1
|
Yin M, Wang L, Liu Y, Chen J, Gao H, Xu J, Guo Y, Cui X, Yu G, Cai C. GSH-Responsive GalNAc-Conjugated Glycopolymer for Targeted Survivin siRNA Delivery in Hepatocellular Carcinoma Therapy. ACS Macro Lett 2025; 14:589-596. [PMID: 40269699 DOI: 10.1021/acsmacrolett.5c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Gene interference therapy has made significant progress in the treatment of various diseases by targeting specific pathogenic genes and down-regulating the production of harmful proteins. This approach enables the precise modulation of gene expression, offering potential therapeutic benefits for conditions driven by genetic mutations or abnormal protein accumulation. Survivin, an apoptosis-inhibiting protein, plays a critical role in regulating tumor cell proliferation and preventing programmed cell death. Its overexpression in liver cancer cells is strongly associated with poor prognosis and accelerated tumor progression. RNA interference (RNAi) therapy can effectively suppress the expression of Survivin in liver cancer, inhibiting tumor cell proliferation and promoting apoptosis. In this study, four distinct GalNAc-conjugated glycopolymer siRNA delivery systems were developed. By leveraging the efficient liver-targeting capability of the GalNAc moiety, Survivin-siRNA was specifically delivered to liver cancer cells through either covalent coupling or electrostatic adsorption. In vitro experiments demonstrated the excellent gene silencing effect of these siRNA complexes, highlighting their potential as a promising therapeutic strategy for liver cancer.
Collapse
Affiliation(s)
- Mengfei Yin
- Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Lihao Wang
- Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Yang Liu
- Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Jingjing Chen
- Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Hongming Gao
- Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Jinlong Xu
- Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Yuxin Guo
- Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Xinying Cui
- Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Guangli Yu
- Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Chao Cai
- Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
2
|
Vélez JAC, Gonçalves RO, Oliveira PHR, Forster R, Demel SI, Schpector JZ, Opatz T, Paixão MW. Visible Light-Mediated Diastereoselective Synthesis of Novel Glycopeptide Mimetics. Chemistry 2025; 31:e202404457. [PMID: 40016157 DOI: 10.1002/chem.202404457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/01/2025]
Abstract
Herein, we introduce a mild and operationally simple visible-light photochemistry protocol for the synthesis of novel glycopeptide mimetics. This method capitalizes on the reaction between 1,4-dihydropyridine (DHP) containing amino acids and peptides with glycosyl nitrones, showing exceptional stereoselectivity and robust performance across a diverse array of substrates, encompassing both modified glycosides and intricate peptide structures. Furthermore, we underscore the versatility of the resultant compounds through their seamless integration and utility in bioconjugation strategies.
Collapse
Affiliation(s)
- Jeimy A C Vélez
- Laboratory for Sustainable Organic Synthesis and Catalysis - Chemistry Department, Federal University of São Carlos - UFSCar, São Carlos, São Paulo, 13565-905, Brazil
| | - Renan O Gonçalves
- Laboratory for Sustainable Organic Synthesis and Catalysis - Chemistry Department, Federal University of São Carlos - UFSCar, São Carlos, São Paulo, 13565-905, Brazil
| | - Pedro H R Oliveira
- Laboratory for Sustainable Organic Synthesis and Catalysis - Chemistry Department, Federal University of São Carlos - UFSCar, São Carlos, São Paulo, 13565-905, Brazil
| | - Robert Forster
- Department of Chemistry, Johannes Gutenberg-University Mainz, 55128, Mainz, Germany
| | - Stefanie I Demel
- Department of Chemistry, Johannes Gutenberg-University Mainz, 55128, Mainz, Germany
| | - Julio Z Schpector
- Laboratory for Sustainable Organic Synthesis and Catalysis - Chemistry Department, Federal University of São Carlos - UFSCar, São Carlos, São Paulo, 13565-905, Brazil
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg-University Mainz, 55128, Mainz, Germany
| | - Márcio W Paixão
- Laboratory for Sustainable Organic Synthesis and Catalysis - Chemistry Department, Federal University of São Carlos - UFSCar, São Carlos, São Paulo, 13565-905, Brazil
| |
Collapse
|
3
|
Tawara MH, Correa J, Leire E, Delgado Gonzalez B, Parcero-Bouzas S, Liko F, Fernandez-Megia E. Bioactive Polymeric Scaffolds: Multivalent Functionalization by Thermal Azide-Alkyne Cycloaddition with Alkynyl Dicarbamates. Biomacromolecules 2025; 26:2553-2564. [PMID: 40138543 PMCID: PMC12124718 DOI: 10.1021/acs.biomac.5c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/26/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Multivalency enables interactions with higher affinities and specificities than monovalent interactions. The strategy exploited by nature to modulate biorecognition has inspired the design of multivalent conjugates with therapeutic properties. However, chemical functionalization often requires coupling agents, additives, or metal catalysts that complicate isolation and purification. Herein, azide-alkyne cycloaddition (AAC) with alkynyl dicarbamates (Alk-R) is presented as a flexible, reliable, atom-economical, and user-friendly strategy for the multivalent functionalization of polymeric scaffolds. Alk-R functionalized with biologically relevant ligands have been prepared and used for the multivalent AAC functionalization of azide-bearing dendrimers and block copolymers. The resulting polymers with double multivalency reveal a platform for the development of bioinspired functional systems with promising applications in drug delivery: block copolymer micelles and multifunctional nanocarriers with synergistically integrated probes-ligands-drugs. The extension of this strategy to other ligands and scaffolds is expected to open up a wide range of therapeutic and diagnostic opportunities.
Collapse
Affiliation(s)
- Maun H. Tawara
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CiQUS),
Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782Santiago de Compostela, Spain
| | - Juan Correa
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CiQUS),
Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782Santiago de Compostela, Spain
| | - Emma Leire
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CiQUS),
Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782Santiago de Compostela, Spain
| | - Bruno Delgado Gonzalez
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CiQUS),
Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782Santiago de Compostela, Spain
| | - Samuel Parcero-Bouzas
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CiQUS),
Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782Santiago de Compostela, Spain
| | - Flonja Liko
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CiQUS),
Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782Santiago de Compostela, Spain
| | - Eduardo Fernandez-Megia
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CiQUS),
Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782Santiago de Compostela, Spain
| |
Collapse
|
4
|
Kim S, Zhang J, Cheng T, Li Q, Bolton EE. Glycoscience data content in the NCBI Glycans and PubChem. Anal Bioanal Chem 2025; 417:865-878. [PMID: 39134728 PMCID: PMC11782412 DOI: 10.1007/s00216-024-05459-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 01/31/2025]
Abstract
Studying glycans and their functions in the body aids in the understanding of disease mechanisms and developing new treatments. This necessitates resources that provide comprehensive glycan data integrated with relevant information from other scientific fields such as genomics, genetics, proteomics, metabolomics, and chemistry. The present paper describes two resources at the U.S. National Center for Biotechnology Information (NCBI), the NCBI Glycans and PubChem, which provide glycan-related information useful for the glycoscience research community. The NCBI Glycans ( https://www.ncbi.nlm.nih.gov/glycans/ ) is a dedicated website for glycobiology data content at NCBI and provides quick access to glycan-related information scattered across multiple NCBI databases as well as other information resources external to NCBI. Importantly, the NCBI Glycans hosts the official web page for the symbol nomenclature for glycans (SNFG), which is the standard graphical representation of glycan structures recommended for scientific publication. On the other hand, PubChem ( https://pubchem.ncbi.nlm.nih.gov ) is a research-focused, large-scale public chemical database, containing a substantial number of glycan-containing records and is integrated with important glycoscience resources like GlyTouCan, GlyCosmos, and GlyGen. PubChem organizes glycan-related information within multiple data collections (i.e., Substance, Compound, Protein, Gene, Pathway, and Taxonomy) and provides various tools and services that allow users to access them both interactively through a web browser and programmatically through a REST-ful interface, including PUG-View. The NCBI Glycans and PubChem highlight glycan-related data and improve their accessibility, helping scientists exploit these data in their research.
Collapse
Affiliation(s)
- Sunghwan Kim
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Jian Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Tiejun Cheng
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Qingliang Li
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Evan E Bolton
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| |
Collapse
|
5
|
Tomabechi Y, Oda Y, Yamamoto K, Yamanoi T. Transglycosylation behavior of Mucor hiemalis endo-β-N-acetylglucosaminidase to β-cyclodextrin derivatives with multivalent glucose moieties for synthesizing cyclodextrin-based oligosaccharide clusters. Carbohydr Res 2025; 548:109352. [PMID: 39705743 DOI: 10.1016/j.carres.2024.109352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 12/22/2024]
Abstract
We investigated the transglycosylation reaction of two types of oligosaccharide acceptors, i.e., β-cyclodextrin (CD) derivatives 1 and 2 conjugated with multiple glucose (Glc) units, catalyzed by endo-β-N-acetyl-glucosaminidase from Mucor hiemalis (Endo-M) using the oligosaccharide donor sialoglycopeptide (SGP). The acceptor specificity of the enzyme transglycosylation of 1 and 2 having seven Glc moieties within small nanoscale spatial regions on the β-CDs was investigated on the basis of the effect of the molar ratios of SGP to acceptors 1 or 2 with different spatial configurations on the transglycosylation behavior. The formation of the corresponding CD-based oligosaccharide clusters from Endo-M was also evaluated.
Collapse
Affiliation(s)
- Yusuke Tomabechi
- Department of Applied Chemistry, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Yoshiki Oda
- Technology Joint Management Office, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan.
| | - Kenji Yamamoto
- Wakayama University, Center for Innovative and Joint Research, 930, Sakaedani, Wakayama, 640-8510, Japan
| | - Takashi Yamanoi
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan.
| |
Collapse
|
6
|
Zhang G, Huang X, Gong Y, Ding Y, Wang H, Zhang H, Wu L, Su R, Yang C, Zhu Z. Fingerprint Profiling of Glycans on Extracellular Vesicles via Lectin-Induced Aggregation Strategy for Precise Cancer Diagnostics. J Am Chem Soc 2024; 146:29053-29063. [PMID: 39235449 DOI: 10.1021/jacs.4c10390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Extracellular vesicles (EVs) harbor abundant glycans that mediate various functions, such as intercellular communication and disease advancement, which play significant roles in disease progression. However, the presence of EV heterogeneity in body fluids and the complex nature of the glycan structures have posed challenges for the detection of EV glycans. In this study, we provide a streamlined method integrated, membrane-specific separation with lectin-induced aggregation strategy (MESSAGE), for multiplexed profiling of EV glycans. By leveraging a rationally designed lectin-induced aggregation strategy, the expression of EV glycans is converted to size-based signals. With the assistance learning machine algorithms, the MESSAGE strategy with high sensitivity, specificity, and simplicity can be used for early cancer diagnosis and classification, as well as monitoring cancer metastasis via 20 μL plasma sample within 2 h. Furthermore, our platform holds promise for advancing the field of EV-based liquid biopsy for clinical applications, opening new possibilities for the profiling of EV glycan signatures in various disease states.
Collapse
Affiliation(s)
- Guihua Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaodan Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yanli Gong
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yue Ding
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Hua Wang
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Huimin Zhang
- Innovation Laboratory for Sciences, Technologies of Energy Materials of Fujian Province, Xiamen 361000, China
| | - Lingling Wu
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Rui Su
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Zhi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
7
|
Leslie K, Berry SS, Miller GJ, Mahon CS. Sugar-Coated: Can Multivalent Glycoconjugates Improve upon Nature's Design? J Am Chem Soc 2024; 146:27215-27232. [PMID: 39340450 PMCID: PMC11467903 DOI: 10.1021/jacs.4c08818] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Multivalent interactions between receptors and glycans play an important role in many different biological processes, including pathogen infection, self-recognition, and the immune response. The growth in the number of tools and techniques toward the assembly of multivalent glycoconjugates means it is possible to create synthetic systems that more and more closely resemble the diversity and complexity we observe in nature. In this Perspective we present the background to the recognition and binding enabled by multivalent interactions in nature, and discuss the strategies used to construct synthetic glycoconjugate equivalents. We highlight key discoveries and the current state of the art in their applications to glycan arrays, vaccines, and other therapeutic and diagnostic tools, with an outlook toward some areas we believe are of most interest for future work in this area.
Collapse
Affiliation(s)
- Kathryn
G. Leslie
- Department
of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Sian S. Berry
- Centre
for Glycoscience and School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Gavin J. Miller
- Centre
for Glycoscience and School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Clare S. Mahon
- Department
of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
8
|
Yamada K, Mukaimine A, Nakamura A, Kusakari Y, Pradipta AR, Chang TC, Tanaka K. Chemistry-driven translocation of glycosylated proteins in mice. Nat Commun 2024; 15:7409. [PMID: 39358337 PMCID: PMC11446924 DOI: 10.1038/s41467-024-51342-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 08/06/2024] [Indexed: 10/04/2024] Open
Abstract
Cell surface glycans form various "glycan patterns" consisting of different types of glycan molecules, thus enabling strong and selective cell-to-cell recognition. We previously conjugated different N-glycans to human serum albumin to construct glycoalbumins mimicking natural glycan patterns that could selectively recognize target cells or control excretion pathways in mice. Here, we develop an innovative glycoalbumin capable of undergoing transformation and remodeling of its glycan pattern in vivo, which induces its translocation from the initial target to a second one. Replacing α(2,3)-sialylated N-glycans on glycoalbumin with galactosylated glycans induces the translocation of the glycoalbumin from blood or tumors to the intestine in mice. Such "in vivo glycan pattern remodeling" strategy can be used as a drug delivery system to promote excretion of a drug or medical radionuclide from the tumor after treatment, thereby preventing prolonged exposure leading to adverse effects. Alternatively, this study provides a potential strategy for using a single glycoalbumin for the simultaneous treatment of multiple diseases in a patient.
Collapse
Affiliation(s)
- Kenshiro Yamada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Akari Mukaimine
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Akiko Nakamura
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Yuriko Kusakari
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Ambara R Pradipta
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Tsung-Che Chang
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan.
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| | - Katsunori Tanaka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan.
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| |
Collapse
|
9
|
Fathi Kisomi M, Yadegar A, Shekari T, Amin M, Llopis-Lorente A, Liu C, Haririan I, Aghdaei HA, Shokrgozar MA, Zali MR, Rad-Malekshahi M, Miri AH, Hamblin MR, Wacker MG. Unveiling the potential role of micro/nano biomaterials in the treatment of Helicobacter pylori infection. Expert Rev Anti Infect Ther 2024; 22:613-630. [PMID: 39210553 DOI: 10.1080/14787210.2024.2391910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Helicobacter pylori causes stubborn infections and leads to a variety of stomach disorders, such as peptic ulcer, chronic atrophic gastritis, and gastric cancer. Although antibiotic-based approaches have been widely used against H. pylori, some challenges such as antibiotic resistance are increasing in severity. Therefore, simpler but more effective strategies are needed. AREAS COVERED In this review, basic information on functionalized and non-functionalized micro/nano biomaterials and routes of administration for H. pylori inhibition are provided in an easy-to-understand format. Afterward, in vitro and in vivo studies of some promising bio-platforms including metal-based biomaterials, biopolymers, small-molecule saccharides, and vaccines for H. pylori inhibition are discussed in a holistic manner. EXPERT OPINION Functionalized or non-functionalized micro/nano biomaterials loaded with anti-H. pylori agents can show efficient bactericidal activity with no/slight negative influence on the host gastrointestinal microbiota. However, this claim needs to be substantiated with hard data such as assessment of the biopharmaceutical parameters of anti-H. pylori systems and the measurement of diversity/abundance of bacterial genera in the host gastric/gut microbiota before and after H. pylori eradication.
Collapse
Affiliation(s)
- Misagh Fathi Kisomi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tara Shekari
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, and the Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Antoni Llopis-Lorente
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Chenguang Liu
- College of Marine Life Science, Ocean University of China, Qingdao, P.R. China
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Miri
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Matthias G Wacker
- Department of Pharmacy, Faculty of Science, National University of Singapore, 4 Science Drive 2, Singapore 117545, Singapore
| |
Collapse
|
10
|
Tanaka T. Recent Advances in Polymers Bearing Activated Esters for the Synthesis of Glycopolymers by Postpolymerization Modification. Polymers (Basel) 2024; 16:1100. [PMID: 38675019 PMCID: PMC11053895 DOI: 10.3390/polym16081100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Glycopolymers are functional polymers with saccharide moieties on their side chains and are attractive candidates for biomaterials. Postpolymerization modification can be employed for the synthesis of glycopolymers. Activated esters are useful in various fields, including polymer chemistry and biochemistry, because of their high reactivity and ease of reaction. In particular, the formation of amide bonds caused by the reaction of activated esters with amino groups is of high synthetic chemical value owing to its high selectivity. It has been employed in the synthesis of various functional polymers, including glycopolymers. This paper reviews the recent advances in polymers bearing activated esters for the synthesis of glycopolymers by postpolymerization modification. The development of polymers bearing hydrophobic and hydrophilic activated esters is described. Although water-soluble activated esters are generally unstable and hydrolyzed in water, novel polymer backbones bearing water-soluble activated esters are stable and useful for postpolymerization modification for synthesizing glycopolymers in water. Dual postpolymerization modification can be employed to modify polymer side chains using two different molecules. Thiolactone and glycine propargyl esters on the polymer backbone are described as activated esters for dual postpolymerization modification.
Collapse
Affiliation(s)
- Tomonari Tanaka
- Department of Biobased Materials Science, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
11
|
Shi Y, Zhen X, Zhang Y, Li Y, Koo S, Saiding Q, Kong N, Liu G, Chen W, Tao W. Chemically Modified Platforms for Better RNA Therapeutics. Chem Rev 2024; 124:929-1033. [PMID: 38284616 DOI: 10.1021/acs.chemrev.3c00611] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
RNA-based therapies have catalyzed a revolutionary transformation in the biomedical landscape, offering unprecedented potential in disease prevention and treatment. However, despite their remarkable achievements, these therapies encounter substantial challenges including low stability, susceptibility to degradation by nucleases, and a prominent negative charge, thereby hindering further development. Chemically modified platforms have emerged as a strategic innovation, focusing on precise alterations either on the RNA moieties or their associated delivery vectors. This comprehensive review delves into these platforms, underscoring their significance in augmenting the performance and translational prospects of RNA-based therapeutics. It encompasses an in-depth analysis of various chemically modified delivery platforms that have been instrumental in propelling RNA therapeutics toward clinical utility. Moreover, the review scrutinizes the rationale behind diverse chemical modification techniques aiming at optimizing the therapeutic efficacy of RNA molecules, thereby facilitating robust disease management. Recent empirical studies corroborating the efficacy enhancement of RNA therapeutics through chemical modifications are highlighted. Conclusively, we offer profound insights into the transformative impact of chemical modifications on RNA drugs and delineates prospective trajectories for their future development and clinical integration.
Collapse
Affiliation(s)
- Yesi Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xueyan Zhen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yiming Zhang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yongjiang Li
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Seyoung Koo
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Qimanguli Saiding
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 310058, China
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Wei Chen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
12
|
Wang B, Liu S, Li H, Dong W, Liu H, Zhang J, Tian C, Dong S. Facile Preparation of Carbohydrate-Containing Adjuvants Based on Self-Assembling Glycopeptide Conjugates. Angew Chem Int Ed Engl 2024; 63:e202309140. [PMID: 37950683 DOI: 10.1002/anie.202309140] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/13/2023]
Abstract
Carbohydrates are intriguing biomolecules possessing diverse biological activities, including immune stimulating capability. However, their biomedical applications have been limited by their complex and heterogeneous structures. In this study, we have utilized a self-assembling glycopeptide conjugate (GPC) system to produce uniform nanoribbons appending homogeneous oligosaccharides with multivalency. This system successfully translates the nontrivial structural differences of oligomannoses into varied binding affinities to C-type lectin receptors (CLRs). We have shown that GPCs could promote the CLR-mediated endocytosis of ovalbumin (OVA) antigen, and two mannotriose-modified peptides F3m2 and F3m5 exhibit potent activity in inducing antigen-presenting cell maturation, as indicated by increased CD86 and MHCII expression. In vivo studies demonstrated that GPCs, combined with OVA antigen, significantly enhanced OVA-specific antibody production. Specifically, F3m2 and F3m5 exhibited the highest immunostimulatory effects, eliciting both Th1- and Th2-biased immune responses and promoting differentiation of CD4+ and CD8+ T cells. These findings highlight the potential of GPCs as vaccine adjuvants, and showcase their versatility in exploiting the biological functions of carbohydrates.
Collapse
Affiliation(s)
- Biao Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Sijin Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Haoting Li
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Weidong Dong
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Haiyun Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Chao Tian
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Suwei Dong
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
13
|
Chand Daskhan G, Ton Tran HT, Cairo CW. Convergent synthesis of a hexadecavalent heterobifunctional ABO blood group glycoconjugate. Carbohydr Res 2024; 535:108988. [PMID: 38048747 DOI: 10.1016/j.carres.2023.108988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
Naturally occurring glycans are often found in a multivalent presentation. Cell surface receptors that recognize these displays may form clusters, which can lead to signalling or endocytosis. One of the challenges in generating synthetic displays of multivalent carbohydrates is providing high valency as well as access to heterofunctional conjugates to allow attachment of multiple antigens or payloads. We designed a strategy based on a set of bifunctional linkers to generate a heterobifunctional multivalent display of two carbohydrate antigens to bind BCR and CD22 with four and twelve antigen copies, respectively. We confirmed that the conjugates were able to engage both CD22 and BCR on cells by observing receptor clustering. The strategy is modular and would allow for alternative carbohydrate antigens to be attached bearing amine and alkyne groups and should be of interest for the development of immunomodulators and vaccines.
Collapse
Affiliation(s)
- Gour Chand Daskhan
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Hanh-Thuc Ton Tran
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Christopher W Cairo
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada.
| |
Collapse
|
14
|
Kamankesh M, Yadegar A, Llopis-Lorente A, Liu C, Haririan I, Aghdaei HA, Shokrgozar MA, Zali MR, Miri AH, Rad-Malekshahi M, Hamblin MR, Wacker MG. Future Nanotechnology-Based Strategies for Improved Management of Helicobacter pylori Infection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302532. [PMID: 37697021 DOI: 10.1002/smll.202302532] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/25/2023] [Indexed: 09/13/2023]
Abstract
Helicobacter pylori (H. pylori) is a recalcitrant pathogen, which can cause gastric disorders. During the past decades, polypharmacy-based regimens, such as triple and quadruple therapies have been widely used against H. pylori. However, polyantibiotic therapies can disturb the host gastric/gut microbiota and lead to antibiotic resistance. Thus, simpler but more effective approaches should be developed. Here, some recent advances in nanostructured drug delivery systems to treat H. pylori infection are summarized. Also, for the first time, a drug release paradigm is proposed to prevent H. pylori antibiotic resistance along with an IVIVC model in order to connect the drug release profile with a reduction in bacterial colony counts. Then, local delivery systems including mucoadhesive, mucopenetrating, and cytoadhesive nanobiomaterials are discussed in the battle against H. pylori infection. Afterward, engineered delivery platforms including polymer-coated nanoemulsions and polymer-coated nanoliposomes are poposed. These bioinspired platforms can contain an antimicrobial agent enclosed within smart multifunctional nanoformulations. These bioplatforms can prevent the development of antibiotic resistance, as well as specifically killing H. pylori with no or only slight negative effects on the host gastrointestinal microbiota. Finally, the essential checkpoints that should be passed to confirm the potential effectiveness of anti-H. pylori nanosystems are discussed.
Collapse
Affiliation(s)
- Mojtaba Kamankesh
- Polymer Chemistry Department, School of Science, University of Tehran, PO Box 14155-6455, Tehran, 14144-6455, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985717411, Iran
| | - Antoni Llopis-Lorente
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Insituto de Salud Carlos III, Valencia, 46022, Spain
| | - Chenguang Liu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985717411, Iran
| | | | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985717411, Iran
| | - Amir Hossein Miri
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Matthias G Wacker
- Department of Pharmacy, Faculty of Science, National University of Singapore, 4 Science Drive 2, Singapore, 117545, Singapore
| |
Collapse
|
15
|
Kim Y, Li H, Choi J, Boo J, Jo H, Hyun JY, Shin I. Glycosidase-targeting small molecules for biological and therapeutic applications. Chem Soc Rev 2023; 52:7036-7070. [PMID: 37671645 DOI: 10.1039/d3cs00032j] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Glycosidases are ubiquitous enzymes that catalyze the hydrolysis of glycosidic linkages in oligosaccharides and glycoconjugates. These enzymes play a vital role in a wide variety of biological events, such as digestion of nutritional carbohydrates, lysosomal catabolism of glycoconjugates, and posttranslational modifications of glycoproteins. Abnormal glycosidase activities are associated with a variety of diseases, particularly cancer and lysosomal storage disorders. Owing to the physiological and pathological significance of glycosidases, the development of small molecules that target these enzymes is an active area in glycoscience and medicinal chemistry. Research efforts carried out thus far have led to the discovery of numerous glycosidase-targeting small molecules that have been utilized to elucidate biological processes as well as to develop effective chemotherapeutic agents. In this review, we describe the results of research studies reported since 2018, giving particular emphasis to the use of fluorescent probes for detection and imaging of glycosidases, activity-based probes for covalent labelling of these enzymes, glycosidase inhibitors, and glycosidase-activatable prodrugs.
Collapse
Affiliation(s)
- Yujun Kim
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Hui Li
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Joohee Choi
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Jihyeon Boo
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Hyemi Jo
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Injae Shin
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| |
Collapse
|
16
|
Ricardo MG, Seeberger PH. Merging Solid-Phase Peptide Synthesis and Automated Glycan Assembly to Prepare Lipid-Peptide-Glycan Chimeras. Chemistry 2023; 29:e202301678. [PMID: 37358020 DOI: 10.1002/chem.202301678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 06/27/2023]
Abstract
Biomaterials with improved biological features can be obtained by conjugating glycans to nanostructured peptides. Creating peptide-glycan chimeras requires superb chemoselectivity. We expedite access to such chimeras by merging peptide and glycan solid-phase syntheses employing a bifunctional monosaccharide. The concept was explored in the context of the on-resin generation of a model α(1→6)tetramannoside linked to peptides, lipids, steroids, and adamantane. Chimeras containing a β(1→6)tetraglucoside and self-assembling peptides such as FF, FFKLVFF, and the amphiphile palmitoyl-VVVAAAKKK were prepared in a fully automated manner. The robust synthetic protocol requires a single purification step to obtain overall yields of about 20 %. The β(1→6)tetraglucoside FFKLVFF chimera produces micelles rather than nanofibers formed by the peptide alone as judged by microscopy and circular dichroism. The peptide amphiphile-glycan chimera forms a disperse fiber network, creating opportunities for new glycan-based nanomaterials.
Collapse
Affiliation(s)
- Manuel G Ricardo
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universitaet Berlin, Arnimallee 22, 14195, Berlin, Germany
| |
Collapse
|
17
|
Li XL, Li Y, Xiao S, Li Q, Han C, Liu D, Cui T, Rao X, Todoroki K, Yang G, Min JZ. Stable isotope labeling differential glycans discovery in the serum of acute myocardial infarction by ultrahigh-performance liquid chromatography-quadrupole-Orbitrap high resolution mass spectrometry. Anal Chim Acta 2023; 1264:341269. [PMID: 37230719 DOI: 10.1016/j.aca.2023.341269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/23/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023]
Abstract
Acute myocardial infarction (AMI) poses a grave threat to human life. However, most clinical biomarkers have limitations of low sensitivity and specificity. Therefore, screening novel glycan biomarkers with high sensitivity and specificity is crucial for the prevention and treatment of AMI. The novel method of ultrahigh-performance liquid chromatography coupled to quadrupole-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) with d0/d5-BOTC probe labeling for relative quantification of glycans based on Pronase E digestion was established to screen novel glycan biomarkers in the serum of 34 AMI patients relative to healthy volunteers. The monosaccharide model D-glucosamine was used to investigate the effectiveness of the derivatization; the limit of detection (S/N = 3) was 10 amol. The accuracy was verified based on the consistency of different theoretical molar ratios (d0/d5 = 1:2, 2:1) and intensity ratios following digestion of glycoprotein ribonuclease B. Expressions of H4N4F3SA, H4N6F2, H4N6SA, H4N6F3 and H5N4FSA in the serum were significantly different (p < 0.0005) between AMI patients and healthy volunteers. The area under the receiver operating characteristic curve (AUC) for H4N6SA, H5N4FSA, and H4N6F2 was greater than 0.9039. Based on the proposed method, H4N6SA, H5N4FSA, and H4N6F2 in human serum showed high accuracy and specificity and may serve as potential glycan biomarkers, crucial for the diagnosis and treatment monitoring of AMI.
Collapse
Affiliation(s)
- Xi-Ling Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Department of Orthopaedics, and Department of Cardiology, Yanbian University Hospital, Yanji, 133002, Jilin Province, China
| | - Yuxuan Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Department of Orthopaedics, and Department of Cardiology, Yanbian University Hospital, Yanji, 133002, Jilin Province, China
| | - Shuyun Xiao
- Department of Pharmacy of Tianjin Children's Hospital, Tianjin, 300202, China
| | - Qingsong Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Department of Orthopaedics, and Department of Cardiology, Yanbian University Hospital, Yanji, 133002, Jilin Province, China
| | - Chengqiang Han
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Department of Orthopaedics, and Department of Cardiology, Yanbian University Hospital, Yanji, 133002, Jilin Province, China
| | - Danyang Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Department of Orthopaedics, and Department of Cardiology, Yanbian University Hospital, Yanji, 133002, Jilin Province, China
| | - Tengfei Cui
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Department of Orthopaedics, and Department of Cardiology, Yanbian University Hospital, Yanji, 133002, Jilin Province, China
| | - Xiyang Rao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Department of Orthopaedics, and Department of Cardiology, Yanbian University Hospital, Yanji, 133002, Jilin Province, China
| | - Kenichiro Todoroki
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Guang Yang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Department of Orthopaedics, and Department of Cardiology, Yanbian University Hospital, Yanji, 133002, Jilin Province, China.
| | - Jun Zhe Min
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Department of Orthopaedics, and Department of Cardiology, Yanbian University Hospital, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
18
|
Wang L, Yang J, Hu X, Wang S, Wang Y, Sun T, Wang D, Wang W, Ma H, Wang Y, Song K, Li W. A decellularized lung extracellular matrix/chondroitin sulfate/gelatin/chitosan-based 3D culture system shapes breast cancer lung metastasis. BIOMATERIALS ADVANCES 2023; 152:213500. [PMID: 37336011 DOI: 10.1016/j.bioadv.2023.213500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 05/09/2023] [Accepted: 06/04/2023] [Indexed: 06/21/2023]
Abstract
Distal metastasis of breast cancer is a primary cause of death, and the lung is a common metastatic target of breast cancer. However, the role of the lung niche in promoting breast cancer progression is not well understood. Engineered three-dimensional (3D) in vitro models capable of bridging this knowledge gap can be specifically designed to mimic crucial characteristics of the lung niche in a more physiologically relevant context than conventional two-dimensional systems. In this study, two 3D culture systems were developed to mimic the late stage of breast cancer progression at a lung metastatic site. These 3D models were created based on a novel decellularized lung extracellular matrix/chondroitin sulfate/gelatin/chitosan composite material and on a porcine decellularized lung matrix (PDLM), with the former tailored with comparable properties (stiffness, pore size, biochemical composition, and microstructure) to that of the in vivo lung matrix. The different microstructure and stiffness of the two types of scaffolds yielded diverse presentations of MCF-7 cells in terms of cell distribution, cell morphology, and migration. Cells showed better extensions with apparent pseudopods and more homogeneous and reduced migration activity on the composite scaffold compared to those on the PDLM scaffold. Furthermore, alveolar-like structures with superior porous connectivity in the composite scaffold remarkably promoted aggressive cell proliferation and viability. In conclusion, a novel lung matrix-mimetic 3D in vitro breast cancer lung metastasis model was developed to clarify the underlying correlativity between lung ECM and breast cancer cells after lung colonization. A better understanding of the effects of biochemical and biophysical environments of the lung matrix on cell behaviors can help elucidate the potential mechanisms of breast cancer progression and further improve target discovery of therapeutic strategies.
Collapse
Affiliation(s)
- Le Wang
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Jianye Yang
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Xueyan Hu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shuping Wang
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China
| | - Yanxia Wang
- School of Rehabilitation Medicine, Weifang Medical University, Weifang 261053, China
| | - Tongyi Sun
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Dan Wang
- Department of Physical Education, School of Foundation Medical, Weifang Medical University, Weifang 261053, China
| | - Wenchi Wang
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Hailin Ma
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yingshuai Wang
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China.
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Wenfang Li
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
19
|
Illmann MD, Schäfl L, Drees F, Hartmann L, Schmidt S. Glycan-Presenting Coacervates Derived from Charged Poly(active esters): Preparation, Phase Behavior, and Lectin Capture. Biomacromolecules 2023. [PMID: 37133885 DOI: 10.1021/acs.biomac.3c00046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This study presents the preparation and phase behavior of glycan-functionalized polyelectrolytes for capturing carbohydrate-binding proteins and bacteria in liquid condensate droplets. The droplets are formed by complex coacervation of poly(active ester)-derived polyanions and polycations. This approach allows for a straightforward modular introduction of charged motifs and specifically interacting units; mannose and galactose oligomers are used here as first examples. The introduction of carbohydrates has a notable effect on the phase separation and the critical salt concentration, potentially by reducing the charge density. Two mannose binding species, concanavalin A (ConA) and Escherichia coli, are shown to not only specifically bind to mannose-functionalized coacervates but also to some degree to unfunctionalized, carbohydrate-free coacervates. This suggests non-carbohydrate-specific charge-charge interactions between the protein/bacteria and the droplets. However, when mannose interactions are inhibited or when non-binding galactose-functionalized polymers are used, interactions are significantly weakened. This confirms specific mannose-mediated binding functionalization and suggests that introducing carbohydrates reduces non-specific charge-charge interactions by a so far unidentified mechanism. Overall, the presented route toward glycan-presenting polyelectrolytes enables new functional liquid condensate droplets with specific biomolecular interactions.
Collapse
Affiliation(s)
- Michele Denise Illmann
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Lea Schäfl
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Felicitas Drees
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Institute of Macromolecular Chemistry, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany
| | - Laura Hartmann
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Institute of Macromolecular Chemistry, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany
| | - Stephan Schmidt
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Institute of Macromolecular Chemistry, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany
| |
Collapse
|
20
|
Zhou X, Ji Y, Zhou J. Multiple Strategies to Develop Small Molecular KRAS Directly Bound Inhibitors. Molecules 2023; 28:molecules28083615. [PMID: 37110848 PMCID: PMC10146153 DOI: 10.3390/molecules28083615] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/08/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
KRAS gene mutation is widespread in tumors and plays an important role in various malignancies. Targeting KRAS mutations is regarded as the "holy grail" of targeted cancer therapies. Recently, multiple strategies, including covalent binding strategy, targeted protein degradation strategy, targeting protein and protein interaction strategy, salt bridge strategy, and multivalent strategy, have been adopted to develop KRAS direct inhibitors for anti-cancer therapy. Various KRAS-directed inhibitors have been developed, including the FDA-approved drugs sotorasib and adagrasib, KRAS-G12D inhibitor MRTX1133, and KRAS-G12V inhibitor JAB-23000, etc. The different strategies greatly promote the development of KRAS inhibitors. Herein, the strategies are summarized, which would shed light on the drug discovery for both KRAS and other "undruggable" targets.
Collapse
Affiliation(s)
- Xile Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Yang Ji
- Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Jinming Zhou
- Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| |
Collapse
|
21
|
Kassem S, McPhee SA, Berisha N, Ulijn RV. Emergence of Cooperative Glucose-Binding Networks in Adaptive Peptide Systems. J Am Chem Soc 2023; 145:9800-9807. [PMID: 37075194 DOI: 10.1021/jacs.3c01620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Minimalistic peptide-based systems that bind sugars in water are challenging to design due to the weakness of interactions and required cooperative contributions from specific amino-acid side chains. Here, we used a bottom-up approach to create peptide-based adaptive glucose-binding networks by mixing glucose with selected sets of input dipeptides (up to 4) in the presence of an amidase to enable in situ reversible peptide elongation, forming mixtures of up to 16 dynamically interacting tetrapeptides. The choice of input dipeptides was based on amino-acid abundance in glucose-binding sites found in the protein data bank, with side chains that can support hydrogen bonding and CH-π interactions. Tetrapeptide sequence amplification patterns, determined through LC-MS analysis, served as a readout for collective interactions and led to the identification of optimized binding networks. Systematic variation of dipeptide input revealed the emergence of two networks of non-covalent hydrogen bonding and CH-π interactions that can co-exist, are cooperative and context-dependent. A cooperative binding mode was determined by studying the binding of the most amplified tetrapeptide (AWAD) with glucose in isolation. Overall, these results demonstrate that the bottom-up design of complex systems can recreate emergent behaviors driven by covalent and non-covalent self-organization that are not observed in reductionist designs and lead to the identification of system-level cooperative binding motifs.
Collapse
Affiliation(s)
- Salma Kassem
- Nanoscience Initiative at Advanced Science Research Center of the Graduate Center of the City University of New York, New York, New York 10031, United States
| | - Scott A McPhee
- Nanoscience Initiative at Advanced Science Research Center of the Graduate Center of the City University of New York, New York, New York 10031, United States
| | - Naxhije Berisha
- Nanoscience Initiative at Advanced Science Research Center of the Graduate Center of the City University of New York, New York, New York 10031, United States
- Ph.D. Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
- Department of Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Chemistry Hunter College, City University of New York, New York, New York 10065, United States
| | - Rein V Ulijn
- Nanoscience Initiative at Advanced Science Research Center of the Graduate Center of the City University of New York, New York, New York 10031, United States
- Ph.D. Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
- Department of Chemistry Hunter College, City University of New York, New York, New York 10065, United States
| |
Collapse
|
22
|
Gerling-Driessen UIM, Hoffmann M, Schmidt S, Snyder NL, Hartmann L. Glycopolymers against pathogen infection. Chem Soc Rev 2023; 52:2617-2642. [PMID: 36820794 DOI: 10.1039/d2cs00912a] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Pathogens including viruses, bacteria, fungi, and parasites continue to shape our lives in profound ways every day. As we have learned to live in parallel with pathogens, we have gained a better understanding of the rules of engagement for how they bind, adhere, and invade host cells. One such mechanism involves the exploitation of host cell surface glycans for attachment/adhesion, one of the first steps of infection. This knowledge has led to the development of glycan-based diagnostics and therapeutics for the treatment and prevention of infection. One class of compounds that has become increasingly important are the glycopolymers. Glycopolymers are macromolecules composed of a synthetic scaffold presenting carbohydrates as side chain motifs. Glycopolymers are particularly attractive because their properties can be tuned by careful choice of the scaffold, carbohydrate/glycan, and overall presentation. In this review, we highlight studies over the past ten years that have examined the role of glycopolymers in pathogen adhesion and host cell infection, biofilm formation and removal, and drug delivery with the aim of examining the direct effects of these macromolecules on pathogen engagement. In addition, we also examine the role of glycopolymers as diagnostics for the detection and monitoring of pathogens.
Collapse
Affiliation(s)
- Ulla I M Gerling-Driessen
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Miriam Hoffmann
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Stephan Schmidt
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany. .,Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany
| | - Nicole L Snyder
- Department of Chemistry, Davidson College, Davidson, North Carolina 28035, USA
| | - Laura Hartmann
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
23
|
Bi F, Zhang J, Xie R, Yu D, Wei H, Wang Y, Hua Z, Qi X, Huang B, Yang G. Adenosine Triphosphate-Responsive Glyconanorods through Self-Assembly of β-Cyclodextrin-Based Glycoconjugates for Targeted and Effective Bacterial Sensing and Killing. Biomacromolecules 2023; 24:1003-1013. [PMID: 36651863 DOI: 10.1021/acs.biomac.2c01440] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Polymer-based nanomaterials have exhibited promising alternative avenues to combat the globe challenge of multidrug-resistant bacterial infection. However, most of the reported polymeric nanomaterials have facially linear amphiphilic structures with positive net charges, which may lead to nonspecific binding, high hemolysis, and uncontrollable self-organization, limiting their practical applications. In this contribution, we report a one-dimensional glyconanorod (GNR) through self-assembly of well-defined β-cyclodextrin-based glycoconjugates (RMan) featuring hydrophobic carbon-based chains and amide rhodamines with an adenosine triphosphate (ATP)-recognition site and targeted and hydrophilic mannoses and positively net-charged ethylene amine groups. The GNRs show superior targeting sensing and killing for Gram-negative Escherichia coli (E. coli) dominantly through the multivalent recognition between mannoses on the nanorod and the lectin on the surface of E. coli. Moreover, red fluorescence was light on due to the hydrogen bonding between amide rhodamine and ATP. Benefiting from the designs, the GNRs are capable of possessing a higher therapeutic index and of encapsulating other antibiotics. They exhibit an enhanced effect against E. coli strains. Intriguingly, the GNRs displayed a more reduced hemolysis effect and lower cytotoxicity compared to that of ethylene glyco-modified nanorods. These results reveal that the glyconanomaterials not only feature superior and targeted bacterial sensing and antibacterial activity, but also better biocompatibility compared with the widely used PEG-covered nanomaterials. Furthermore, the in vivo studies demonstrate that the targeted and ATP-responsive GNRs complexed with antibiotics showed better treatment using a mouse model of abdominal sepsis following intraperitoneal E. coli infection. The present work describes a targeted and effective sensing and antibacterial platform based on glycoconjugates that have potential applications for the treatment of infections caused by pathogenic microorganisms.
Collapse
Affiliation(s)
- Feihu Bi
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jin Zhang
- Department of Nephropathy, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230022, China
| | - Rui Xie
- Department of Plant Pathology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Deshui Yu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Hanchen Wei
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yulong Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zan Hua
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiangming Qi
- Department of Nephropathy, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230022, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Guang Yang
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China.,Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, China
| |
Collapse
|
24
|
Sedighi M, Mahmoudi Z, Ghasempour A, Shakibaie M, Ghasemi F, Akbari M, Abbaszadeh S, Mostafavi E, Santos HA, Shahbazi MA. Nanostructured multifunctional stimuli-responsive glycopolypeptide-based copolymers for biomedical applications. J Control Release 2023; 354:128-145. [PMID: 36599396 DOI: 10.1016/j.jconrel.2022.12.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
Inspired by natural resources, such as peptides and carbohydrates, glycopolypeptide biopolymer has recently emerged as a new form of biopolymer being recruited in various biomedical applications. Glycopolypeptides with well-defined secondary structures and pendant glycosides on the polypeptide backbone have sparked lots of research interest and they have an innate ability to self-assemble in diverse structures. The nanostructures of glycopolypeptides have also opened up new perspectives in biomedical applications due to their stable three-dimensional structures, high drug loading efficiency, excellent biocompatibility, and biodegradability. Although the development of glycopolypeptide-based nanocarriers is well-studied, their clinical translation is still limited. The present review highlights the preparation and characterization strategies related to glycopolypeptides-based copolymers, followed by a comprehensive discussion on their biomedical applications with a specific focus on drug delivery by various stimuli-responsive (e.g., pH, redox, conduction, and sugar) nanostructures, as well as their beneficial usage in diagnosis and regenerative medicine.
Collapse
Affiliation(s)
- Mahsa Sedighi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Zahra Mahmoudi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Ghasempour
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehdi Shakibaie
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fahimeh Ghasemi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran; Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahsa Akbari
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
| | - Samin Abbaszadeh
- Department of Pharmacology, School of Medicine, Zanjan University of Medical Sciences, 45139-56111 Zanjan, Iran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Hélder A Santos
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands; Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland.
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
25
|
de la Mata FJ, Gómez R, Cano J, Sánchez‐Nieves J, Ortega P, Gallego SG. Carbosilane dendritic nanostructures, highly versatile platforms for pharmaceutical applications. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1871. [PMID: 36417901 DOI: 10.1002/wnan.1871] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/25/2022]
Abstract
Dendrimers are multifunctional molecules with well-defined size and structure due to the step-by-step synthetic procedures required in their preparation. Dendritic constructs based on carbosilane scaffolds present carbon-carbon and carbon-silicon bonds, which results in stable, lipophilic, inert, and flexible structures. These properties are highly appreciated in different areas, including the pharmaceutical field, as they can increase the interaction with cell membranes and improve the therapeutic action. This article summarizes the most recent advances in the pharmaceutical applications of carbosilane dendritic molecules, from therapeutics to diagnostics and prevention tools. Dendrimers decorated with cationic, anionic, or other moieties, including metallodendrimers; supramolecular assemblies; dendronized nanoparticles and surfaces; as well as dendritic networks like hydrogels are described. The collected examples confirm the potential of carbosilane dendrimers and dendritic materials as antiviral or antibacterial agents; in therapy against cancer, neurodegenerative disease, or oxidative stress; or many other biomedical applications. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Francisco Javier de la Mata
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR) Universidad de Alcala Alcalá de Henares Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III
- Institute Ramón y Cajal for Health Research (IRYCIS) Madrid Spain
| | - Rafael Gómez
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR) Universidad de Alcala Alcalá de Henares Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III
- Institute Ramón y Cajal for Health Research (IRYCIS) Madrid Spain
| | - Jesús Cano
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR) Universidad de Alcala Alcalá de Henares Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III
- Institute Ramón y Cajal for Health Research (IRYCIS) Madrid Spain
| | - Javier Sánchez‐Nieves
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR) Universidad de Alcala Alcalá de Henares Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III
- Institute Ramón y Cajal for Health Research (IRYCIS) Madrid Spain
| | - Paula Ortega
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR) Universidad de Alcala Alcalá de Henares Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III
- Institute Ramón y Cajal for Health Research (IRYCIS) Madrid Spain
| | - Sandra García Gallego
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR) Universidad de Alcala Alcalá de Henares Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III
- Institute Ramón y Cajal for Health Research (IRYCIS) Madrid Spain
| |
Collapse
|
26
|
Bertuzzi S, Peccati F, Serna S, Artschwager R, Notova S, Thépaut M, Jiménez-Osés G, Fieschi F, Reichardt NC, Jiménez-Barbero J, Ardá A. Immobilization of Biantennary N-Glycans Leads to Branch Specific Epitope Recognition by LSECtin. ACS CENTRAL SCIENCE 2022; 8:1415-1423. [PMID: 36313162 PMCID: PMC9615123 DOI: 10.1021/acscentsci.2c00719] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 05/04/2023]
Abstract
The molecular recognition features of LSECtin toward asymmetric N-glycans have been scrutinized by NMR and compared to those occurring in glycan microarrays. A pair of positional glycan isomers (LDN3 and LDN6), a nonelongated GlcNAc4Man3 N-glycan (G0), and the minimum binding epitope (the GlcNAcβ1-2Man disaccharide) have been used to shed light on the preferred binding modes under both experimental conditions. Strikingly, both asymmetric LDN3 and LDN6 N-glycans are recognized by LSECtin with similar affinities in solution, in sharp contrast to the results obtained when those glycans are presented on microarrays, where only LDN6 was efficiently recognized by the lectin. Thus, different results can be obtained using different experimental approaches, pointing out the tremendous difficulty of translating in vitro results to the in vivo environment.
Collapse
Affiliation(s)
- Sara Bertuzzi
- Basque
Research & Technology Alliance (BRTA), Chemical Glycobiology Group, CIC bioGUNE, Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain
| | - Francesca Peccati
- Basque Research
& Technology Alliance (BRTA), Computational Chemistry Group, CIC bioGUNE, Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain
| | - Sonia Serna
- Glycotechnology
Group, Basque Research and Technology Alliance (BRTA), CIC biomaGUNE, Paseo Miramón 182, 20014 San Sebastian, Spain
| | - Raik Artschwager
- Glycotechnology
Group, Basque Research and Technology Alliance (BRTA), CIC biomaGUNE, Paseo Miramón 182, 20014 San Sebastian, Spain
- Memorial
Sloan Kettering Cancer Center, 417 East 68th Street, New
York, New York 10065, United States
| | - Simona Notova
- CNRS,
CEA, Institut de Biologie Structurale, University
of Grenoble Alpes, 38000 Grenoble, France
| | - Michel Thépaut
- CNRS,
CEA, Institut de Biologie Structurale, University
of Grenoble Alpes, 38000 Grenoble, France
| | - Gonzalo Jiménez-Osés
- Basque Research
& Technology Alliance (BRTA), Computational Chemistry Group, CIC bioGUNE, Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain
- Ikerbasque,
Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Bizkaia, Spain
| | - Franck Fieschi
- CNRS,
CEA, Institut de Biologie Structurale, University
of Grenoble Alpes, 38000 Grenoble, France
- E-mail:
| | - Niels C. Reichardt
- Glycotechnology
Group, Basque Research and Technology Alliance (BRTA), CIC biomaGUNE, Paseo Miramón 182, 20014 San Sebastian, Spain
- CIBER-BBN, Paseo Miramón 182, 20009 San Sebastian, Spain
- E-mail:
| | - Jesús Jiménez-Barbero
- Basque
Research & Technology Alliance (BRTA), Chemical Glycobiology Group, CIC bioGUNE, Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain
- Ikerbasque,
Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Bizkaia, Spain
- Department
of Organic Chemistry, II Faculty of Science
and Technology University of the Basque Country, EHU-UPV, 48940 Leioa, Spain
- Centro
de Investigación Biomédica En Red de Enfermedades Respiratorias, 28029 Madrid, Spain
- E-mail:
| | - Ana Ardá
- Basque
Research & Technology Alliance (BRTA), Chemical Glycobiology Group, CIC bioGUNE, Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain
- Ikerbasque,
Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Bizkaia, Spain
- E-mail:
| |
Collapse
|
27
|
Goyard D, Ortiz AMS, Boturyn D, Renaudet O. Multivalent glycocyclopeptides: conjugation methods and biological applications. Chem Soc Rev 2022; 51:8756-8783. [PMID: 36193815 PMCID: PMC9575389 DOI: 10.1039/d2cs00640e] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 11/21/2022]
Abstract
Click chemistry was extensively used to decorate synthetic multivalent scaffolds with glycans to mimic the cell surface glycocalyx and to develop applications in glycosciences. Conjugation methods such as oxime ligation, copper(I)-catalyzed alkyne-azide cycloaddition, thiol-ene coupling, squaramide coupling or Lansbury aspartylation proved particularly suitable to achieve this purpose. This review summarizes the synthetic strategies that can be used either in a stepwise manner or in an orthogonal one-pot approach, to conjugate multiple copies of identical or different glycans to cyclopeptide scaffolds (namely multivalent glycocyclopeptides) having different size, valency, geometry and molecular composition. The second part of this review will describe the potential of these structures to interact with various carbohydrate binding proteins or to stimulate immunity against tumor cells.
Collapse
Affiliation(s)
- David Goyard
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France.
| | | | - Didier Boturyn
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France.
| | - Olivier Renaudet
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France.
| |
Collapse
|
28
|
Rim-differentiation vs. mixture of constitutional isomers: A binding study between pillar[5]arene-based glycoclusters and lectins from pathogenic bacteria. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Abstract
Through their specific interactions with proteins, cellular glycans play key roles in a wide range of physiological and pathological processes. One of the main goals of research in the areas of glycobiology and glycomedicine is to understand glycan-protein interactions at the molecular level. Over the past two decades, glycan microarrays have become powerful tools for the rapid evaluation of interactions between glycans and proteins. In this review, we briefly describe methods used for the preparation of glycan probes and the construction of glycan microarrays. Next, we highlight applications of glycan microarrays to rapid profiling of glycan-binding patterns of plant, animal and pathogenic lectins, as well as other proteins. Finally, we discuss other important uses of glycan microarrays, including the rapid analysis of substrate specificities of carbohydrate-active enzymes, the quantitative determination of glycan-protein interactions, discovering high-affinity or selective ligands for lectins, and identifying functional glycans within cells. We anticipate that this review will encourage researchers to employ glycan microarrays in diverse glycan-related studies.
Collapse
Affiliation(s)
- Yujun Kim
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Injae Shin
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| |
Collapse
|
30
|
Su JY, Li WH, Li YM. New opportunities for immunomodulation of the tumour microenvironment using chemical tools. Chem Soc Rev 2022; 51:7944-7970. [PMID: 35996977 DOI: 10.1039/d2cs00486k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Immunotherapy is recognised as an attractive method for the treatment of cancer, and numerous treatment strategies have emerged over recent years. Investigations of the tumour microenvironment (TME) have led to the identification of many potential therapeutic targets and methods. However, many recently applied immunotherapies are based on previously identified strategies, such as boosting the immune response by combining commonly used stimulators, and the release of drugs through changes in pH. Although methodological improvements such as structural optimisation and combining strategies can be undertaken, applying those novel targets and methods in immunotherapy remains an important goal. In this review, we summarise the latest research on the TME, and discuss how small molecules, immune cells, and their interactions with tumour cells can be regulated in the TME. Additionally, the techniques currently employed for delivery of these agents to the TME are also mentioned. Strategies to modulate cell phenotypes and interactions between immune cells and tumours are mainly discussed. We consider both modulatory and targeting methods aiming to bridge the gap between the TME and chemical modulation thereof.
Collapse
Affiliation(s)
- Jing-Yun Su
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China.
| | - Wen-Hao Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China.
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China. .,Center for Synthetic and Systems Biology, Tsinghua University, 100084 Beijing, China.,Beijing Institute for Brain Disorders, 100069 Beijing, China
| |
Collapse
|
31
|
Hadar D, Strugach DS, Amiram M. Conjugates of Recombinant Protein‐Based Polymers: Combining Precision with Chemical Diversity. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202100142] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Dagan Hadar
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev P.O. Box 653 Beer-Sheva 8410501 Israel
| | - Daniela S. Strugach
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev P.O. Box 653 Beer-Sheva 8410501 Israel
| | - Miriam Amiram
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev P.O. Box 653 Beer-Sheva 8410501 Israel
| |
Collapse
|
32
|
Nagao M, Yamaguchi A, Matsubara T, Hoshino Y, Sato T, Miura Y. De Novo Design of Star-Shaped Glycoligands with Synthetic Polymer Structures toward an Influenza Hemagglutinin Inhibitor. Biomacromolecules 2021; 23:1232-1241. [PMID: 34968049 DOI: 10.1021/acs.biomac.1c01483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthetic polymers with well-defined structures allow the development of nanomaterials with additional functions beyond biopolymers. Herein, we demonstrate de novo design of star-shaped glycoligands to interact with hemagglutinin (HA) using well-defined synthetic polymers with the aim of developing an effective inhibitor for the influenza virus. Prior to the synthesis, the length of the star polymer chains was predicted using the Gaussian model of synthetic polymers, and the degree of polymerization required to achieve multivalent binding to three carbohydrate recognition domains (CRDs) of HA was estimated. The star polymer with the predicted degree of polymerization was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization, and 6'-sialyllactose was conjugated as the glycoepitope for HA. The designed glycoligand exhibited the strongest interaction with HA as a result of multivalent binding. This finding demonstrated that the biological function of the synthetic polymer could be controlled by precisely defining the polymer structures.
Collapse
Affiliation(s)
- Masanori Nagao
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ai Yamaguchi
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Teruhiko Matsubara
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yu Hoshino
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Toshinori Sato
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yoshiko Miura
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
33
|
Goyard D, Roubinet B, Vena F, Landemarre L, Renaudet O. Homo- and Heterovalent Neoglycoproteins as Ligands for Bacterial Lectins. Chempluschem 2021; 87:e202100481. [PMID: 34931469 DOI: 10.1002/cplu.202100481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/03/2021] [Indexed: 11/11/2022]
Abstract
Click chemistry gives access to unlimited set of multivalent glycoconjugates to explore carbohydrate-protein interactions and discover high affinity ligands. In this study, we have created supramolecular systems based on a carrier protein that was grafted by Cu(I)-catalyzed azide-alkyne cycloaddition with tetravalent glycodendrons presenting αGal, βGal and/or αFuc. Binding studies of the homo- (4 a-c) and heterovalent (5) neoglycoproteins (neoGPs) with the LecA and LecB lectins from P. aeruginosa has first confirmed the interest of the multivalent presentation of glycodendrons by the carrier protein (IC50 up to 2.8 nM). Moreover, these studies have shown that the heterovalent display of glycans (5) allows the interaction with both lectins (IC50 of 10 nM) despite the presence of unspecific moieties, and even with similar efficiency for LecB. These results demonstrate the potential of multivalent and multispecific neoGPs as a promising strategy to fight against resistant pathogens.
Collapse
Affiliation(s)
- David Goyard
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, 38000, Grenoble, France
| | | | | | | | - Olivier Renaudet
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, 38000, Grenoble, France
| |
Collapse
|