coordination-assembly of a redox-active Pd 6L 3 cage for aerobic C(sp 3)-H bond photooxidation of aromatic cyclic ethers. Chem Commun (Camb) 2025; 61:7819-7822. [PMID: 40310891 DOI: 10.1039/d5cc01997d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
A redox-active Pd6L3 cage with a large lantern-shaped cavity has been synthesized and characterised by NMR, ESI-TOF-MS and X-ray diffraction analysis, which shows exceptional catalytic activity in the selective aerobic C-H photooxidation of aromatic cyclic ethers under mild conditions.
Collapse
Affiliation(s)
- Yu-Hang Hu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
| | - Fan Yin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shun-Xing Hong
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ke-Han Tang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
| | - Ying-Mei Zhong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chen-Chen Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li-Xuan Cai
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qing-Fu Sun
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
4
|
Liang J, Peng LJ, Zhu KL, Li ZA, Chen XL, Yang YD, Li Q, Bi QN, Cui J, Guan AJ, Liang TL, Hao X, Wang H, Li X, Gong HY. Synergistic regulation of metal-organic cage architectures via temperature- and solvent-driven atropisomerism. Proc Natl Acad Sci U S A 2025; 122:e2500357122. [PMID: 40339111 DOI: 10.1073/pnas.2500357122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/08/2025] [Indexed: 05/10/2025] Open
Abstract
Regulating multistimulus responses in artificial systems remains a challenge in smart material development. We present a versatile chemical switching system that precisely controls the self-assembly of metal-organic cages via temperature and solvent changes. The key component, cyclo[2](1,3-(4,6-dimethyl)benzene) (4-pyridine)[6](1,3-(4,6-dimethyl)benzene) (CP2), was generated as three atropisomers (1, 2, and 3) with Cs, C1, and C2v symmetries. Thermally, metastable isomers (1 and 2) convert into the stable isomer (3), which reacts with Pd2+ to form specific molecular cages. Depending on the solvent, either rectangular M2L2 cages (5' and 5) form in 1,4-dioxane or hexagonal M3L3 cages (6) in 1,1',2,2'-tetrachloroethane. The solvent dictates the cage type and enables reversible transformation between cages 5 and 6. Additionally, cage 5', formed from metastable isomer 1, can switch to other cage types (i.e., 5 or 6) depending on temperature and solvent conditions. This multipathway system offers a precise strategy for controlling self-assembly in smart materials.
Collapse
Affiliation(s)
- Jiaqi Liang
- Department of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Li-Jun Peng
- Department of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Ke-Lin Zhu
- Department of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Zhi-Ao Li
- Department of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Xu-Lang Chen
- Department of Chemistry and Chemical Engineering, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, Huangshi 435002, People's Republic of China
| | - Yu-Dong Yang
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1224
| | - Qian Li
- Department of Analytical Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Qian-Nan Bi
- Department of Analytical Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jie Cui
- Department of Analytical Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Ai-Jiao Guan
- Department of Analytical Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Tong-Ling Liang
- Department of Analytical Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xiang Hao
- Department of Analytical Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Heng Wang
- Department of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
- Department of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Xiaopeng Li
- Department of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
- Department of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Han-Yuan Gong
- Department of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
5
|
Guo Z, Yu H, Shi J, Han N, Wu G, Zhang H, Li B, Wang M. Pathway Engineering in Pd-Based Supramolecular Cage Synthesis via Inner-Outer Steric Synergy. Angew Chem Int Ed Engl 2025; 64:e202425369. [PMID: 39961776 DOI: 10.1002/anie.202425369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
For artificial supramolecular architectures designed to mimic biological systems, achieving different pathway synthesis is challenging due to the requirement of multiple stable and interconvertible intermediates. Here, we propose a novel "inner-outer steric synergy" strategy and investigate controllable pathway engineering for the synthesis of specific structures. Firstly, three structures (Ring-Pd2LA 2, Bowl-Pd2LA 3 and Cage-Pd2LA 4) with interconversion properties were selectively formed by assembling externally modified ligand LA with Pd(II). Furthermore, Ring-Pd2LA 2 can further assemble with the ligand LB with inner steric hindrance to generate heteroleptic trans-Pd2LA 2LB 2 cage, while Bowl-Pd2LA 3, as an intermediate, can assemble with LB to form Pd2LA 3LB. It is noteworthy that Ring-Pd2LA 2, Bowl-Pd2LA 3, and Cage-Pd2LA 4 can interconvert under specific conditions, enabling the synthesis of Pd2LA 3LB and trans-Pd2LA 2LB 2 through 10 and 16 pathways, respectively. This research not only introduces a novel strategy for constructing heteroleptic cages but also demonstrates the achievement of pathway engineering.
Collapse
Affiliation(s)
- Ziteng Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Hao Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Junjuan Shi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Ningxu Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Guanglu Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Houyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Bingling Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
6
|
Li H, Wang J, Zhu W, Li D, Li X, He C. Host-Guest Approach to Enhancing Photocatalysis via Photoinduced Energy and Electron Transfer from a Photoactive Triphenylamine-Based Metal-Organic Cage to Bound Guests. Inorg Chem 2025; 64:6621-6630. [PMID: 40136070 DOI: 10.1021/acs.inorgchem.5c00145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
The host-guest strategy presents an ideal way to construct versatile supramolecular systems that mimic the structure and functionality of natural enzymes and, therefore, achieve efficient chemical conversions. An emissive triphenylamine-based cage-like host donor was constructed as an energy or electron donor to achieve efficient photoinduced energy or electron transfer (PEnT or PET) by encapsulating the energy or electron acceptor into the cavity of the cage. The host-guest complexes, which served as enzyme-mimicking supramolecular systems, were successfully used as photocatalysts for the selective aerobic oxidation of sulfides and the efficient photocatalytic reduction of aryl halides with high reduction potentials. This work details a promising approach for creating a host-guest system via a host-guest encapsulation strategy to enhance the efficiency of the PEnT or PET process. The resulting designed artificial supramolecular systems achieve efficient chemical conversions by mimicking the structure and functionality of natural enzymes.
Collapse
Affiliation(s)
- Hechuan Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, China
| | - Jing Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, China
| | - Wenting Zhu
- Dalian Marine Center, Ministry of Natural Resources, Dalian 116012, China
| | - Danyang Li
- Dalian Marine Center, Ministry of Natural Resources, Dalian 116012, China
| | - Xuezhao Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, China
| |
Collapse
|
7
|
Li R, Zhang H, Hou Y, Gao L, Chu D, Zhang M. Metallacage-crosslinked free-standing supramolecular networks via photo-induced copolymerization for photocatalytic water decontamination. Nat Commun 2025; 16:2733. [PMID: 40108122 PMCID: PMC11923137 DOI: 10.1038/s41467-025-57822-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025] Open
Abstract
The development of polymer materials for water decontamination makes a significant contribution to environmental protection and public health. Herein, we report the preparation of metallacage-crosslinked free-standing supramolecular networks by photo-induced copolymerization of acrylate metallacages and butyl methacrylate for water decontamination. The integration of metallacages into polymer networks endows the networks good capability for generating singlet oxygen via photosensitization, making them serve as a type of decontamination materials that can effectively eliminate diverse organic pollutants and bacterial contaminants. This study not only provides a mild and effective strategy for the preparation of metallacage-cored supramolecular networks via photo-induced copolymerization but also explores their applications for photocatalytic dye degradation and bacterial killing, which will promote the future development of metallacage-based supramolecular materials for photocatalytic applications.
Collapse
Affiliation(s)
- Rongrong Li
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Haixin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China
| | - Yali Hou
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Lingyan Gao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China.
| | - Dake Chu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
8
|
Domoto Y, Nakabayashi R, Tsurumi T, Yamamoto K, Hayashi H, Nakamura Y, Fujita M. Fine-Tuning of the Sequential Self-Assembly of Entangled Polyhedra by Exploiting the Side-Chain Effect. Chem Asian J 2025; 20:e202401378. [PMID: 39792591 DOI: 10.1002/asia.202401378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/13/2024] [Indexed: 01/12/2025]
Abstract
The control of the sequential self-assembly processes of highly entangled (Ag3L2)n (n=2,4,6,8) and Ag21L12 coordination polyhedra using side-chain effects was studied via the introduction of linear or branched side chains into the tripodal ligands. In addition to changes in the intermediate polyhedral species affording the multi- pathway process, disruption of the kinetic control of the sequential self-assembly was observed, thus demonstrating the utility of steric control for the construction of 3D-entangled molecular materials on the 5 nm scale with high molecular complexity.
Collapse
Affiliation(s)
- Yuya Domoto
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma, 376-8515, Japan
| | - Ren Nakabayashi
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma, 376-8515, Japan
| | - Tasuki Tsurumi
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma, 376-8515, Japan
| | - Kidai Yamamoto
- Tokyo College, U-Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Mitsui Link Lab Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa-shi, Chiba, 277-0882, Japan
| | - Hironobu Hayashi
- Center for Basic Research on Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-shi, Ibaraki, 305-0047, Japan
| | - Yosuke Nakamura
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma, 376-8515, Japan
| | - Makoto Fujita
- Tokyo College, U-Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Mitsui Link Lab Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa-shi, Chiba, 277-0882, Japan
- Division of Advanced Molecular Science, Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki-shi, Aichi, 444-8787, Japan
| |
Collapse
|
9
|
Hong QY, Huang B, Wu MX, Jiang JY, Yang HB, Zhao XL, Clever GH, Shi X. Self-assembly, interlocking, interconversion and anion-binding catalysis in phenoxazine-based Pd 2L 4 and Pd 4L 8 coordination cages. Nat Commun 2025; 16:2484. [PMID: 40082455 PMCID: PMC11906823 DOI: 10.1038/s41467-025-57876-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 03/03/2025] [Indexed: 03/16/2025] Open
Abstract
Interpenetration is a phenomenon frequently encountered in self-assembled Pd2L4-type coordination cages, while the mechanism of the interpenetration process remains unclear. Here we show the synthesis and solvent-mediated interconversion of highly soluble phenoxazine-based monomeric cage 1 and corresponding interlocked dimer 2. We succeed in the isolation and single-crystal structure analysis of both 1 and 2 with the same guest anion by changing the solvents utilized in self-assembly. The monomeric-to-dimeric cage conversion occurs by heating in weakly coordinating solvents, while dimeric-to-monomeric cage conversion takes place through a disassembly and reassembly process in strongly coordinating solvents at low concentration or by the addition/removal of competing ligand. The interconversion may be driven by the distinct thermodynamic stabilities of 1 and 2 in different solvents. Additionally, Cl- anions template the interpenetration of 1 because of the strong chloride binding affinity of 2 which could serve as an anion-binding catalyst for the C-Cl bond cleavage.
Collapse
Affiliation(s)
- Qiong-Yan Hong
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Bin Huang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Meng-Xiang Wu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Jun-Yao Jiang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Hai-Bo Yang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xiao-Li Zhao
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany.
| | - Xueliang Shi
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
10
|
Benchimol E, Rivoli A, Kabiri M, Zhang B, Holstein JJ, Ballester P, Clever GH. Guest Segregation in Heteromeric Multicage Systems. J Am Chem Soc 2025; 147:3823-3829. [PMID: 39823563 DOI: 10.1021/jacs.4c16971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Dynamically interconvertible metallo-supramolecular multicomponent assemblies, coexisting orthogonally in solution, serve as simplified mimics for complex networks found in biological systems. Building on recent advances in controlling the nonstatistical self-assembly of heteroleptic coordination cages and heteromeric completive self-sorting, i.e., the coformation of multiple low-symmetry assemblies, we herein describe the first instance of emerging functionality from a heteromeric multicage system. In particular, one heteroleptic cage coexists in equilibrium with one or two different homoleptic cages, each capable of preferentially encapsulating one out of three guests within their cavities. Guest segregation occurs under thermodynamic control and can be reached following several distinct paths. Each pathway involves different sequential transformations, eventually leading to the same outcome. We found that the most complex mixture of components (three ligands, three guests, plus palladium cations) always yields an ordered, pathway-independent final state of three coexisting host-guest species, thus representing a case of simplexity in self-sorted systems. This study forms a basis for expanding the scope of dynamic transformation processes implemented in multicage host-guest systems. Together with the incorporation of stimuli-responsive elements and other functionality, complex cage populations with bioinspired applications in controllable compound separation schemes, compartmentalized cascade reactions, and multistep (even bifurcated) molecular information processing will become accessible.
Collapse
Affiliation(s)
- Elie Benchimol
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, 44227 Dortmund, Germany
| | - Andrea Rivoli
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, 43007 Tarragona, Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Michele Kabiri
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, 44227 Dortmund, Germany
| | - Bo Zhang
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, 44227 Dortmund, Germany
| | - Julian J Holstein
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, 44227 Dortmund, Germany
| | - Pablo Ballester
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, 44227 Dortmund, Germany
| |
Collapse
|
11
|
Li YQ, Zhao H, Han E, Jiang Z, Bai Q, Guan YM, Zhang Z, Wu T, Wang P. Dynamic selection in metallo-organic cube Cd II 8L 4 conformations induced by perfluorooctanoate encapsulation. Chem Sci 2024; 16:364-370. [PMID: 39620083 PMCID: PMC11604167 DOI: 10.1039/d4sc07105k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
Metallo-organic cages possess flexibility comparable to that of biological receptors and can alter their conformations to better accommodate guest species due to the dynamic reversibility of the coordination bond. Induced fit is widely accepted involving conformation change of the host, while few definitive examples are related to conformation selection. Herein, we report the generation of metallo-organic cube CdII 8L4 with two coexisting conformations, which have been fully confirmed by NMR, ESI-MS and single-crystal X-ray diffraction analysis. The specific guest perfluorooctanoate PFOA selectively binds to the active conformer C 2h-1 to form the PFOA⊂C 2h-1 complex. Furthermore, conformer D 2-2 isomerizes to conformer C 2h-1 in the presence of PFOA, for maximizing the guest binding affinity. This study provides an effective working paradigm for conformation selection, facilitating the understanding of the fundamental mechanism of molecular recognition.
Collapse
Affiliation(s)
- Yu-Qing Li
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - He Zhao
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Ermeng Han
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Zhiyuan Jiang
- Department of Chemistry, The University of Hong Kong Hong Kong SAR 999077
| | - Qixia Bai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University Guangzhou 510006 China
| | - Yu-Ming Guan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University Guangzhou 510006 China
| | - Zhe Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University Guangzhou 510006 China
| | - Tun Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University Guangzhou 510006 China
| | - Pingshan Wang
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University Guangzhou 510006 China
| |
Collapse
|
12
|
Kurz H, Teeuwen PCP, Ronson TK, Hoffman JB, Pracht P, Wales DJ, Nitschke JR. Double-Bridging Increases the Stability of Zinc(II) Metal-Organic Cages. J Am Chem Soc 2024; 146:30958-30965. [PMID: 39496078 PMCID: PMC11565643 DOI: 10.1021/jacs.4c09742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/27/2024] [Accepted: 10/09/2024] [Indexed: 11/06/2024]
Abstract
A key feature of coordination cages is the dynamic nature of their coordinative bonds, which facilitates the synthesis of complex polyhedral structures and their post-assembly modification. However, this dynamic nature can limit cage stability. Increasing cage robustness is important for real-world use cases. Here we introduce a double-bridging strategy to increase cage stability, where designed pairs of bifunctional subcomponents combine to generate rectangular tetratopic ligands within pseudo-cubic Zn8L6 cages. These cages withstand transmetalation, the addition of competing ligands, and nucleophilic imines, under conditions where their single-bridged congeners decompose. Our approach not only increases the stability and robustness of the cages while maintaining their polyhedral structure, but also enables the incorporation of additional functional units in proximity to the cavity. The double-bridging strategy also facilitates the synthesis of larger cages, which are inaccessible as single-bridged congeners.
Collapse
Affiliation(s)
- Hannah Kurz
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Paula C. P. Teeuwen
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Tanya K. Ronson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Jack B. Hoffman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Philipp Pracht
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - David J. Wales
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Jonathan R. Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
13
|
Li K, Liu M, Li Z, Chen M, Wang J, Yuan J, Jiang Z, Li Y, Wang P, Liu D. Heterometallic-Organic Cages with Customized Cavities: Constructed by Bottom-Up Step-Wise Coordination-Driven Self-Assembly. Chemistry 2024; 30:e202402499. [PMID: 39152769 DOI: 10.1002/chem.202402499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/20/2024] [Accepted: 08/16/2024] [Indexed: 08/19/2024]
Abstract
Accurately synthesizing coordination-driven metal-organic cages with customized shape and cavity remains a great challenge for chemists. In this work, a bottom-up step-wise coordination-driven self-assembly approach was put forward. Employing this strategy, three terpyridyl heterometallic-organic truncated tetrahedral cages with different sizes and cavity were precisely synthesized. Firstly, the coordination of tripodal organic ligands with Ru2+ afforded dendritic metal-organic ligands L1-L3. Then the Ru building blocks complexed with Fe2+ and shrunk to form the desired heterometallic-organic cages (C1-C3). These discrete heterometallic-organic supramolecular cages were fully characterized and displayed the large and open cavities varied from 7205 Å3 to 9384 Å3. Notably, these cages could not be directly constructed by single-step assembly process using initial organic ligands or dimeric metal-organic ligands, indicative of the irreplaceability of a bottom-up step-wise assembly strategy for size-customized architectures. This work paves a new way for precisely constructing metal-organic cages with well-defined cavities.
Collapse
Affiliation(s)
- Kaixiu Li
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Mingliang Liu
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Zhengguang Li
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Mingzhao Chen
- Country Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Area, Guangzhou University, Guangzhou, 510006, China
| | - Jun Wang
- Country Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Area, Guangzhou University, Guangzhou, 510006, China
| | - Jie Yuan
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Zhilong Jiang
- Country Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Area, Guangzhou University, Guangzhou, 510006, China
| | - Yiming Li
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Pingshan Wang
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
- Country Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Area, Guangzhou University, Guangzhou, 510006, China
| | - Die Liu
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| |
Collapse
|
14
|
Cox CJT, Hale J, Molinska P, Lewis JEM. Supramolecular and molecular capsules, cages and containers. Chem Soc Rev 2024; 53:10380-10408. [PMID: 39351690 DOI: 10.1039/d4cs00761a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Stemming from early seminal notions of molecular recognition and encapsulation, three-dimensional, cavity-containing capsular compounds and assemblies have attracted intense interest due to the ability to modulate chemical and physical properties of species encapsulated within these confined spaces compared to bulk environments. With such a diverse range of covalent motifs and non-covalent (supramolecular) interactions available to assemble building blocks, an incredibly wide-range of capsular-type architectures have been developed. Furthermore, synthetic tunability of the internal environments gives chemists the opportunity to engineer systems for uses in sensing, sequestration, catalysis and transport of molecules, just to name a few. In this tutorial review, an overview is provided into the design principles, synthesis, characterisation, structural facets and properties of coordination cages, porous organic cages, supramolecular capsules, foldamers and mechanically interlocked molecules. Using seminal and recent examples, the advantages and limitations of each system are explored, highlighting their application in various tasks and functions.
Collapse
Affiliation(s)
- Cameron J T Cox
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Jessica Hale
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Paulina Molinska
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - James E M Lewis
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
15
|
Drechsler C, Baksi A, Platzek A, Acar M, Holstein JJ, Stein CJ, Clever GH. London dispersion driven compaction of coordination cages in the gas-phase - a combined ion mobility and theoretical study. Chem Sci 2024:d4sc04786a. [PMID: 39479161 PMCID: PMC11520353 DOI: 10.1039/d4sc04786a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/12/2024] [Indexed: 11/02/2024] Open
Abstract
Large self-assembled systems (such as metallosupramolecular rings and cages) can be difficult to structurally characterize, in particular when they show a highly dynamic behavior. In the gas-phase, Ion Mobility Spectrometry (IMS), in tandem with Electrospray Ionization Mass Spectrometry (ESI MS), can yield valuable insights into the size, shape and dynamics of such supramolecular assemblies. However, the detailed relationship between experimental IMS data and the actual gas-phase structure is still poorly understood for soft and flexible self-assemblies. In this study, we combine high resolution Trapped Ion Mobility Spectrometry (TIMS), yielding collisional cross section data (CCS), with computational modeling and theoretical CCS calculations to obtain and interpret gas-phase structural data for a series of palladium-based coordination cages. We focus on derivatives of a homoleptic lantern-shaped [Pd2L4]4+ cage and its interpenetrated dimer ([3X@Pd4L8]5+, X = Cl, Br) to study the influence of flexible side chains of different lengths, counter anions and π-stacking tendencies between the ligands in the absence of solvent. The gained insights as well as the presented CCS calculation and evaluation workflow establish a basis for the systematic gas-phase characterization of a wider range of flexible, chain-decorated and guest-modulated assemblies.
Collapse
Affiliation(s)
- Christoph Drechsler
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Str. 6 44227 Dortmund Germany
| | - Ananya Baksi
- Department of Chemistry, Jadavpur University Kolkata-700032 West Bengal India
| | - André Platzek
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Str. 6 44227 Dortmund Germany
| | - Mert Acar
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Str. 6 44227 Dortmund Germany
| | - Julian J Holstein
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Str. 6 44227 Dortmund Germany
| | - Christopher J Stein
- Technical University of Munich, TUM School of Natural Sciences and Catalysis Research Center, Department of Chemistry Lichtenbergstr. 4 85748 Garching Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Str. 6 44227 Dortmund Germany
| |
Collapse
|
16
|
Liang K, Liang Y, Tang M, Liu J, Tang ZB, Liu Z. π-Diamond: A Diamondoid Superstructure Driven by π-Interactions. Angew Chem Int Ed Engl 2024; 63:e202409507. [PMID: 38896433 DOI: 10.1002/anie.202409507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/21/2024]
Abstract
Modulating the arrangement of superstructures through noncovalent interactions has a significant impact on macroscopic shape and the expression of unique properties. Constructing π-interaction-driven hierarchical three-dimensional (3D) superstructures poses challenges on account of limited directional control and weak intermolecular interactions. Here we report the construction of a 3D diamondoid superstructure, named π-Diamond, employing a ditopic strained Z-shaped building block comprising a porphyrin unit as bow-limb double-strapped with two m-xylylene units as bowstrings. This superstructure, reminiscent of diamond's tetrahedral carbon composition, is composed of double-walled tetrahedron (DWT) driven solely by π-interactions. Hetero-π-stacking interactions between porphyrin and m-xylylene panels drive the assembly of four building blocks predominantly into a DWT, which undergoes extension to create an adamantane unit and eventually a diamondoid superstructure wherein each porphyrin panel is shared by two neighboring tetrahedra through hetero-π-stacking. π-Diamond exhibits a solid-state fluorescent quantum yield 44 times higher than that of tetraphenylporphyrin along with excellent photocatalytic performance. The precise 3D directionality of π-interactions, achieved through strained multipanel building blocks, revolutionizes the assembly of hierarchical 3D superstructures driven by π-interactions.
Collapse
Affiliation(s)
- Kejiang Liang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province. Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, and Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Yimin Liang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province. Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, and Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Min Tang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province. Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, and Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Jiali Liu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province. Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, and Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Zheng-Bin Tang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province. Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, and Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Zhichang Liu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province. Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, and Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
- International Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashihiroshima, Japan
| |
Collapse
|
17
|
Kurpik G, Walczak A, Dydio P, Stefankiewicz AR. Multi-Stimuli-Responsive Network of Multicatalytic Reactions using a Single Palladium/Platinum Catalyst. Angew Chem Int Ed Engl 2024; 63:e202404684. [PMID: 38877818 DOI: 10.1002/anie.202404684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/16/2024]
Abstract
Given her unrivalled proficiency in the synthesis of all molecules of life, nature has been an endless source of inspiration for developing new strategies in organic chemistry and catalysis. However, one feature that remains thus far beyond chemists' grasp is her unique ability to adapt the productivity of metabolic processes in response to triggers that indicate the temporary need for specific metabolites. To demonstrate the remarkable potential of such stimuli-responsive systems, we present a metabolism-inspired network of multicatalytic processes capable of selectively synthesising a range of products from simple starting materials. Specifically, the network is built of four classes of distinct catalytic reactions-cross-couplings, substitutions, additions, and reductions, involving three organic starting materials-terminal alkyne, aryl iodide, and hydrosilane. All starting materials are either introduced sequentially or added to the system at the same time, with no continuous influx of reagents or efflux of products. All processes in the system are catalysed by a multifunctional heteronuclear PdII/PtII complex, whose performance can be controlled by specific additives and external stimuli. The reaction network exhibits a substantial degree of orthogonality between different pathways, enabling the controllable synthesis of ten distinct products with high efficiency and selectivity through simultaneous triggering and suppression mechanisms.
Collapse
Affiliation(s)
- Gracjan Kurpik
- Center for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Anna Walczak
- Center for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Paweł Dydio
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Artur R Stefankiewicz
- Center for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| |
Collapse
|
18
|
Li H, Yang J, Li D, Li X, Li J, He C. Host-Guest Approach to Promoting Photocatalysis Based on Consecutive Photo-Induced Electron-Transfer Processes via Efficient Förster Resonance Energy Transfer. Angew Chem Int Ed Engl 2024; 63:e202409094. [PMID: 38806443 DOI: 10.1002/anie.202409094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 05/30/2024]
Abstract
Supramolecular artificial light-harvesting system with highly efficient host-guest energy transfer pathway provides an ideal platform for optimizing the photochemistry process. The consecutive photo-induced electron transfer (conPET) process overcomes the energy limitation of visible-light photocatalysis, but is often compromised by mismatching between the absorption of ground state dye and its radical, weakening the efficiency of photoredox reaction. By encapsulating a conPET photocatalyst rhodamine 6G into metal-organic cage, the supramolecular approach was undertaken to tackle the intrinsic difficulty of matching the light absorption of photoexcitation between rhodamine 6G and its radical. The highly efficient Förster resonance energy transfer from the photoexcited cage to rhodamine 6G forced by host-guest encapsulation facilitates the conPET process for the single-wavelength light-driven activation of aryl halides by stabilizing and accelerating the production and accumulation of the rhodamine 6G radical intermediate. The tunable and flexible nature of the supramolecular host-guest complex renders the cage-based encapsulation strategy promising for the development of ideal photocatalysts toward the better utilization of solar energy.
Collapse
Affiliation(s)
- Hechuan Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Jianhua Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Danyang Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Xuezhao Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Jianxu Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
19
|
Huang B, Zhou M, Hong QY, Wu MX, Zhao XL, Xu L, Gao EQ, Yang HB, Shi X. A Redox-Active Phenothiazine-based Pd 2L 4-Type Coordination Cage and Its Isolable Crystalline Polyradical Cations. Angew Chem Int Ed Engl 2024; 63:e202407279. [PMID: 38872356 DOI: 10.1002/anie.202407279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
Polyradical cages are of great interest because they show very fascinating physical and chemical properties, but many challenges remain, especially for their synthesis and characterization. Herein, we present the synthesis of a polyradical cation cage 14⋅+ through post-synthetic oxidation of a redox-active phenothiazine-based Pd2L4-type coordination cage 1. It's worth noting that 1 exhibits excellent reversible electrochemical and chemical redox activity due to the introduction of a bulky 3,5-di-tert-butyl-4-methoxyphenyl substituent. The generation of 14⋅+ through reversible electrochemical oxidation is investigated by in situ UV/Vis-NIR and EPR spectroelectrochemistry. Meanwhile, chemical oxidation of 1 can also produce 14⋅+ which can be reversibly reduced back to the original cage 1, and the process is monitored by EPR and NMR spectroscopies. Eventually, we succeed in the isolation and single crystal X-ray diffraction analysis of 14⋅+, whose electronic structure and conformation are distinct to original 1. The magnetic susceptibility measurements indicate the predominantly antiferromagnetic interactions between the four phenothiazine radical cations in 14⋅+. We believe that our study including the facile synthesis methodology and in situ spectroelectrochemistry will shed some light on the synthesis and characterization of novel polyradical systems, opening more perspectives for developing functional supramolecular cages.
Collapse
Affiliation(s)
- Bin Huang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Manfei Zhou
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Qiong-Yan Hong
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Meng-Xiang Wu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xiao-Li Zhao
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Lin Xu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - En-Qing Gao
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Hai-Bo Yang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xueliang Shi
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
20
|
Zhang Z, Bai Q, Zhai Z, Long Q, Han E, Zhao H, Zhou CW, Lin H, Zhang W, Ning GH, Xie TZ, Wang P, Wu T. Multiple-stimuli fluorescent responsive metallo-organic helicated cage arising from monomer and excimer emission. Nat Commun 2024; 15:7261. [PMID: 39179587 PMCID: PMC11344131 DOI: 10.1038/s41467-024-51792-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Effectively regulating monomer and excimer emission in a singular supramolecular luminous platform is challenging due to high difficulty of precise control over its aggregation and dispersion behavior when subjected to external stimuli. Here, we show a metallo-cage (MTH) featuring a triple helical motif that displays a unique dual emission. It arises from both intramolecular monomer and intermolecular excimer, respectively. The distorted molecular conformation and the staggered stacking mode of MTH excimer are verified through single crystal X-ray diffraction analysis. These structural features facilitate the switch between monomer and excimer emission, which are induced by changes in concentration and temperature. Significantly, adjusting the equilibrium between these two states in MTH enables the production of vibrant white light emission in both solution and solid state. Moreover, when combined with a PMMA (polymethyl methacrylate) substrate, the resulting thin films can serve as straightforward fluorescence thermometer and thermally activated information encryption materials.
Collapse
Affiliation(s)
- Zhe Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Qixia Bai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Zirui Zhai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Qingwu Long
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan, China
| | - Ermeng Han
- Hunan Key Laboratory of Micro & Nano Materials Interface Science; College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - He Zhao
- Hunan Key Laboratory of Micro & Nano Materials Interface Science; College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Chuang-Wei Zhou
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, China
| | - Haobo Lin
- School of Physics and Materials Science, Guangzhou University, Guangzhou, China
| | - Wei Zhang
- School of Physics and Materials Science, Guangzhou University, Guangzhou, China
| | - Guo-Hong Ning
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, China
| | - Ting-Zheng Xie
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Pingshan Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China.
| | - Tun Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China.
| |
Collapse
|
21
|
Benchimol E, Ebbert KE, Walther A, Holstein JJ, Clever GH. Ligand Conformation Controls Assembly of a Helicate/Mesocate, Heteroleptic [Pd 2L 2L' 2] Cages and a Six-Jagged [Pd 6L 12] Ring. Chemistry 2024; 30:e202401850. [PMID: 38853595 DOI: 10.1002/chem.202401850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/11/2024]
Abstract
Molecular building blocks, capable of adopting several strongly deviating conformations, are of particular interest in the development of stimuli-responsive self-assemblies. The pronounced structural flexibility of a short acridone-based bridging ligand, equipped with two monodentate isoquinoline donors, is herein exploited to assemble a surprisingly diverse series of coordination-driven Pd(II) architectures. First, it can form a highly twisted Pd2L4 helicate, transformable into the corresponding mesocate, controlled by temperature, counter anion and choice of solvent. Second, it also allows the formation of heteroleptic cages, either from a mix of ligands with Pd(II) cations or by cage-to-cage transformation from homoleptic assemblies. Here, the acridone-based ligand tolerates counter ligands that carry their donors either in a diverging or converging arrangement, as it can rotate its own coordination sites by 90° and structurally adapt to both situations via shape complementarity. Third, by a near 180° rotation of only one of its arms, the ligand can adopt an S-shape conformation and form an unprecedented C6h-symmetric Pd6L12 saw-toothed six-membered ring.
Collapse
Affiliation(s)
- Elie Benchimol
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Kristina E Ebbert
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Alexandre Walther
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Julian J Holstein
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| |
Collapse
|
22
|
Li Y, He J, Lu G, Wang C, Fu M, Deng J, Yang F, Jiang D, Chen X, Yu Z, Liu Y, Yu C, Cui Y. De novo construction of amine-functionalized metal-organic cages as heterogenous catalysts for microflow catalysis. Nat Commun 2024; 15:7044. [PMID: 39147797 PMCID: PMC11327339 DOI: 10.1038/s41467-024-51431-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024] Open
Abstract
Microflow catalysis is a cutting-edge approach to advancing chemical synthesis and manufacturing, but the challenge lies in developing efficient and stable multiphase catalysts. Here we showcase incorporating amine-containing metal-organic cages into automated microfluidic reactors through covalent bonds, enabling highly continuous flow catalysis. Two Fe4L4 tetrahedral cages bearing four uncoordinated amines were designed and synthesized. Post-synthetic modifications of the amine groups with 3-isocyanatopropyltriethoxysilane, introducing silane chains immobilized on the inner walls of the microfluidic reactor. The immobilized cages prove highly efficient for the reaction of anthranilamide with aldehydes, showing superior reactivity and recyclability relative to free cages. This superiority arises from the large cavity, facilitating substrate accommodation and conversion, a high mass transfer rate and stable covalent bonds between cage and microreactor. This study exemplifies the synergy of cages with microreactor technology, highlighting the benefits of heterogenous cages and the potential for future automated synthesis processes.
Collapse
Affiliation(s)
- Yingguo Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Jialun He
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Guilong Lu
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Chensheng Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Mengmeng Fu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Juan Deng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Fu Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Danfeng Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Xiao Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Ziyi Yu
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chao Yu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| |
Collapse
|
23
|
Martí-Centelles V, Piskorz TK, Duarte F. CageCavityCalc ( C3): A Computational Tool for Calculating and Visualizing Cavities in Molecular Cages. J Chem Inf Model 2024; 64:5604-5616. [PMID: 38980812 PMCID: PMC11267575 DOI: 10.1021/acs.jcim.4c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/05/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
Organic(porous) and metal-organic cages are promising biomimetic platforms with diverse applications spanning recognition, sensing, and catalysis. The key to the emergence of these functions is the presence of well-defined inner cavities capable of binding a wide range of guest molecules and modulating their properties. However, despite the myriad cage architectures currently available, the rational design of structurally diverse and functional cages with specific host-guest properties remains challenging. Efficiently predicting such properties is critical for accelerating the discovery of novel functional cages. Herein, we introduce CageCavityCalc (C3), a Python-based tool for calculating the cavity size of molecular cages. The code is available on GitHub at https://github.com/VicenteMartiCentelles/CageCavityCalc. C3 utilizes a novel algorithm that enables the rapid calculation of cavity sizes for a wide range of molecular structures and porous systems. Moreover, C3 facilitates easy visualization of the computed cavity size alongside hydrophobic and electrostatic potentials, providing insights into host-guest interactions within the cage. Furthermore, the calculated cavity can be visualized using widely available visualization software, such as PyMol, VMD, or ChimeraX. To enhance user accessibility, a PyMol plugin has been created, allowing nonspecialists to use this tool without requiring computer programming expertise. We anticipate that the deployment of this computational tool will significantly streamline cage cavity calculations, thereby accelerating the discovery of functional cages.
Collapse
Affiliation(s)
- Vicente Martí-Centelles
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Camino de Vera s/n, Valencia 46022, Spain
- CIBER
de Bioingeniería Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid 28029, Spain
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera
s/n, Valencia 46022, Spain
| | - Tomasz K. Piskorz
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Fernanda Duarte
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|
24
|
Okabe K, Yamashina M, Tsurumaki E, Uekusa H, Toyota S. Solid-State Self-Assembly: Exclusive Formation and Dynamic Interconversion of Discrete Cyclic Assemblies Based on Molecular Tweezers. J Org Chem 2024; 89:9488-9495. [PMID: 38913719 PMCID: PMC11232003 DOI: 10.1021/acs.joc.4c00794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
In contrast to self-assembly in solution systems, the construction of well-defined assemblies in the solid state has long been identified as a challenging task. Herein, we report the formation of tweezers-shaped molecules into various assemblies through a solid-state self-assembly strategy. The relatively flexible molecular tweezers undergo exclusive and quantitative assembly into either cyclic hexamers or a porous network through classical recrystallization or the exposure of powders to solvent vapor, despite the fact that they form only dimers in solution. The cyclic hexamers have high thermal stability and exhibit moderate solid-state fluorescence. The formation of heterologous assemblies consisting of different tweezers allows for tuning these solid-state properties of the cyclic hexamer. Furthermore, (trimethylsilyl)ethynyl-substituted tweezers demonstrate solvent-vapor-induced dynamic interconversion between the cyclic hexamer and a pseudocyclic dimer in the solid state. This assembly behavior, which has been studied extensively in solution-based supramolecular chemistry, had not been accomplished in the solid state so far.
Collapse
Affiliation(s)
- Koki Okabe
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Masahiro Yamashina
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Eiji Tsurumaki
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Hidehiro Uekusa
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Shinji Toyota
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
25
|
Harada K, Ono Y, Sekiya R, Haino T. Selective encapsulation of carboxylic acid dimers within a size-regulable resorcinarene-based hemicarcerand. Chem Commun (Camb) 2024; 60:6603-6606. [PMID: 38836696 DOI: 10.1039/d4cc00699b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
A cavity within a resorcinarene-based hemicarcerand was contracted and expanded through conformational changes induced by the complexation and decomplexation, allowing self-sorting of homo- and heterodimeric carboxylic acid pairs.
Collapse
Affiliation(s)
- Kentaro Harada
- Department of Chemistry, Graduate School of Advanced Science and Engineering Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| | - Yudai Ono
- Department of Chemistry, Graduate School of Advanced Science and Engineering Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Ryo Sekiya
- Department of Chemistry, Graduate School of Advanced Science and Engineering Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| | - Takeharu Haino
- Department of Chemistry, Graduate School of Advanced Science and Engineering Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| |
Collapse
|
26
|
Li K, Li Z, Yuan J, Chen M, Zhao H, Jiang Z, Wang J, Jiang Z, Li Y, Chan YT, Wang P, Liu D. High-order layered self-assembled multicavity metal--organic capsules and anti-cooperative host-multi-guest chemistry. Chem Sci 2024; 15:8913-8921. [PMID: 38873050 PMCID: PMC11168090 DOI: 10.1039/d4sc01204f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024] Open
Abstract
The construction and application of metal-organic cages with accessible internal cavities have witnessed rapid development, however, the precise synthesis of complex metal-organic capsules with multiple cavities and achievement of multi-guest encapsulation, and further in-depth comprehension of host-multi-guest recognition remain a great challenge. Just like building LEGO blocks, herein, we have constructed a series of high-order layered metal-organic architectures of generation n (n = 1/2/3/4 is also the number of cavities) by multi-component coordination-driven self-assembly using porphyrin-containing tetrapodal ligands (like plates), multiple parallel-podal ligands (like clamps) and metal ions (like nodes). Importantly, these high-order assembled structures possessed different numbers of rigid and separate cavities formed by overlapped porphyrin planes with specific gaps. The host-guest experiments and convincing characterization proved that these capsules G2-G4 could serve as host structures to achieve multi-guest recognition and unprecedentedly encapsulate up to four C60 molecules. More interestingly, these capsules revealed negative cooperation behavior in the process of multi-guest recognition, which provides a new platform to further study complicated host-multi-guest interaction in the field of supramolecular chemistry.
Collapse
Affiliation(s)
- Kaixiu Li
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha Hunan-410083 China
| | - Zhengguang Li
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha Hunan-410083 China
| | - Jie Yuan
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Mingzhao Chen
- Department Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou-510006 China
| | - He Zhao
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha Hunan-410083 China
| | - Zhiyuan Jiang
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha Hunan-410083 China
| | - Jun Wang
- Department Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou-510006 China
| | - Zhilong Jiang
- Department Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou-510006 China
| | - Yiming Li
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha Hunan-410083 China
| | - Yi-Tsu Chan
- Department of Chemistry, National Taiwan University Taipei 10617 Taiwan
| | - Pingshan Wang
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha Hunan-410083 China
- Department Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou-510006 China
| | - Die Liu
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha Hunan-410083 China
| |
Collapse
|
27
|
Hu C, Severin K. Nanogels with Metal-Organic Cages as Functional Crosslinks. Angew Chem Int Ed Engl 2024; 63:e202403834. [PMID: 38579118 DOI: 10.1002/anie.202403834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
A dinuclear metal-organic cage with four acrylate side chains was prepared by self-assembly. Precipitation polymerization of the cage with N-isopropylacrylamide yielded a thermoresponsive nanogel. The host properties of the cage were retained within the gel matrix, endowing the nanogel with the capability to serve as a sorbent for chloride ions in water. Moreover, a heteroleptic cage with the drug abiraterone as co-ligand was integrated into a nanogel. The addition of chloride ions induced a structural rearrangement of the metal-ligand assembly, resulting in the gradual release of abiraterone.
Collapse
Affiliation(s)
- Chaolei Hu
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
28
|
Sivalingam V, Parbin M, Krishnaswamy S, Chand DK. Cage-To-Cage Transformations in Self-Assembled Coordination Cages Using "Acid/Base" or "Guest Binding-Induced Strain" as Stimuli. Angew Chem Int Ed Engl 2024; 63:e202403711. [PMID: 38567836 DOI: 10.1002/anie.202403711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Indexed: 05/03/2024]
Abstract
Controlling supramolecular systems between different functional forms by utilizing acids/bases as stimuli is a formidable challenge, especially where labile coordination bonds are involved. A pair of acid/base responsive, interconvertible 1,5-enedione/pyrylium based Pd2L4-type cages are prepared that exhibit differential guest binding abilities towards disulfonates of varied sizes. A three-state switch has been achieved, where (i) a weakly coordinating base induced cage-to-cage transformation in the first step, (ii) a strongly coordinating base triggered cage disassembly as the second step, and (iii) the third step shows acid(strong) promoted generation of initial cage, thereby completing the cycle. To our surprise, binding of a specific disulfonate guest facilitated cage-to-cage transformations by inducing strain on the cage assembly thereby opening the labile pyrylium rings of the cage. Through a competitive guest binding study, we demonstrated the superior guest binding capability of the octacationic pyrylium-based cage over a similar-sized tetracationic cage. These results provide a reliable approach to reversibly modulate the guest binding properties of acid/base-responsive self-assembled coordination cages.
Collapse
Affiliation(s)
- Vellaiyadevan Sivalingam
- IoE Center of Molecular Architecture, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Minaz Parbin
- IoE Center of Molecular Architecture, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Shobhana Krishnaswamy
- IoE Center of Molecular Architecture, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Dillip Kumar Chand
- IoE Center of Molecular Architecture, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
29
|
Mobian P, Pham DJ, Chaumont A, Barloy L, Khalil G, Kyritsakas N. Circular Heterochiral Titanium-Based Self-Assembled Architectures. J Am Chem Soc 2024; 146:14067-14078. [PMID: 38728688 DOI: 10.1021/jacs.4c02352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Circular trinuclear helicates have been synthesized from a bis-biphenol strand (LH4), titanium isopropoxide, and various diimine ligands. These self-assembled architectures constructed around three TiO4N2 nodes have a heterochiral structure (C1 symmetry) when 2,2'-bipyridine (A), 4,4'-dimethyl-2,2'-bipyridine (B), 4,4'-bromo-2,2'-bipyridine (C), or 4,4'-dimethyl-2,2'-bipyrimidine (D) is employed. Within these complexes, one nitrogen ligand is endo-positioned inside the metallo-macrocycle, whereas the other two diimine ligands point outside the helicate framework. This investigation highlights that the nitrogen ligand which does not participate in the helicate framework of the complex controls the overall symmetry of the helicate since the 2,2'-bipyrimidine chelate (F) ends in the formation of a homochiral aggregate (C3 symmetry). The lack of symmetry found in the solid state for the trinuclear species ([Ti3L3(B)3], [Ti3L3(C)3], and [Ti3L3(D)3]) is observed for these complexes in solution (dichloromethane or chloroform). Remarkably, the 2,2'-bipyrazine ligand (ligand E) ends in the formation of a hexameric aggregate formulated as [Ti6L6(E)6], whereas the use of 4,4'-dimethyl-2,2'-bipyrimidine (ligand D) permits to generate the dinuclear complexes ([Ti2L(D)2(OiPr)4] and [Ti2L2(D)2]) in addition to the trimeric structure [Ti3L3(D)3]. The behavior of [Ti3L3(A)3] in solution, on the other hand, is unique since an equilibrium between the homochiral and the heterochiral form is reached within 17 days after the complex has been dissolved in dichloromethane (C3-[Ti3L3(A)3]/C1-[Ti3L3(A)3] ratio = 0.3). In chloroform, the heterochiral form of [Ti3L3(A)3] is stable for the same period of time, evidencing the dependence of this stereochemical transformation toward the solvent medium. The thermodynamic and kinetic parameters linked to this stereochemical equilibrium have been obtained and point to the fact that the transformation is intramolecular and not induced by the presence of external ligands. The thermodynamic constant of the C1-[Ti3L3(A)3]/C3-[Ti3L3(A)3] equilibrium is found to be K = 0.34 ± 10%. Further evidence to rationalize this solvent-induced symmetry switch is obtained via a DFT calculation and classical molecular dynamics. In particular, this computational investigation elucidates the reason why the stereochemical transformation of a heterochiral architecture into a homochiral structure is possible only for a trinuclear assembly containing ligand A.
Collapse
Affiliation(s)
- Pierre Mobian
- Université de Strasbourg, CNRS, CMC UMR 7140 (team SFAM), F-67000 Strasbourg, France
| | - David-Jérôme Pham
- Université de Strasbourg, CNRS, CMC UMR 7140 (team SFAM), F-67000 Strasbourg, France
| | - Alain Chaumont
- Université de Strasbourg, CNRS, CMC UMR 7140 (team MSM), F-67000 Strasbourg, France
| | - Laurent Barloy
- Université de Strasbourg, CNRS, CMC UMR 7140 (team SFAM), F-67000 Strasbourg, France
| | - Georges Khalil
- Université de Strasbourg, CNRS, CMC UMR 7140 (team SFAM), F-67000 Strasbourg, France
| | - Nathalie Kyritsakas
- Université de Strasbourg, CNRS, CMC UMR 7140 (team LTM), F-67000 Strasbourg, France
| |
Collapse
|
30
|
Neukirch L, Kulas MD, Holstein JJ, Clever GH. Non-Templated Assembly of D 5h-Symmetric Pd 5L 10 Rings by Precise Ligand Angle Adjustment. Chemistry 2024; 30:e202400132. [PMID: 38441728 DOI: 10.1002/chem.202400132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Indexed: 03/20/2024]
Abstract
We report a series of Pd(II)nL2n coordination rings for which nuclearity is controlled by the binding angle of the corresponding bis-monodentate bridging ligands. Judicious choice of the angle within a family of rather rigid ligands allowed for the first-time to synthesize a homoleptic five-membered Pd5L10 ring that does not require any template to form. We demonstrate that control over the ring size is maintained both in the solid-, solution-, and gas-phase. Two X-ray structures of five-membered rings from ligands with ideal angles (yielding a perfect pentagonal ring) vs. suboptimal angles (resulting in a highly distorted structure) illustrate the importance of the correct ligand geometry. A mathematical model for estimating the expected ring size based on the ligand angle was derived and DFT computations show that ring-strain is the major factor determining the assembly outcome.
Collapse
Affiliation(s)
- Laura Neukirch
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Milan D Kulas
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Julian J Holstein
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| |
Collapse
|
31
|
Lai YL, Xie M, Zhou XC, Wang XZ, Zhu XW, Luo D, Zhou XP, Li D. Precise Post-Synthetic Modification of Heterometal-Organic Capsules for Selectively Encapsulating Tetrahedral Anions. Angew Chem Int Ed Engl 2024; 63:e202402829. [PMID: 38380830 DOI: 10.1002/anie.202402829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/22/2024]
Abstract
Post-synthetic modification plays a crucial role in precisely adjusting the structure and functions of advanced materials. Herein, we report the self-assembly of a tubular heterometallic Pd3Cu6L16 capsule that incorporates Pd(II) and CuL1 metalloligands. This capsule undergoes further modification with two tridentate anionic ligands (L2) to afford a bicapped Pd3Cu6L16L22 capsule with an Edshammer polyhedral structure. By employing transition metal ions, acid, and oxidation agents, the bicapped capsule can be converted into an uncapped one. This uncapped form can then revert back to the bicapped structure on the addition of Br- ions and a base. Interestingly, introducing Ag+ ions leads to the removal of one L2 ligand from the bicapped capsule, yielding a mono-capped Pd3Cu6L16L2 structure. Furthermore, the size of the anions critically influences the precise control over the post-synthetic modifications of the capsules. It was demonstrated that these capsules selectively encapsulate tetrahedral anions, offering a novel approach for the design of intelligent molecular delivery systems.
Collapse
Affiliation(s)
- Ya-Liang Lai
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Mo Xie
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Xian-Chao Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Xue-Zhi Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Xiao-Wei Zhu
- School of Chemistry and Environment, Guangdong Engineering Technology Developing Center of High-Performance CCL, Jiaying University, Meizhou, Guangdong 514015, PR China
| | - Dong Luo
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Xiao-Ping Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| |
Collapse
|
32
|
Lundberg DJ, Brown CM, Bobylev EO, Oldenhuis NJ, Alfaraj YS, Zhao J, Kevlishvili I, Kulik HJ, Johnson JA. Nested non-covalent interactions expand the functions of supramolecular polymer networks. Nat Commun 2024; 15:3951. [PMID: 38730254 PMCID: PMC11087514 DOI: 10.1038/s41467-024-47666-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
Supramolecular polymer networks contain non-covalent cross-links that enable access to broadly tunable mechanical properties and stimuli-responsive behaviors; the incorporation of multiple unique non-covalent cross-links within such materials further expands their mechanical responses and functionality. To date, however, the design of such materials has been accomplished through discrete combinations of distinct interaction types in series, limiting materials design logic. Here we introduce the concept of leveraging "nested" supramolecular crosslinks, wherein two distinct types of non-covalent interactions exist in parallel, to control bulk material functions. To demonstrate this concept, we use polymer-linked Pd2L4 metal-organic cage (polyMOC) gels that form hollow metal-organic cage junctions through metal-ligand coordination and can exhibit well-defined host-guest binding within their cavity. In these "nested" supramolecular network junctions, the thermodynamics of host-guest interactions within the junctions affect the metal-ligand interactions that form those junctions, ultimately translating to substantial guest-dependent changes in bulk material properties that could not be achieved in traditional supramolecular networks with multiple interactions in series.
Collapse
Affiliation(s)
- David J Lundberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA
| | - Christopher M Brown
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA
| | - Eduard O Bobylev
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA
| | - Nathan J Oldenhuis
- Department of Chemistry, University of New Hampshire, 23 Academic Way, Durham, NH, USA
| | - Yasmeen S Alfaraj
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA
| | - Julia Zhao
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA
| | - Ilia Kevlishvili
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA.
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, USA.
| |
Collapse
|
33
|
Nishijima A, Osugi Y, Uemura T. Fabrication of Self-Expanding Metal-Organic Cages Using a Ring-Openable Ligand. Angew Chem Int Ed Engl 2024; 63:e202404155. [PMID: 38453647 DOI: 10.1002/anie.202404155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/09/2024]
Abstract
Metal-organic cages (MOCs), which are formed via coordination-driven assembly, are being extensively developed for various applications owing to the utility of their accessible molecular-sized cavity. While MOC structures are uniquely and precisely predetermined by the metal coordination number and ligand configuration, tailoring MOCs to further modulate the size, shape, and chemical environment of the cavities has become intensively studied for a more efficient and adaptive molecular binding. Herein, we report self-expanding MOCs that exhibit remarkable structural variations in cage size and flexibility while maintaining their topology. A cyclic ligand with an oligomeric chain tethering the two benzene rings of stilbene was designed and mixed with RhII ions to obtain the parent MOCs. These MOCs were successfully transformed into expanded MOCs via the selective cleavage of the double bond in stilbene. The expanded MOCs could effectively trap multidentate N-donor molecules in their enlarged cavity, in contrast to the original MOCs with a narrow cavity. As the direct synthesis of expanded MOCs is impractical because of the entropically disfavored structures, self-expansion using ring-openable ligands is a promising approach that allows precision engineering and the production of functional MOCs that would otherwise be inaccessible.
Collapse
Affiliation(s)
- Ami Nishijima
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656, Tokyo, Japan
| | - Yuto Osugi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656, Tokyo, Japan
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656, Tokyo, Japan
| |
Collapse
|
34
|
van Hilst QVC, Pearcy AC, Preston D, Wright LJ, Hartinger CG, Brooks HJL, Crowley JD. A dynamic covalent approach to [Pt nL 2n] 2n+ cages. Chem Commun (Camb) 2024; 60:4302-4305. [PMID: 38530770 DOI: 10.1039/d4cc00323c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
A dynamic covalent approach was exploited to generate a family of homometallic [PtnL2n]2n+ cage (predominantly [Pt2L4]4+ systems) architectures. The family of platinum(II) architectures were characterized using 1H nuclear magnetic resonance (NMR) and diffusion ordered spectroscopy (DOSY), electrospray ionization mass spectrometry (ESI-MS) and the molecular structures of two cages were determined by X-ray crystallography.
Collapse
Affiliation(s)
- Quinn V C van Hilst
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
- The MacDiarmid Institute, Wellington 6140, New Zealand
| | - Aston C Pearcy
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
- The MacDiarmid Institute, Wellington 6140, New Zealand
| | - Dan Preston
- Research School of Chemistry, Australian National University, Canberra ACT 0200, Australia
| | - L James Wright
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Heather J L Brooks
- Department of Pathology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - James D Crowley
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
- The MacDiarmid Institute, Wellington 6140, New Zealand
| |
Collapse
|
35
|
Kan L, Zhang L, Dong LZ, Wang XH, Li RH, Guo C, Li X, Yan Y, Li SL, Lan YQ. Bridging the Homogeneous and Heterogeneous Catalysis by Supramolecular Metal-Organic Cages with Varied Packing Modes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310061. [PMID: 38227292 DOI: 10.1002/adma.202310061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/29/2023] [Indexed: 01/17/2024]
Abstract
Integrating the advantages of homogeneous and heterogeneous catalysis has proved to be an optimal strategy for developing catalytic systems with high efficiency, selectivity, and recoverability. Supramolecular metal-organic cages (MOCs), assembled by the coordination of metal ions with organic linkers into discrete molecules, have performed solvent processability due to their tunable packing modes, endowing them with the potential to act as homogeneous or heterogeneous catalysts in different solvent systems. Here, the design and synthesis of a series of stable {Cu3} cluster-based tetrahedral MOCs with varied packing structures are reported. These MOCs, as homogeneous catalysts, not only show high catalytic activity and selectivity regardless of substrate size during the CO2 cycloaddition reaction, but also can be easily recovered from the reaction media through separating products and co-catalysts by one-step work-up. This is because that these MOCs have varied solubilities in different solvents due to the tunable packing of MOCs in the solid state. Moreover, the entire catalytic reaction system is very clean, and the purity of cyclic carbonates is as high as 97% without further purification. This work provides a unique strategy for developing novel supramolecular catalysts that can be used for homogeneous catalysis and recycled in a heterogeneous manner.
Collapse
Affiliation(s)
- Liang Kan
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Lei Zhang
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Long-Zhang Dong
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Xiao-Han Wang
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Run-Han Li
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Yong Yan
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Shun-Li Li
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
36
|
Benchimol E, Regeni I, Zhang B, Kabiri M, Holstein JJ, Clever GH. Heteromeric Completive Self-Sorting in Coordination Cage Systems. J Am Chem Soc 2024; 146:6905-6911. [PMID: 38423558 DOI: 10.1021/jacs.3c14168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Heteroleptic coordination cages, nonstatistically assembled from a set of matching ligands, can be obtained by mixing individual components or via cage-to-cage transformations from homoleptic precursors. Based on the latter approach, we here describe a new level of self-sorting in coordination cage systems, namely, 'heteromeric completive self-sorting'. Here, two heteroleptic assemblies of type Pd2A2B2 and Pd2A2C2, sharing one common ligand component A but differing in the other, are shown to coexist in solution. This level of self-sorting can be reached either from a statistical mixture of assemblies based on some ligands B and C or, alternatively, following a first step of integrative self-sorting giving a distinct Pd2B2C2 intermediate. While subtle enthalpic factors dictate the outcome of the self-sorting, we found that it is controllable. From a unique set of three ligands, we demonstrate the transition from strict integrative self-sorting forming a Pd2AB2C cage to heteromeric completive self-sorting to give Pd2A2B2 and Pd2A2C2 by variation of the ligand ratio. Cage-to-cage transformations were followed by NMR and MS experiments. Single crystal X-ray structures for three new heteroleptic cages were obtained, impressively highlighting the versatility of ligand A to either form a π-stacked trans-figure-of-eight arrangement in Pd2A2B2 or occupy two cis-edges in Pd2A2C2 or only a single edge in Pd2AB2C. This study paves the way toward the control of heteroleptic cage populations in a systems chemistry context with emerging features such as chemical information processing, adaptive guest selectivity, or stimuli-responsive catalytic action.
Collapse
Affiliation(s)
- Elie Benchimol
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund 44227, Germany
| | - Irene Regeni
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund 44227, Germany
| | - Bo Zhang
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund 44227, Germany
| | - Michele Kabiri
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund 44227, Germany
| | - Julian J Holstein
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund 44227, Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, Dortmund 44227, Germany
| |
Collapse
|
37
|
Wang J, Jiang Z, Yin JF, Zhao H, Dong Q, Li K, Zhong W, Liu D, Yuan J, Yin P, Li Y, Lin Y, Chen M, Wang P. Strain-Induced Heteromorphosis Multi-Cavity Cages: Tension-Driven Self-Expansion Strategy for Controllable Enhancement of Complexity in Supramolecular Assembly. Angew Chem Int Ed Engl 2024; 63:e202317674. [PMID: 38055187 DOI: 10.1002/anie.202317674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
Coordinative supramolecular cages with adjustable cavities have found extensive applications in various fields, but the cavity modification strategies for multi-functional structures are still challenging. Here, we present a tension-driven self-expansion strategy for construction of multi-cavity cages with high structural complexity. Under the regulation of strain-induced capping ligands, unprecedented heteromorphosis triple-cavity cages S2 /S4 were obtained based on a metallo-organic ligand (MOL) scaffold. The heteromorphosis cages exhibited significant higher cavity diversity than the homomorphous double-cavity cages S1 /S3 ; all of the cages were thoroughly characterized through various analytical techniques including (1D and 2D) NMR, ESI-MS, TWIM-MS, AFM, and SAXS analyses. Furthermore, the encapsulation of porphyrin in the cavities of these multi-cavity cages were investigated. This research opens up new possibilities for the architecture of heteromorphosis supramolecular cages via precisely controlled "scaffold-capping" assembly with preorganized ligands, which could have potential applications in the development of multifunctional structures with higher complexity.
Collapse
Affiliation(s)
- Jun Wang
- Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Zhilong Jiang
- Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Jia-Fu Yin
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - He Zhao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Qiangqiang Dong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Kaixiu Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Wanying Zhong
- Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Die Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jie Yuan
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yiming Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Yifan Lin
- Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Mingzhao Chen
- Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Pingshan Wang
- Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
38
|
Williams OHL, Rusli O, Ezzedinloo L, Dodgen TM, Clegg JK, Rijs NJ. Automated Structural Activity Screening of β-Diketonate Assemblies with High-Throughput Ion Mobility-Mass Spectrometry. Angew Chem Int Ed Engl 2024; 63:e202313892. [PMID: 38012094 DOI: 10.1002/anie.202313892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
Embracing complexity in design, metallo-supramolecular self-assembly presents an opportunity for fabricating materials of economic significance. The array of accessible supramolecules is alluring, along with favourable energy requirements. Implementation is hampered by an inability to efficiently characterise complex mixtures. The stoichiometry, size, shape, guest binding properties and reactivity of individual components and combinations thereof are inherently challenging to resolve. A large combinatorial library of four transition metals (Fe, Cu, Ni and Zn), and six β-diketonate ligands at different molar ratios and pH was robotically prepared and directly analysed over multiple timepoints with electrospray ionisation travelling wave ion mobility-mass spectrometry. The dataset was parsed for self-assembling activity without first attempting to structurally assign individual species. Self-assembling systems were readily categorised without manual data-handling, allowing efficient screening of self-assembly activity. This workflow clarifies solution phase supramolecular assembly processes without manual, bottom-up processing. The complex behaviour of the self-assembling systems was reduced to simpler qualities, which could be automatically processed.
Collapse
Affiliation(s)
| | - Olivia Rusli
- School of Chemistry, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Lida Ezzedinloo
- School of Chemistry, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Tyren M Dodgen
- Waters Corporation Australia, Rydalmere, NSW, 2116, Australia
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Nicole J Rijs
- School of Chemistry, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
39
|
Moree LK, Faulkner LAV, Crowley JD. Heterometallic cages: synthesis and applications. Chem Soc Rev 2024; 53:25-46. [PMID: 38037385 DOI: 10.1039/d3cs00690e] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
High symmetry metallosupramolecular architectures (MSAs) have been exploited for a range of applications including molecular recognition, catalysis and drug delivery. Recently there have been increasing efforts to enhance those applications by generating reduced symmetry MSAs. While there are several emerging methods for generating lower symmetry MSAs, this tutorial review examines the general methods used for synthesizing heterometallic MSAs with a particular focus on heterometallic cages. Additionally, the intrinsic properties of the cages and their potential emerging applications as host-guest systems and reaction catalysts are described.
Collapse
Affiliation(s)
- Lana K Moree
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Logan A V Faulkner
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - James D Crowley
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
40
|
Nédellec T, Boitrel B, Le Gac S. Parallel Chirality Inductions in Möbius Zn(II) Hexaphyrin Transformation Networks. J Am Chem Soc 2023. [PMID: 38037277 DOI: 10.1021/jacs.3c10835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Networked chemical transformations are key features of biological systems, in which complex multicomponent interactions enable the emergence of sophisticated functions. Being interested in chirality induction phenomena with dynamic Möbius π-systems, we have designed a pair of Möbius [28]hexaphyrin ligands in order to investigate mixtures rather than isolated molecules. Thus, a hexaphyrin bearing a chiral amino arm was first optimized and found to bind a ZnOAc moiety, triggering an impressive quasi-quantitative chirality induction over the Möbius π-system. Second, this amino-type hexaphyrin was mixed with a second hexaphyrin bearing a chiral carboxylate arm, affording at first ill-defined coordination assemblies in the presence of zinc. In contrast, a social self-sorting behavior occurred upon the addition of two exogenous achiral effectors (AcO- and BuNH2), leading to a well-defined 1:1 mixture of two Möbius complexes featuring a sole Möbius twist configuration (parallel chirality inductions). We next successfully achieved compartmentalized switching, i.e., a single-component transformation from such a complex mixture. The BuNH2 effector was selectively protected with Boc2O, owing to a lower reactivity of the arm's NH2 function intramolecularly bound to zinc, and subsequent addition of BuNH2 restored the initial mixture, retaining parallel chirality inductions (five cycles). By changing the nature and twist configuration of only one of the two complexes, at initial state or by switching, this approach enables a "two-channel" tuning of the chiroptical properties of the ensemble. Such multiple dynamic chirality inductions, controlled by selective metal-ligand recognition and chemical reactivity, set down the basis for Möbius-type stereoselective transformation networks with new functions.
Collapse
Affiliation(s)
- Thomas Nédellec
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, 35000 Rennes, France
| | - Bernard Boitrel
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, 35000 Rennes, France
| | - Stéphane Le Gac
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, 35000 Rennes, France
| |
Collapse
|
41
|
Walther A, Regeni I, Holstein JJ, Clever GH. Guest-Induced Reversible Transformation between an Azulene-Based Pd 2L 4 Lantern-Shaped Cage and a Pd 4L 8 Tetrahedron. J Am Chem Soc 2023; 145:25365-25371. [PMID: 37960849 DOI: 10.1021/jacs.3c09295] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Azulene, a blue structural isomer of naphthalene, is introduced as the backbone for a new family of Pd(II)-based self-assemblies. Three organic ligands, equipped with varying donor groups, produce three [Pd2L4] cages of different cavity dimensions. Unexpectedly, the addition of organic disulfonate guests to the smallest lantern-shaped cage (featuring pyridine donors) led to a rapid and quantitative transformation to a distorted-tetrahedral [Pd4L8] species. On the contrary, [Pd2L4] cages formed from ligands with isoquinoline donors either just encapsulated the guests or showed no interaction. The tetrahedral species could be fully reverted back to its original [Pd2L4] topology by capturing the guest by another, stronger binding [Pd2L'4] coordination cage, narcissistically self-sorting from the first cage. The azulenes, serving as colored hydrocarbon backbones of minimal atom count, allow one to follow cage assembly and guest-induced transformation by the naked eye. Furthermore, we propose that their peculiar electronic structure influences the system's assembly behavior.
Collapse
Affiliation(s)
- Alexandre Walther
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto Hahn Straße 6, 44227 Dortmund, Germany
| | - Irene Regeni
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto Hahn Straße 6, 44227 Dortmund, Germany
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Julian J Holstein
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto Hahn Straße 6, 44227 Dortmund, Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto Hahn Straße 6, 44227 Dortmund, Germany
| |
Collapse
|
42
|
Zhang HN, Jin GX. Controllable Topological Transformations of 8 18 Molecular Metalla-knots by Oxidation of Thiazole-Based Ligands. Angew Chem Int Ed Engl 2023; 62:e202313605. [PMID: 37783666 DOI: 10.1002/anie.202313605] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/04/2023]
Abstract
By exploiting coordination-driven self-assembly, high yields of two 818 molecular metalla-knots could be obtained using a thiazole-moiety-containing asymmetric dipyridyl ligand 2-(pyridin-4-yl)-5-(pyridin-4-ylethynyl)benzo[d]thiazole (L1 ), as confirmed using X-ray crystallographic analysis, electrospray ionization-time-of-flight/mass spectrometry (ESI-TOF/MS), and detailed liquid-state nuclear magnetic resonance (NMR) spectroscopy. To modulate the self-assembled structures, m-chloroperbenzoic acid (m-CPBA) was utilized to oxidize thiazole-based ligand L1 to N-thiazole-oxide-based ligand 2-(pyridin-4-yl)-5-(pyridin-4-ylethynyl)benzo[d]thiazole 3-oxide (L2 ), which enabled the selective construction of the corresponding tetranuclear macrocycles. Notably, two molecular metalla-knots could be topologically transformed from 818 knots to simple monocycles because the L1 alkyne bond was inert toward m-CPBA, as confirmed by liquid-state NMR spectroscopy, ESI-TOF/MS, and elemental analysis.
Collapse
Affiliation(s)
- Hai-Ning Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, 2005 Songhu Rd, 200438, Shanghai, P. R. China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, 2005 Songhu Rd, 200438, Shanghai, P. R. China
| |
Collapse
|
43
|
Phukon U, Kedia M, Shankar B, Sathiyendiran M. Rhenium-Pyrazolyl-Based Figure-Eight- and Z-Shaped Metallocycles: Self-Assembly, Solid-State Structures, Dynamic Properties in Solution, and Competitive Ligand-Induced Supramolecular Transformations into Rhenium-Pyridyl/-Benzimidazolyl/-Phosphine-Based Metallocycles/Acyclic Complexes. ACS OMEGA 2023; 8:41773-41784. [PMID: 37969972 PMCID: PMC10633831 DOI: 10.1021/acsomega.3c06371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/23/2023] [Accepted: 10/10/2023] [Indexed: 11/17/2023]
Abstract
Rhenium(I)tricarbonyl core-based heteroleptic "figure-eight"- and Z-shaped metallocycles (1a-4a) of the general formula fac-[{(CO)3Re(μ-L)Re(CO)3}2(dppz)2] were self-assembled from Re2(CO)10, H2-L (H2-L = 5,8-dihydroxy-1,4-naphthaquinone (H2-dhnq) for 1a; 1,4-dihydroxy-9,10-anthraquinone (H2-dhaq) for 2a; 6,11-dihydroxy-5,12-naphthacenedione (H2-dhnd) for 3a; 2,2'-bisbenzimidazole (H2-bbim) for 4a), and bis(4-((pyrazolyl)methyl)phenylmethane) (dppz) via one-pot coordination-driven synthetic approach. The molecular structures of 1a and 4a were unambiguously confirmed by single-crystal X-ray diffraction (SC-XRD) methods. The metallocycles in the DMSO solution exist as an acyclic dinuclear-DMSO adduct of the general formula fac-[{(CO)3Re(μ-L)Re(CO)3}(DMSO)2] (1b, L = dhnq; 2b, L = dhaq; 3b, L = dhnd; 4b, L = bbim) and dppz, which are in dynamic equilibrium. The dynamic behavior of the rhenium-pyrazolyl bond in the solution state was effectively utilized to transform metallocycles 1a-4a into pyridyl/benzimidazolyl/phosphine donor-based heteroleptic metallocycles and acyclic dinuclear complexes (4-13). These include tetranuclear rectangles fac-[{(CO)3Re(μ-L)Re(CO)3}2(4,4'-bpy)2] (4 and 11, L = dhaq for 4 and bbim for 11), dinuclear metallocycles fac-[{(CO)3Re(μ-L)Re(CO)3}(dpbim)] (5-7 and 12; L = dhnq for 5, dhaq for 6, dhnd for 7, and bbim for 12), and dinuclear acyclic complexes fac-[{(CO)3Re(μ-L)Re(CO)3}(PTA)2] (8-10 and 13; L = dhnq for 8, dhaq for 9, dhnd for 10, and bbim for 13). These transformations were achieved through component-induced supramolecular reactions while treating with competitive ligands 4,4'-bipyridine (4,4'-bpy), bis(4-((1H-benzoimidazole-1-yl)methyl)phenyl)methane (dpbim), and 1,3,5-triaza-7-phosphaadamantane (PTA). The reaction mixture in the solution was analyzed using NMR and electrospray ionization mass spectrometry (ESI-MS) analysis. Additionally, crystal structures of 4, 6, and 13, which were obtained in the mixture of the solutions, were determined, providing unequivocal evidence for the occurrence of supramolecular transformation within the system. The results reveal that the size of the chelating ligand and the pyrazolyl donor angle of the ditopic ligand play crucial roles in determining the resulting solid-state metallacyclic architecture in these synthetic combinations. The dynamic behavior of the rhenium-pyrazolyl bond in the metallocycles can be utilized to transform into other metallocycles and acyclic complexes using suitable competing ligands via ligand-induced supramolecular transformations.
Collapse
Affiliation(s)
- Upasana Phukon
- School
of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Moon Kedia
- School
of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Bhaskaran Shankar
- Department
of Chemistry, Thiagarajar College of Engineering, Madurai 625 015, India
| | | |
Collapse
|
44
|
Hema K, Grommet AB, Białek MJ, Wang J, Schneider L, Drechsler C, Yanshyna O, Diskin-Posner Y, Clever GH, Klajn R. Guest Encapsulation Alters the Thermodynamic Landscape of a Coordination Host. J Am Chem Soc 2023; 145. [PMID: 37917939 PMCID: PMC10655118 DOI: 10.1021/jacs.3c08666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023]
Abstract
The architecture of self-assembled host molecules can profoundly affect the properties of the encapsulated guests. For example, a rigid cage with small windows can efficiently protect its contents from the environment; in contrast, tube-shaped, flexible hosts with large openings and an easily accessible cavity are ideally suited for catalysis. Here, we report a "Janus" nature of a Pd6L4 coordination host previously reported to exist exclusively as a tube isomer (T). We show that upon encapsulating various tetrahedrally shaped guests, T can reconfigure into a cage-shaped host (C) in quantitative yield. Extracting the guest affords empty C, which is metastable and spontaneously relaxes to T, and the T⇄C interconversion can be repeated for multiple cycles. Reversible toggling between two vastly different isomers paves the way toward controlling functional properties of coordination hosts "on demand".
Collapse
Affiliation(s)
- Kuntrapakam Hema
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Angela B. Grommet
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Michał J. Białek
- Department
of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50383 Wrocław, Poland
| | - Jinhua Wang
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Laura Schneider
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn Straße 6, 44227 Dortmund, Germany
| | - Christoph Drechsler
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn Straße 6, 44227 Dortmund, Germany
| | - Oksana Yanshyna
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Yael Diskin-Posner
- Chemical
Research Support, Weizmann Institute of
Science, Rehovot 76100, Israel
| | - Guido H. Clever
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn Straße 6, 44227 Dortmund, Germany
| | - Rafal Klajn
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
- Institute
of Science and Technology Austria, Am Campus 1, A-3400 Klosterneuburg, Austria
| |
Collapse
|
45
|
Bai Q, Guan YM, Wu T, Liu Y, Zhai Z, Long Q, Jiang Z, Su P, Xie TZ, Wang P, Zhang Z. Anion-Regulated Hierarchical Self-Assembly and Chiral Induction of Metallo-Tetrahedra. Angew Chem Int Ed Engl 2023; 62:e202309027. [PMID: 37552154 DOI: 10.1002/anie.202309027] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/09/2023]
Abstract
The precise control over hierarchical self-assembly of superstructures relying on the elaboration of multiple noncovalent interactions between basic building blocks is both elusive and highly desirable. We herein report a terpyridine-based metallo-cage T with a tetrahedral motif and utilized it as an efficient building block for the controlled hierarchical self-assembly of superstructures in response to different halide ions. Initially, the hierarchical superstructure of metallo-cage T adopted a hexagonal close-packed structure. By adding Cl- /Br- or I- , drastically different hierarchical superstructures with highly-tight hexagonal packing or graphite-like packing arrangements, respectively, have been achieved. These unusual halide-ion-triggered hierarchical structural changes resulted in quite distinct intermolecular channels, which provided new insights into the mechanism of three-dimensional supramolecular aggregation and crystal growth based on macromolecular construction. In addition, the chiral induction of the metallo-cage T can be realized with the addition of chiral anions, which stereoselectively generated either PPPP- or MMMM-type enantiomers.
Collapse
Affiliation(s)
- Qixia Bai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yu-Ming Guan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Tun Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Ying Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Zirui Zhai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Qingwu Long
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan, 528333, China
| | - Zhiyuan Jiang
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Peiyang Su
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Ting-Zheng Xie
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Pingshan Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Zhe Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
46
|
Morris JJ, Nevin A, Cornelio J, Easun TL. Characterization of an unanticipated indium-sulfur metallocycle complex. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230060. [PMID: 37736529 PMCID: PMC10509580 DOI: 10.1098/rsos.230060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/07/2023] [Indexed: 09/23/2023]
Abstract
We have produced a novel indium-based metallocycle complex (In-MeSH), which we initially observed as an unanticipated side-product in metal-organic framework (MOF) syntheses. The serendipitously synthesized metallocycle forms via the acid-catalysed decomposition of dimethyl sulfoxide (DMSO) during solvothermal reactions in the presence of indium nitrate, dimethylformamide and nitric acid. A search through the Cambridge Structural Database revealed isostructural zinc, ruthenium and palladium metallocycle complexes formed by other routes. The ruthenium analogue is catalytically active and the In-MeSH structure similarly displays accessible open metal sites around the outside of the ring. Furthermore, this study also gives access to the relatively uncommon oxidation state of In(II), the targeted synthesis of which can be challenging. In(II) complexes have been reported as having potentially important applications in areas such as catalytic water splitting.
Collapse
Affiliation(s)
- Joshua J. Morris
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | - Adam Nevin
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | - Joel Cornelio
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
- School of Chemistry, University of Birmingham, Haworth Building, Edgbaston, Birmingham B15 2TT, UK
| | - Timothy L. Easun
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
- School of Chemistry, University of Birmingham, Haworth Building, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
47
|
Yan M, Wang Y, Chen J, Zhou J. Potential of nonporous adaptive crystals for hydrocarbon separation. Chem Soc Rev 2023; 52:6075-6119. [PMID: 37539712 DOI: 10.1039/d2cs00856d] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Hydrocarbon separation is an important process in the field of petrochemical industry, which provides a variety of raw materials for industrial production and a strong support for the development of national economy. However, traditional separation processes involve huge energy consumption. Adsorptive separation based on nonporous adaptive crystal (NAC) materials is considered as an attractive green alternative to traditional energy-intensive separation technologies due to its advantages of low energy consumption, high chemical and thermal stability, excellent selective adsorption and separation performance, and outstanding recyclability. Considering the exceptional potential of NAC materials for hydrocarbon separation, this review comprehensively summarizes recent advances in various supramolecular host-based NACs. Moreover, the current challenges and future directions are illustrated in detail. It is expected that this review will provide useful and timely references for researchers in this area. Based on a large number of state-of-the-art studies, the review will definitely advance the development of NAC materials for hydrocarbon separation and stimulate more interesting studies in related fields.
Collapse
Affiliation(s)
- Miaomiao Yan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Yuhao Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Jingyu Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Jiong Zhou
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| |
Collapse
|
48
|
Su P, Zhang W, Guo C, Liu H, Xiong C, Tang R, He C, Chen Z, Yu X, Wang H, Li X. Constructing Ultrastable Metallo-Cages via In Situ Deprotonation/Oxidation of Dynamic Supramolecular Assemblies. J Am Chem Soc 2023; 145:18607-18622. [PMID: 37566725 DOI: 10.1021/jacs.3c06211] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Coordination-driven self-assembly enables the spontaneous construction of metallo-supramolecules with high precision, facilitated by dynamic and reversible metal-ligand interactions. The dynamic nature of coordination, however, results in structural lability in many metallo-supramolecular assembly systems. Consequently, it remains a formidable challenge to achieve self-assembly reversibility and structural stability simultaneously in metallo-supramolecular systems. To tackle this issue, herein, we incorporate an acid-/base-responsive tridentate ligand into multitopic building blocks to precisely construct a series of metallo-supramolecular cages through coordination-driven self-assembly. These dynamic cagelike assemblies can be transformed to their static states through mild in situ deprotonation/oxidation, leading to ultrastable skeletons that can withstand high temperatures, metal ion chelators, and strong acid/base conditions. This in situ transformation provides a reliable and powerful approach to manipulate the kinetic features and stability of metallo-supramolecules and allows for modulation of encapsulation and release behaviors of metallo-cages when utilizing nanoscale quantum dots (QDs) as guest molecules.
Collapse
Affiliation(s)
- Pingru Su
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong 518060, People's Republic of China
| | - Wenjing Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Hong Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Chuanhong Xiong
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Runxu Tang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Chuanxin He
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong 518060, People's Republic of China
| | - Zhi Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Xiujun Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
- Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong 518055, People's Republic of China
| |
Collapse
|
49
|
Chen Q, Li Z, Lei Y, Chen Y, Tang H, Wu G, Sun B, Wei Y, Jiao T, Zhang S, Huang F, Wang L, Li H. The sharp structural switch of covalent cages mediated by subtle variation of directing groups. Nat Commun 2023; 14:4627. [PMID: 37532710 PMCID: PMC10397198 DOI: 10.1038/s41467-023-40255-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023] Open
Abstract
It is considered a more formidable task to precisely control the self-assembled products containing purely covalent components, due to a lack of intrinsic templates such as transition metals to suppress entropy loss during self-assembly. Here, we attempt to tackle this challenge by using directing groups. That is, the self-assembly products of condensing a 1:2 mixture of a tetraformyl and a biamine can be precisely controlled by slightly changing the substituent groups in the aldehyde precursor. This is because different directing groups provide hydrogen bonds with different modes to the adjacent imine units, so that the building blocks are endowed with totally different conformations. Each conformation favors the formation of a specific product that is thus produced selectively, including chiral and achiral cages. These results of using a specific directing group to favor a target product pave the way for accomplishing atom economy in synthesizing purely covalent molecules without relying on toxic transition metal templates.
Collapse
Affiliation(s)
- Qiong Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Zhaoyong Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
- Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310058, PR China
| | - Ye Lei
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Yixin Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Hua Tang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Guangcheng Wu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Bin Sun
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, PR China
| | - Yuxi Wei
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Tianyu Jiao
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Songna Zhang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, PR China.
| | - Feihe Huang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, PR China.
| | - Linjun Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China.
- Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310058, PR China.
| | - Hao Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, PR China.
| |
Collapse
|
50
|
Begato F, Licini G, Zonta C. Programmed guest confinement via hierarchical cage to cage transformations. Chem Sci 2023; 14:8147-8151. [PMID: 37538831 PMCID: PMC10395264 DOI: 10.1039/d3sc01368e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/11/2023] [Indexed: 08/05/2023] Open
Abstract
Taking inspiration from Nature, where (bio)molecular geometry variations are exploited to tune a large variety of functions, supramolecular chemistry has continuously developed novel systems in which, as a consequence of a specific stimulus, structural changes occur. Among the different architectures, supramolecular cages have been continuously investigated for their capability to act as functional hosts where guests can be released in a controlled fashion. In this paper, a novel methodology based on the use of phenanthrenequinone is applied to selectively change the binding properties of a tris(2-pyridylmethyl)amine TPMA-based cage. In particular, subcomponent substitution has been used to change structural cage features thus controlling the inclusion ratio of competing guests differing in size or chirality.
Collapse
Affiliation(s)
- Federico Begato
- Department of Chemical Sciences, University of Padova via Marzolo 1 35131 Padova Italy
| | - Giulia Licini
- Department of Chemical Sciences, University of Padova via Marzolo 1 35131 Padova Italy
| | - Cristiano Zonta
- Department of Chemical Sciences, University of Padova via Marzolo 1 35131 Padova Italy
| |
Collapse
|